List of articles (by subject) Wireless Network


    • Open Access Article

      1 - A Unicast Tree-Based Data Gathering Protocol for Delay Tolerant Mobile Sensor Networks
      Zeynab Mottaginia Ali Ghaffari
      The Delay Tolerant Mobile Sensor Networks (DTMSNs) distinguish themselves from conventional sensor networks by means of some features such as loose connectivity, node mobility, and delay tolerability. It needs to be acknowledged that traditional end-to-end routing proto More
      The Delay Tolerant Mobile Sensor Networks (DTMSNs) distinguish themselves from conventional sensor networks by means of some features such as loose connectivity, node mobility, and delay tolerability. It needs to be acknowledged that traditional end-to-end routing protocols cannot be applied usefully in such challenging network conditions because of intermittent connections and/or long delays. Hence, this research is intended to propose a Unicast Tree-based Data Gathering protocol (UTDG) to resolve this problem. A UTDG includes 3 phases: tree formation phase, data collection and data transmission phase, and finally the updating phase. The proposed protocol constructs a tree in each community on the basis of transmission ranking, contact probability and the link expiration time. The selection of the next-hop node is based on the tree structure rather than forwarding the message to the neighbor node directly. Each node unicasts the data to its parent in the related community, and the root of the tree successively sends the data to the sink node. The authors contend, based on the simulation results of the study, that the proposed protocol can gain significantly higher message delivery rates with lower transmission overhead and also lower delay in data delivery than the other existing DTMSNs routing protocols in some applications. Manuscript profile
    • Open Access Article

      2 - Optimal Sensor Scheduling Algorithms for Distributed Sensor Networks
      Behrooz Safarinejadian Abdolah Rahimi
      In this paper, a sensor network is used to estimate the dynamic states of a system. At each time step, one (or multiple) sensors are available that can send its measured data to a central node, in which all of processing is done. We want to provide an optimal algorithm More
      In this paper, a sensor network is used to estimate the dynamic states of a system. At each time step, one (or multiple) sensors are available that can send its measured data to a central node, in which all of processing is done. We want to provide an optimal algorithm for scheduling sensor selection at every time step. Our goal is to select the appropriate sensor to reduce computations, optimize the energy consumption and enhance the network lifetime. To achieve this goal, we must reduce the error covariance. Three algorithms are used in this work: sliding window, thresholding and randomly chosen algorithms. Moreover, we will offer a new algorithm based on circular selection. Finally, a novel algorithm for selecting multiple sensors is proposed. Performance of the proposed algorithms is illustrated with numerical examples. Manuscript profile
    • Open Access Article

      3 - Node to Node Watermarking in Wireless Sensor Networks for Authentication of Self Nodes
      Hassan Farsi Seyed Morteza Nourian
      In order to solve some security issues in Wireless Sensor Networks (WSNs), node to node authentication method based on digital watermarking technique for verification of relative nodes is proposed. In the proposed method, some algorithms with low computational for gener More
      In order to solve some security issues in Wireless Sensor Networks (WSNs), node to node authentication method based on digital watermarking technique for verification of relative nodes is proposed. In the proposed method, some algorithms with low computational for generation, embedding and detection of security ID are designed. The collected data packets by the nodes are marked using security ID. In the proposed method, header is used to mark the packets. Since the nature of the sensor networks is cooperative, using the head of the packets is proposed for authentication. Also using the marked head can prevent from sending and receiving fake data in the other nodes. Simulations have been performed in environments with imposing unrealistic data and having a probability from 1% to 10%. Comparing the proposed method with other methods shows that the proposed method in term of security, reducing traffic and increasing network lifetime is more effective. Manuscript profile
    • Open Access Article

      4 - SIP Vulnerability Scan Framework
      Mitra Alidoosti Hassan Asgharian Ahmad akbari
      The purpose of this paper is to provide a framework for detecting vulnerabilities in SIP (Session Initiation Protocol) networks. We try to find weaknesses in SIP enabled entities that an attacker by exploiting them is able to attack the system and affect it. This framew More
      The purpose of this paper is to provide a framework for detecting vulnerabilities in SIP (Session Initiation Protocol) networks. We try to find weaknesses in SIP enabled entities that an attacker by exploiting them is able to attack the system and affect it. This framework is provided by the concept of penetration testing and is designed to be flexible and extensible, and has the capability to customize for other similar session based protocols. To satisfy the above objectives, the framework is designed with five main modules for discovery, information modeling, operation, evaluation and report. After setting up a test-bed as a typical VoIP system to show the validity of the proposed framework, this system has been implemented as a SIP vulnerability scanner. We also defined appropriate metrics for gathering the performance statistics of SIP components. Our test bed is deployed by open-source applications and used for validation and also evaluation of the proposed framework. Manuscript profile
    • Open Access Article

      5 - Statistical Analysis of Different Traffic Types Effect on QoS of Wireless Ad Hoc Networks
      Mahmood Mollaei Gharehajlu Saadan Zokaei Yousef Darmani
      IEEE 802.11 based wireless ad hoc networks are highly appealing owing to their needless of infrastructures, ease and quick deployment and high availability. Vast variety of applications such as voice and video transmission over these types of networks need different net More
      IEEE 802.11 based wireless ad hoc networks are highly appealing owing to their needless of infrastructures, ease and quick deployment and high availability. Vast variety of applications such as voice and video transmission over these types of networks need different network performances. In order to support quality of service for these applications, characterizing both packets arrival and available resources are essential. To address these issues we use Effective Bandwidth/Effective Capacity theory which expresses packet arrival and service model statistically. Effective Bandwidth asymptotically represents arrival traffic specifications using a single function. Also, Effective Capacity statistically describes service model of each node. Based on this theory, at first we modeled each node’s service as an ON/OFF process. Then a new closed form of Effective Capacity is proposed which is a simple function and is dependent on a few parameters of the network. Afterward the performance of different traffic patterns such as constant bit rate, Poisson and Markov Modulated Poisson process are statistically evaluated in the case of both single and aggregate traffic modes. Using the proposed model we will show that traffic pattern affects QoS parameters even if all models have the same average packet arrival rate. We prove the accuracy of our model by a series of simulations which are run using NS2 simulator. Manuscript profile
    • Open Access Article

      6 - A Linear Model for Energy-Aware Scheduling Problem Considering Interference in Real-time Wireless Sensor Networks
      Maryam  Hamidanvar rafeh rafeh
      An important factor in increasing quality of service in real-time wireless networks is minimizing energy consumption, which contradicts with increasing message delivery rate because of associating a time deadline to each message. In these networks, every message has a t More
      An important factor in increasing quality of service in real-time wireless networks is minimizing energy consumption, which contradicts with increasing message delivery rate because of associating a time deadline to each message. In these networks, every message has a time deadline constraint and when the message is not delivered to its destination before its deadline constraint, it will drop. Therefore, scheduling methods that simultaneously consider both energy consumption and time deadline constraint are needed. An effective method for reducing energy consumption is multi-hop transmission of packets. However, this method takes longer time for transmission as compared to single-hop transmission. Parallel transmission is another approach which on one hand reduces the transmission time and on the other hand increases the network throughput. However, a main issue with parallel transmission is the presence of interference among nearby nodes. In this paper, we propose a linear model (ILP formulation) for energy aware scheduling problem in real-time wireless sensor networks using parallel transmission. The main objective of the model is to reduce energy consumption and packet loss using multi-hop routing and parallel transmission. Experimental results show that the proposed model finds the optimum solution for the problem and outperforms the sequential scheduling based on the TDMA protocol. Manuscript profile
    • Open Access Article

      7 - Coverage Improving with Energy Efficient in Wireless Sensor Networks
      Amir Pakmehr Ali Ghaffari
      Wireless sensor networks (WSNs) are formed by numerous sensors nodes that are able to sense different environmental phenomena and to transfer the collected data to the sink. The coverage of a network is one of the main discussion and one of the parameters of service qua More
      Wireless sensor networks (WSNs) are formed by numerous sensors nodes that are able to sense different environmental phenomena and to transfer the collected data to the sink. The coverage of a network is one of the main discussion and one of the parameters of service quality in WSNs. In most of the applications, the sensor nodes are scattered in the environment randomly that causes the density of the nodes to be high in some regions and low in some other regions. In this case, some regions are not covered with any nodes of the network that are called covering holes. Moreover, creating some regions with high density causes extra overlapping and consequently the consumption of energy increases in the network and life of the network decreases. The proposed approach causes an increase in life of the network and an increase in it through careful selection of the most appropriate approach as cluster head node and form clusters with a maximum length of two steps and selecting some nodes as redundancy nodes in order to cover the created holes in the network. The proposed scheme is simulated using MATLAB software. The function of the suggested approach will be compared with Learning Automata based Energy Efficient Coverage protocol (LAEEC) approach either. Simulation results shows that the function of the suggested approach is better than LAEEC considering the parameters such as average of the active nodes, average remaining energy in nodes, percent of network coverage and number of control packets. Manuscript profile
    • Open Access Article

      8 - Data Aggregation Tree Structure in Wireless Sensor Networks Using Cuckoo Optimization Algorithm
      Elham Mohsenifard Behnam Talebi
      Wireless sensor networks (WSNs) consist of numerous tiny sensors which can be regarded as a robust tool for collecting and aggregating data in different data environments. The energy of these small sensors is supplied by a battery with limited power which cannot be rech More
      Wireless sensor networks (WSNs) consist of numerous tiny sensors which can be regarded as a robust tool for collecting and aggregating data in different data environments. The energy of these small sensors is supplied by a battery with limited power which cannot be recharged. Certain approaches are needed so that the power of the sensors can be efficiently and optimally utilized. One of the notable approaches for reducing energy consumption in WSNs is to decrease the number of packets to be transmitted in the network. Using data aggregation method, the mass of data which should be transmitted can be remarkably reduced. One of the related methods in this approach is the data aggregation tree. However, it should be noted that finding the optimization tree for data aggregation in networks with one working-station is an NP-Hard problem. In this paper, using cuckoo optimization algorithm (COA), a data aggregation tree was proposed which can optimize energy consumption in the network. The proposed method in this study was compared with genetic algorithm (GA), Power Efficient Data gathering and Aggregation Protocol- Power Aware (PEDAPPA) and energy efficient spanning tree (EESR). The results of simulations which were conducted in matlab indicated that the proposed method had better performance than GA, PEDAPPA and EESR algorithm in terms of energy consumption. Consequently, the proposed method was able to enhance network lifetime. Manuscript profile
    • Open Access Article

      9 - Crisis management using spatial query processing in wireless sensor networks
      mohammad shakeri seyyed majid mazinani
      Natural disasters are an inevitable part of the world that we inhabit. Human casualties and financial losses are concomitants of these natural disasters. However, by an efficient crisis management program, we can minimize their physical and social damages. The real chal More
      Natural disasters are an inevitable part of the world that we inhabit. Human casualties and financial losses are concomitants of these natural disasters. However, by an efficient crisis management program, we can minimize their physical and social damages. The real challenge in crisis management is the inability to timely receive the information from the stricken areas. Technology has come to the aid of crisis management programs to help find an answer to the problem. One of these technologies is wireless sensor network. With recent advances in this field, sensor nodes can independently respond to the queries from the users. This has transformed the processing of the queries into one of the most useful chapters in sensor networks. Without requiring any infrastructure, the sensor network can easily be deployed in the stricken area. And with the help of spatial query processing, it can easily provide managers with the latest information. The main problem, however, is the irregular shape of the area. Since these areas require many points to present them, the transmission of the coordinates by sensor nodes necessitates an increase in the number of data packet transmissions in the sensor network. The high number of packets considerably increases energy consumption. In related previous works, to solve this problem, line simplification algorithm s, such as Ramer-Douglas-Peucker (RDP), were used. These algorithms could lessen energy consumption by reducing the number of points in the shape of the area. In this article, we present a new algorithm to simplify packet shapes which can reduce more points with more accuracy. This results in decreasing the number of transmitted packets in the network, the concomitant reduction of energy consumption, and, finally, increasing network lifetime. Our proposed method was implemented in different scenarios and could on average reduce network’s energy consumption by 72.3%, while it caused only 4.5% carelessness which, when compared to previous methods, showed a far better performance. Manuscript profile
    • Open Access Article

      10 - A New Node Density Based k-edge Connected Topology Control Method: A Desirable QoS Tolerance Approach
      Mohsen Heydarian
      This research is an ongoing work for achieving consistency between topology control and QoS guarantee in MANET. Desirable topology and Quality of Service (QoS) control are two important challenges in wireless communication networks such as MANETs.In a Mobile Ad hoc Netw More
      This research is an ongoing work for achieving consistency between topology control and QoS guarantee in MANET. Desirable topology and Quality of Service (QoS) control are two important challenges in wireless communication networks such as MANETs.In a Mobile Ad hoc Network, MANET, nodes move in the network area; therefore, the network topology is randomly and unpredictably changed. If the network topology is not controlled properly, the energy consumption is increased and also network topology probably becomes disconnected. To prevent from this situation, it is necessary to use desirable dynamic topology control algorithms such as k-edge connectivity methods. This papertries to improvethe three following parameters according to the k-edge connectivity concepts: (1) network performance, (2) reduce energy consumption, and (3) maintain the network connectivity. To achieve these goals, as a new method, we enhance k-edge connectivity methods using an improved definition of node density. The new method is called as: Node Density Based k-edge connected Topology Control (NDBkTC) algorithm. For the first time the node density definition is dynamically used. The new method, computes the node density based on a new equation which consists of the following factors: the relative velocity of nodes, distance between nodes, the number of nodes and the transmission range of nodes. The results show that our new method improves the network performance compared with the existing methods. Also we will show that the new method can holds QoS in a desirable tolerance range. Manuscript profile
    • Open Access Article

      11 - Lifetime Maximization by Dynamic Threshold and Sensor Selection in Multi-channel Cognitive Sensor Network
      Asma Bagheri Ataollah Ebrahimzadeh maryam najimi
      The tiny and low-cost sensors cannot simultaneously sense more than one channel since they do not have high-speed Analog-to-Digital-Convertors (ADCs) and high-power batteries. It is a critical problem when they are used for multi-channel sensing in cognitive sensor netw More
      The tiny and low-cost sensors cannot simultaneously sense more than one channel since they do not have high-speed Analog-to-Digital-Convertors (ADCs) and high-power batteries. It is a critical problem when they are used for multi-channel sensing in cognitive sensor networks (CSNs). One solution for this problem is that the sensors sense various channels at different sensing periods. Due to the energy limitation in these scenarios, the lifetime maximization will become an important issue. In this paper, maximizing the lifetime of a CSN is investigated by selecting both the cooperative sensors and their detector threshold, such that the desired detection performance constraints are satisfied. This is a NP-complete problem, and obtaining the optimum solution needs exhaustive search with exponential complexity order. Here we have proposed two convex-based optimization algorithms with low order of complexity. First algorithm applies the known instantaneous Signal-to-Noise-Ratio (SNR) and obtains the proper detector thresholds by solving an equation for every channel. Investigation the effect of detector thresholds on the energy consumption, the false alarm probability and the detection probability shows that we can minimize the detector thresholds such that the detection constraints are met. In the second algorithm in order to reduce the complexity of the problem it is proposed the Bisection method for determining detector thresholds. Because knowing the instantaneous SNR is difficult, we have investigated the performance of the second algorithm by average value of SNR. Simulation results show that the proposed algorithms improve the performance of the network in case of lifetime and energy consumption. Manuscript profile
    • Open Access Article

      12 - Clustering for Reduction of Energy Consumption in Wireless Sensor Networks by AHP Method
      Mohammad Reza  Taghva Robab  Hamlbarani Haghi Aziz Hanifi Kamran  feizi
      Due to the type of applications, wireless sensor nodes must always be energy efficient and small. Hence, some studies have been done in order to the reduction in energy consumption. Data collection in wireless sensor networks is one of the most important operations of t More
      Due to the type of applications, wireless sensor nodes must always be energy efficient and small. Hence, some studies have been done in order to the reduction in energy consumption. Data collection in wireless sensor networks is one of the most important operations of these networks. Due to the energy limitation of nodes, energy efficiency is considered as a key objective in the design of sensor networks. In this paper, we present a method in which, in the first phase, nodes obtain their position by using the position of the base station and two other two nodes informed geographic position and are out of covered environment. In the second phase, the optimal location of the base station is determined. In the third phase, we determine the cluster heads based on the criteria such as the remaining energy, the distance (the distance from the cluster head and the distance from the base station), the number of neighbors (the one-step neighbors and the two-step neighbors) and the centrality. Using the multi-as criteria to select optimally cluster heads by decision making method. We implement the proposed method in the NS2 environment and evaluate its effect and compare it with the NEECP E-LEACH protocols. Simulation results show that by reducing energy consumption, the proposed method enhances the network life time expectancy. In addition it improves average packet delivery and the average delay. Manuscript profile
    • Open Access Article

      13 - Security Enhancement of Wireless Sensor Networks: A Hybrid Efficient Encryption Algorithm Approach
      Omid Mahdi Ebadati Farshad Eshghi Amin Zamani
      Wireless sensor networks are new technologies that are used for various purposes such as environmental monitoring, home security, industrial process monitoring, healthcare programs and etc. Wireless sensor networks are vulnerable to various attacks. Cryptography is one More
      Wireless sensor networks are new technologies that are used for various purposes such as environmental monitoring, home security, industrial process monitoring, healthcare programs and etc. Wireless sensor networks are vulnerable to various attacks. Cryptography is one of the methods for secure transmission of information between sensors in wireless sensor networks. A complete and secure encryption system must establish three principles of confidentiality, authentication and integrity. An encryption algorithm alone cannot provide all the principles of encryption. A hybrid encryption algorithm, consisting of symmetric and asymmetric encryption algorithms, provides complete security for a cryptographic system. The papers presented in this area over the last few years, and a new secure algorithm present with regard to the limitations of wireless sensor networks, which establishes three principles of cryptography. The details of the algorithm and basic concepts are presented in such a way that the algorithm can be operational and showed a very high efficiency in compare to the current proposed methods. Manuscript profile
    • Open Access Article

      14 - Lifetime Improvement Using Cluster Head Selection and Base Station Localization in Wireless Sensor Networks
      maryam najimi Sajjad  Nankhoshki
      The limited energy supply of wireless sensor networks poses a great challenge for the deployment of wireless sensor nodes. In this paper, a sensor network of nodes with wireless transceiver capabilities and limited energy is considered. Clustering is one of the most eff More
      The limited energy supply of wireless sensor networks poses a great challenge for the deployment of wireless sensor nodes. In this paper, a sensor network of nodes with wireless transceiver capabilities and limited energy is considered. Clustering is one of the most efficient techniques to save more energy in these networks. Therefore, the proper selection of the cluster heads plays important role to save the energy of sensor nodes for data transmission in the network. In this paper, we propose an energy efficient data transmission by determining the proper cluster heads in wireless sensor networks. We also obtain the optimal location of the base station according to the cluster heads to prolong the network lifetime. An efficient method is considered based on particle swarm algorithm (PSO) which is a nature inspired swarm intelligence based algorithm, modelled after observing the choreography of a flock of birds, to solve a sensor network optimization problem. In the proposed energy- efficient algorithm, cluster heads distance from the base station and their residual energy of the sensors nodes are important parameters for cluster head selection and base station localization. The simulation results show that our proposed algorithm improves the network lifetime and also more alive sensors are remained in the wireless network compared to the baseline algorithms in different situations. Manuscript profile
    • Open Access Article

      15 - An SRN Based Approach for Performance Evaluation of Network Layer in Mobile Ad hoc Networks
      meisam Yadollahzadeh tabari Ali A Pouyan
      The application of mobile ad hoc networks (MANET) in emergency and critical cases needs a precise and formal performance evaluation of these networks. Traditional simulation-based performance evaluators like NS-2 and OPNET usually need a considerable time for producing More
      The application of mobile ad hoc networks (MANET) in emergency and critical cases needs a precise and formal performance evaluation of these networks. Traditional simulation-based performance evaluators like NS-2 and OPNET usually need a considerable time for producing high level performance metrics. Also there is no theoretical background for mentioned simulators, too. In this research, we propose a framework for performance evaluation of mobile ad hoc networks. The presented framework points to the network layer of MANETs using SRN (Stochastic Reward Nets) modeling tool as variation of generalized stochastic Petri net (GSPN). Based on decomposition technique it encompasses two separate models: one for analysis of data flowing process and the other for modeling routing process ; supposing AODV as a routing protocol that is worked out. To verify the presented model, an equivalence-based method is applied. The proposed SRN model has been quantified by deriving two performances metrics as Packet Delivery Ratio (PDR) and End-to-end Delay. Both metrics are also compared to the value obtained from NS-2 simulator versus different number of nodes and four packet generation rates. The results show the obtained values from presented SRN model well matched to the values generated from NS-2 simulator with a considerable lesser execution time. Manuscript profile
    • Open Access Article

      16 - A Game Theory Based Dynamic Transmission Opportunity Adjustment in WLANs
      Mahdieh Ghazvini Kamal Jamshidi Naser Movahedinia
      IEEE 802.11e is standardized to enhance real time multimedia applications’ quality of service (QoS). This standard introduces two access mechanisms called Enhanced distributed channel access (EDCA) and HCF Controlled Channel Access (HCCA) as well as four Access Categor More
      IEEE 802.11e is standardized to enhance real time multimedia applications’ quality of service (QoS). This standard introduces two access mechanisms called Enhanced distributed channel access (EDCA) and HCF Controlled Channel Access (HCCA) as well as four Access Categories (ACs) for different types of applications. Each AC has four adjustable parameters : Arbitrary Inter-Frame Space Number(AIFSN), minimum Size of Contention Window(CWmin), maximum size of Contention Window (CWmax), and TXOP_limit. A TXOP_limit (TXOP) is time interval, in which a wireless station can transmit a number of frames consecutively, without releasing the channel and any further contention with other wireless stations. TXOP improves network throughput as well as service differentiation. Proper TXOP adjustment can lead to better bandwidth utilization and QoS provisioning. This paper studies the determination of TXOP in EDCA mode of IEEE 802.11e using a game theory based approach called GDTXOP. Based on GDTXOP, each wireless node chooses its appropriate TXOP according to its queue length and media access delay. OPNET simulator simulated the proposed method and its accuracy is evaluated and verified. The results of the simulation indicate that tuning TXOP appropriately improves both channel utilization for all levels of traffic priority and fairness. This improvement does not impair the quality of high-priority traffics. The proposed approach improves channel utilization, while preserving fairness and efficiency in WLANs and minimizing selfishness behaviours of stations in a distributed environment. Simulation results show the proposed method improves fairness while not disrupting the quality of service. Manuscript profile
    • Open Access Article

      17 - Balancing Agility and Stability of Wireless Link Quality Estimators
      MohammadJavad Tanakian Mehri Mehrjoo
      The performance of many wireless protocols is tied to a quick Link Quality Estimation (LQE). However, some wireless applications need the estimation to respond quickly only to the persistent changes and ignore the transient changes of the channel, i.e., be agile and sta More
      The performance of many wireless protocols is tied to a quick Link Quality Estimation (LQE). However, some wireless applications need the estimation to respond quickly only to the persistent changes and ignore the transient changes of the channel, i.e., be agile and stable, respectively. In this paper, we propose an adaptive fuzzy filter to balance the stability and agility of LQE by mitigating the transient variation of it. The heart of the fuzzy filter is an Exponentially Weighted Moving Average (EWMA) low-pass filter that its smoothing factor is changed dynamically with fuzzy rules. We apply the adaptive fuzzy filter and a non-adaptive one, i.e., an EWMA with a constant smoothing factor, to several types of channels from short-term to long-term transitive channels. The comparison of the filters outputs shows that the non-adaptive filter is stable for large values of the smoothing factor and is agile for small values of smoothing factor, while the proposed adaptive filter outperforms the other ones in terms of balancing the agility and stability measured by the settling time and coefficient of variation, respectively. Notably, the proposed adaptive fuzzy filter performs in real time and its complexity is low, because of using limited number of fuzzy rules and membership functions. Manuscript profile
    • Open Access Article

      18 - Cooperative Game Approach for Mobile Primary User Localization Based on Compressive Sensing in Multi-antenna Cognitive Sensor Networks
      Maryam Najimi
      In this paper, the problem of joint energy efficient spectrum sensing and determining the mobile primary user location is proposed based on compressive sensing in cognitive sensor networks. By utilizing compressive sensing, the ratio of measurements for the sensing node More
      In this paper, the problem of joint energy efficient spectrum sensing and determining the mobile primary user location is proposed based on compressive sensing in cognitive sensor networks. By utilizing compressive sensing, the ratio of measurements for the sensing nodes are considerably reduced. Therefore, energy consumption is improved significantly in spectrum sensing. The multi-antenna sensors is also considered to save more energy. On the other hand, multi-antenna sensor utilization is a proper solution instead of applying more sensors. The problem is formulated to maximize the network lifetime and find the mobile primary user position by sensors selection under the detection performance and accuracy of localization constraints. For this purpose, a cooperative game is proposed to study this problem. It is shown that with the proposed game, the network lifetime is maximized while the proper sensors which participate in spectrum sensing and primary user localization are determined. Simulation results show that the network lifetime is improved while the detection performance constraint is satisfied and the location of the primary user is determined with high accuracy. Manuscript profile
    • Open Access Article

      19 - Complexity Reduction in Massive-MIMO-NOMA SIC Receiver in Presence of Imperfect CSI
      Nilufar Tutunchi Afrooz Haghbin Behrad Mahboobi
      One of the main reasons for switching to the next generation of communication systems is the demand of increasing capacity and network connections. This goal can be achieved using massive multiple input - multiple output (massive-MIMO) systems in combination with Non-or More
      One of the main reasons for switching to the next generation of communication systems is the demand of increasing capacity and network connections. This goal can be achieved using massive multiple input - multiple output (massive-MIMO) systems in combination with Non-orthogonal multiple access (NOMA) technique. NOMA technology uses the successive interference cancellation (SIC) receiver to detect user’s signals which imposes an additional complexity on the system. In this paper, we proposed two methods to reduce the system complexity. The proposed method despite imperfect channel state information (CSI) in the receiver, there is not significantly reduction in the system performance. Since the computation of matrices inverse has a high computational complexity, we used the Neumann series approximation method and the Gauss-Seidel decomposition method to compute matrices inverse in the SIC receiver. Simulation results are provided at the end of the paper in terms of bit error rate (BER) at the receiver which show, these methods have lower computational complexity in comparison with the traditional methods while they cause a slight performance reduction in the SIC receiver. Also, we examined the increasing and decreasing value of imperfect channel state information in the system performance which shows the increasing value of imperfect channel state information, cause a slight performance reduction in SIC receiver. Manuscript profile
    • Open Access Article

      20 - Using Residual Design for Key Management in Hierarchical Wireless Sensor Networks
      Vahid Modiri Hamid Haj Seyyed Javadi Amir Masoud  Rahmani Mohaddese Anzani
      Combinatorial designs are powerful structures for key management in wireless sensor networks to address good connectivity and also security against external attacks in large scale networks. Many researchers have used key pre-distribution schemes using combinatorial stru More
      Combinatorial designs are powerful structures for key management in wireless sensor networks to address good connectivity and also security against external attacks in large scale networks. Many researchers have used key pre-distribution schemes using combinatorial structures in which key-rings, are pre-distributed to each sensor node before deployment in a real environment. Regarding the restricted resources, key distribution is a great engagement and challenging issue in providing sufficient security in wireless sensor networks. To provide secure communication, a unique key should be found from their stored key-rings. Most of the key pre-distribution protocols based on public-key mechanisms could not support highly scalable networks due to their key storage overhead and communication cost that linearly increasing. In this paper, we introduce a new key distribution approach for hierarchical clustered wireless sensor networks. Each cluster has a construction that contains new points or that reinforces and builds upon similar ideas of their head clusters. Based on Residual Design as a powerful algebraic combinatorial architecture and hierarchical network model, our approach guarantees good connectivity between sensor nodes and also cluster heads. Compared with similar existing schemes, our approach can provide sufficient security no matter if the cluster head or normal sensor node is compromised Manuscript profile
    • Open Access Article

      21 - Energy Efficient Clustering Algorithm for Wireless Sensor Networks
      Maryam Bavaghar Amin Mohajer Sarah Taghavi Motlagh
      In Wireless Sensor Networks (WSNs), sensor nodes are usually deployed with limited energy reserves in remote environments for a long period of time with less or no human intervention. It makes energy efficiency as a challenging issue both for the design and deployment o More
      In Wireless Sensor Networks (WSNs), sensor nodes are usually deployed with limited energy reserves in remote environments for a long period of time with less or no human intervention. It makes energy efficiency as a challenging issue both for the design and deployment of sensor networks. This paper presents a novel approach named Energy Efficient Clustering Algorithm (EECA) for Wireless Sensor Networks which is based on two phases clustering model and provides maximum network coverage in an energy efficient way. In this framework, an effective resource-aware load balancing approach applied for autonomous methods of configuring the parameters in accordance with the signaling patterns in which approximately the same bit rate data is provided for each sensor. This resource-efficient clustering model can also form energy balanced clusters which results in increasing network life time and ensuring better network coverage. Simulation results prove that EECA is better than LEACH, LEA2C and EECS with respect to network lifetime and at the same time achieving more network coverage. In addition to obtained an optimal cluster size with minimum energy loss, the proposed approach also suggests new and better way for selecting cluster heads to reduce energy consumption of the distributed nodes resulting in increased operational reliability of sensor networks. Manuscript profile
    • Open Access Article

      22 - A Fast Machine Learning for 5G Beam Selection for Unmanned Aerial Vehicle Applications
      Wasswa Shafik Mohammad Ghasemzadeh S.Mojtaba Matinkhah
      Unmanned Aerial vehicles (UAVs) emerged into a promising research trend applied in several disciplines based on the benefits, including efficient communication, on-time search, and rescue operations, appreciate customer deliveries among more. The current technologies ar More
      Unmanned Aerial vehicles (UAVs) emerged into a promising research trend applied in several disciplines based on the benefits, including efficient communication, on-time search, and rescue operations, appreciate customer deliveries among more. The current technologies are using fixed base stations (BS) to operate onsite and off-site in the fixed position with its associated problems like poor connectivity. These open gates for the UAVs technology to be used as a mobile alternative to increase accessibility in beam selection with a fifth-generation (5G) connectivity that focuses on increased availability and connectivity. This paper presents a first fast semi-online 3-Dimensional machine learning algorithm suitable for proper beam selection as is emitted from UAVs. Secondly, it presents a detailed step by step approach that is involved in the multi-armed bandit approach in solving UAV solving selection exploration to exploitation dilemmas. The obtained results depicted that a multi-armed bandit problem approach can be applied in optimizing the performance of any mobile networked devices issue based on bandit samples like Thompson sampling, Bayesian algorithm, and ε-Greedy Algorithm. The results further illustrated that the 3-Dimensional algorithm optimizes utilization of technological resources compared to the existing single and the 2-Dimensional algorithms thus close optimal performance on the average period through machine learning of realistic UAV communication situations. Manuscript profile
    • Open Access Article

      23 - Low-Complexity Iterative Detection for Uplink Multiuser Large-Scale MIMO
      Mojtaba Amiri Mahmoud Ferdosizade Naeiny
      In massive Multiple Input Multiple Output (MIMO) or large scale MIMO systems, uplink detection at the Base Station (BS) is a challenging problem due to significant increase of the dimensions in comparison to ordinary MIMO systems. In this letter, a novel iterative metho More
      In massive Multiple Input Multiple Output (MIMO) or large scale MIMO systems, uplink detection at the Base Station (BS) is a challenging problem due to significant increase of the dimensions in comparison to ordinary MIMO systems. In this letter, a novel iterative method is proposed for detection of the transmitted symbols in uplink multiuser massive MIMO systems. Linear detection algorithms such as minimum-mean-square-error (MMSE) and zero-forcing (ZF), are able to achieve the performance of the near optimal detector, when the number of base station (BS) antennas is enough high. But the complexity of linear detectors in Massive MIMO systems is high due to the necessity of the calculation of the inverse of a large dimension matrix. In this paper, we address the problem of reducing the complexity of the MMSE detector for massive MIMO systems. The proposed method is based on Gram Schmidt algorithm, which improves the convergence speed and also provides better error rate than the alternative methods. It will be shown that the complexity order is reduced from O(〖n_t〗^3) to O(〖n_t〗^2), where n_t is the number of users. The proposed method avoids the direct computation of matrix inversion. Simulation results show that the proposed method improves the convergence speed and also it achieves the performance of MMSE detector with considerable lower computational complexity. Manuscript profile
    • Open Access Article

      24 - Energy Efficient Cross Layer MAC Protocol for Wireless Sensor Networks in Remote Area Monitoring Applications
      R Rathna L Mary Gladence J Sybi Cynthia V Maria Anu
      Sensor nodes are typically less mobile, much limited in capabilities, and more densely deployed than the traditional wired networks as well as mobile ad-hoc networks. General Wireless Sensor Networks (WSNs) are designed with electro-mechanical sensors through wireless d More
      Sensor nodes are typically less mobile, much limited in capabilities, and more densely deployed than the traditional wired networks as well as mobile ad-hoc networks. General Wireless Sensor Networks (WSNs) are designed with electro-mechanical sensors through wireless data communication. Nowadays the WSN has become ubiquitous. WSN is used in combination with Internet of Things and in many Big Data applications, it is used in the lower layer for data collection. It is deployed in combination with several high end networks. All the higher layer networks and application layer services depend on the low level WSN in the deployment site. So to achieve energy efficiency in the overall network some simplification strategies have to be carried out not only in the Medium Access Control (MAC) layer but also in the network and transport layers. An energy efficient algorithm for scheduling and clustering is proposed and described in detail. The proposed methodology clusters the nodes using a traditional yet simplified approach of hierarchically sorting the sensor nodes. Few important works on cross layer protocols for WSNs are reviewed and an attempt to modify their pattern has also been presented in this paper with results. Comparison with few prominent protocols in this domain has also been made. As a result of the comparison one would get a basic idea of using which type of scheduling algorithm for which type of monitoring applications. Manuscript profile
    • Open Access Article

      25 - Confronting DDoS Attacks in Software-Defined Wireless Sensor Networks based on Evidence Theory
      Nazbanoo Farzaneh Reyhaneh Hoseini
      DDoS attacks aim at making the authorized users unable to access the network resources. In the present paper, an evidence theory based security method has been proposed to confront DDoS attacks in software-defined wireless sensor networks. The security model, as a secur More
      DDoS attacks aim at making the authorized users unable to access the network resources. In the present paper, an evidence theory based security method has been proposed to confront DDoS attacks in software-defined wireless sensor networks. The security model, as a security unit, is placed on the control plane of the software-defined wireless sensor network aiming at detecting the suspicious traffic. The main purpose of this paper is detection of the DDoS attack using the central controller of the software-defined network and entropy approach as an effective light-weight and quick solution in the early stages of the detection and, also, Dempster-Shafer theory in order to do a more exact detection with longer time. Evaluation of the attacks including integration of data from the evidence obtained using Dempster-Shafer and entropy modules has been done with the purpose of increasing the rate of detection of the DDoS attack, maximizing the true positive, decreasing the false negative, and confronting the attack. The results of the paper show that providing a security unit on the control plane in a software-defined wireless sensor network is an efficient method for detecting and evaluating the probability of DDoS attacks and increasing the rate of detection of an attacker. Manuscript profile
    • Open Access Article

      26 - Sailor Localization in Oceans Beds using Genetic and Firefly Algorithm
      Shruti  Gupta Dr Ajay  Rana Vineet  Kansal
      The Localization is the core element in Wireless Sensor Network WSN, especially for those nodes without GPS or BDS; leaning towards improvement, based on its effective and increased use in the past decade. Localization methods are thus very important for estimating the More
      The Localization is the core element in Wireless Sensor Network WSN, especially for those nodes without GPS or BDS; leaning towards improvement, based on its effective and increased use in the past decade. Localization methods are thus very important for estimating the position of relative nodes in the network allowing a better and effective network for increasing the efficiency and thus increasing the lifeline of the network. Determining the current limitations in FA that are applied for solving different optimization problems is poor exploitation capability when the randomization factor is taken large during firefly changing position. This poor exploitation may lead to skip the most optimal solution even present in the vicinity of the current solution which results in poor local convergence rate that ultimately degrades the solution quality. This paper presents GEFIR (GenFire) algorithm to calculate position of unknown nodes for the fishermen in the ocean. The proposed approach calculates the position of unknown nodes, the proposed method effectively selects the anchor node in the cluster head to reduce the energy dissipation. Major benefits over other similar localization algorithms are a better positioning of nodes is provided and average localization error is reduced which eventually leads to better efficiency thus optimize the lifetime of the network for sailors. The obtained results depict that the proposed model surpasses the previous generation of localization algorithm in terms of energy dispersion and location estimation which is suitable for fishermen on the ocean bed. Manuscript profile
    • Open Access Article

      27 - A New Game Theory-Based Algorithm for Target Coverage in Directional Sensor Networks
      Elham Golrasan marzieh varposhti
      One of the challenging problems in directional sensor networks is maximizing target coverage while minimizing the amount of energy consumption. Considering the high redundancy in dense directional sensor networks, it is possible to preserve energy and enhance coverage q More
      One of the challenging problems in directional sensor networks is maximizing target coverage while minimizing the amount of energy consumption. Considering the high redundancy in dense directional sensor networks, it is possible to preserve energy and enhance coverage quality by turning off redundant sensors and adjusting the direction of the active sensor nodes. In this paper, we address the problem of maximizing network lifetime with adjustable ranges (MNLAR) and propose a new game theory-based algorithm in which sensor nodes try to adjust their working direction and sensing range in a distributed manner to achieve the desired coverage. For this purpose, we formulate this problem as a multiplayer repeated game in which each sensor as a player tries to maximize its utility function which is designed to capture the tradeoff between target coverage and energy consumption. To achieve an efficient action profile, we present a distributed payoff-based learning algorithm. The performance of the proposed algorithm is evaluated via simulations and compared to some existing methods. The simulation results demonstrate the performance of the proposed algorithm and its superiority over previous approaches in terms of network lifetime. Manuscript profile
    • Open Access Article

      28 - Training and Learning Swarm Intelligence Algorithm (TLSIA) for Selecting the Optimal Cluster Head in Wireless Sensor Networks
      Ali Sedighimanesh Hessam  Zandhessami Mahmood  Alborzi mohammadsadegh Khayyatian
      Background: Wireless sensor networks include a set of non-rechargeable sensor nodes that interact for particular purposes. Since the sensors are non-rechargeable, one of the most important challenges of the wireless sensor network is the optimal use of the energy of sen More
      Background: Wireless sensor networks include a set of non-rechargeable sensor nodes that interact for particular purposes. Since the sensors are non-rechargeable, one of the most important challenges of the wireless sensor network is the optimal use of the energy of sensors. The selection of the appropriate cluster heads for clustering and hierarchical routing is effective in enhancing the performance and reducing the energy consumption of sensors. Aim: Clustering sensors in different groups is one way to reduce the energy consumption of sensor nodes. In the clustering process, selecting the appropriate sensor nodes for clustering plays an important role in clustering. The use of multistep routes to transmit the data collected by the cluster heads also has a key role in the cluster head energy consumption. Multistep routing uses less energy to send information. Methods: In this paper, after distributing the sensor nodes in the environment, we use a Teaching-Learning-Based Optimization (TLBO) algorithm to select the appropriate cluster heads from the existing sensor nodes. The teaching-learning philosophy has been inspired by a classroom and imitates the effect of a teacher on learner output. After collecting the data of each cluster to send the information to the sink, the cluster heads use the Tabu Search (TS) algorithm and determine the subsequent step for the transmission of information. Findings: The simulation results indicate that the protocol proposed in this research (TLSIA) has a higher last node dead than the LEACH algorithm by 75%, ASLPR algorithm by 25%, and COARP algorithm by 10%. Conclusion: Given the limited energy of the sensors and the non-rechargeability of the batteries, the use of swarm intelligence algorithms in WSNs can decrease the energy consumption of sensor nodes and, eventually, increase the WSN lifetime. Manuscript profile
    • Open Access Article

      29 - Reducing Energy Consumption in Sensor-Based Internet of Things Networks Based on Multi-Objective Optimization Algorithms
      Mohammad sedighimanesh Hessam  Zandhessami Mahmood  Alborzi Mohammadsadegh  Khayyatian
      Energy is an important parameter in establishing various communications types in the sensor-based IoT. Sensors usually possess low-energy and non-rechargeable batteries since these sensors are often applied in places and applications that cannot be recharged. The mos More
      Energy is an important parameter in establishing various communications types in the sensor-based IoT. Sensors usually possess low-energy and non-rechargeable batteries since these sensors are often applied in places and applications that cannot be recharged. The most important objective of the present study is to minimize the energy consumption of sensors and increase the IoT network's lifetime by applying multi-objective optimization algorithms when selecting cluster heads and routing between cluster heads for transferring data to the base station. In the present article, after distributing the sensor nodes in the network, the type-2 fuzzy algorithm has been employed to select the cluster heads and also the genetic algorithm has been used to create a tree between the cluster heads and base station. After selecting the cluster heads, the normal nodes become cluster members and send their data to the cluster head. After collecting and aggregating the data by the cluster heads, the data is transferred to the base station from the path specified by the genetic algorithm. The proposed algorithm was implemented with MATLAB simulator and compared with LEACH, MB-CBCCP, and DCABGA protocols, the simulation results indicate the better performance of the proposed algorithm in different environments compared to the mentioned protocols. Due to the limited energy in the sensor-based IoT and the fact that they cannot be recharged in most applications, the use of multi-objective optimization algorithms in the design and implementation of routing and clustering algorithms has a significant impact on the increase in the lifetime of these networks. Manuscript profile
    • Open Access Article

      30 - Energy Efficient Routing-Based Clustering Protocol Using Computational Intelligence Algorithms in Sensor-Based IoT
      Mohammad sedighimanesh Hessam  Zandhessami Mahmood  Alborzi Mohammadsadegh  Khayyatian
      Background: The main limitation of wireless IoT sensor-based networks is their energy resource, which cannot be charged or replaced because, in most applications, these sensors are usually applied in places where they are not accessible or rechargeable. Objective: The p More
      Background: The main limitation of wireless IoT sensor-based networks is their energy resource, which cannot be charged or replaced because, in most applications, these sensors are usually applied in places where they are not accessible or rechargeable. Objective: The present article's main objective is to assist in improving energy consumption in the sensor-based IoT network and thus increase the network’s lifetime. Cluster heads are used to send data to the base station. Methods: In the present paper, the type-1 fuzzy algorithm is employed to select cluster heads, and the type-2 fuzzy algorithm is used for routing between cluster heads to the base station. After selecting the cluster head using the type-1 fuzzy algorithm, the normal nodes become the members of the cluster heads and send their data to the cluster head, and then the cluster heads transfer the collected data to the main station through the path which has been determined by the type-2 fuzzy algorithm. Results: The proposed algorithm was implemented using MATLAB simulator and compared with LEACH, DEC, and DEEC protocols. The simulation results suggest that the proposed protocol among the mentioned algorithms increases the network’s lifetime in homogeneous and heterogeneous environments. Conclusion: Due to the energy limitation in sensor-based IoT networks and the impossibility of recharging the sensors in most applications, the use of computational intelligence techniques in the design and implementation of these algorithms considerably contributes to the reduction of energy consumption and ultimately the increase in network’s lifetime. Manuscript profile
    • Open Access Article

      31 - Cluster-based Coverage Scheme for Wireless Sensor Networks using Learning Automata
      Ali Ghaffari Seyyed Keyvan  Mousavi
      Network coverage is one of the most important challenges in wireless sensor networks (WSNs). In a WSN, each sensor node has a sensing area coverage based on its sensing range. In most applications, sensor nodes are randomly deployed in the environment which causes the d More
      Network coverage is one of the most important challenges in wireless sensor networks (WSNs). In a WSN, each sensor node has a sensing area coverage based on its sensing range. In most applications, sensor nodes are randomly deployed in the environment which causes the density of nodes become high in some areas and low in some other. In this case, some areas are not covered by none of sensor nodes which these areas are called coverage holes. Also, creating areas with high density leads to redundant overlapping and as a result the network lifetime decreases. In this paper, a cluster-based scheme for the coverage problem of WSNs using learning automata is proposed. In the proposed scheme, each node creates the action and probability vectors of learning automata for itself and its neighbors, then determines the status of itself and all its neighbors and finally sends them to the cluster head (CH). Afterward, each CH starts to reward or penalize the vectors and sends the results to the sender for updating purposes. Thereafter, among the sent vectors, the CH node selects the best action vector and broadcasts it in the form of a message inside the cluster. Finally, each member changes its status in accordance with the vector included in the received message from the corresponding CH and the active sensor nodes perform environment monitoring operations. The simulation results show that the proposed scheme improves the network coverage and the energy consumption. Manuscript profile
    • Open Access Article

      32 - An Approach to Improve the Quality of Service in DTN and Non-DTN based VANET
      Ahmad Sarlak Yousef Darmani
      Nowadays, with attention to soar in the number of network users, it is necessary to find new approaches to revolutionize network operation. Vehicular ad-hoc networks are bound to play a pivotal role in communication, therefore raising the traffic in the network, using o More
      Nowadays, with attention to soar in the number of network users, it is necessary to find new approaches to revolutionize network operation. Vehicular ad-hoc networks are bound to play a pivotal role in communication, therefore raising the traffic in the network, using only WiFi is unlikely to address this problem. Vehicles could use SDN and other networks such as 4G as well as 5G to distribute traffic to different networks. Moreover, many approaches for handling different data types are inappropriate due to the lack of attention to the data separation idea. In this paper, we proposed a control scheme called Improve Quality of Service in DTN and Non-DTN (IQDN) which works based on vehicle communication infrastructure using SDN idea. IQDN separates data to Delay-Tolerant Data (DTD), and Delay-Intolerant Data (DID) where the former buffers in a vehicle till the vehicle enters an RSU range and sends DTD using IEEE 802.11p. DID packets are sent by cellular networks and LTE. To transmit DTD via IEEE 802.11p, the network capacity is evaluated by SDN. If that network has room to transmit the data, SDN sends a control message to inform the vehicle. Simulations show that sending data over RSU and LTE increases the throughput and decreases the congestion, so the quality of service improves. Manuscript profile
    • Open Access Article

      33 - Providing a New Smart Camera Architecture for Intrusion Detection in Wireless Visual Sensor Network
      Meisam Sharifi Sani Amid Khatibi
      The wireless Visual sensor network is a highly functional domain of high-potential network generations in unpredictable and dynamic environments that have been deployed from a large number of uniform or non-uniform groups within the desired area, cause the realization o More
      The wireless Visual sensor network is a highly functional domain of high-potential network generations in unpredictable and dynamic environments that have been deployed from a large number of uniform or non-uniform groups within the desired area, cause the realization of large regulatory applications from the military and industrial domain to hospital and environment. Therefore, security is one of the most important challenges in these networks. In this research, a new method of routing smart cameras with the help of cloud computing technology has been provided. The framework in the cloud computing management layer increases security, routing, inter interaction, and other features required by wireless sensor networks. Systematic attacks are simulated by a series of standard data collected at the CTU University related to the Czech Republic with RapidMiner software. Finally, the accuracy of detection of attacks and error rates with the suggested NN-SVM algorithm, which is a combination of vector machines and neural networks, is provided in the smart cameras based on the visual wireless sensor networks in MATLAB software. The results show that different components of the proposed architecture meet the quality characteristics of visual wireless sensor networks. Detection of attacks in this method is in the range of 99.24% and 99.35% in the worst and best conditions, respectively. Manuscript profile
    • Open Access Article

      34 - Secure Key Management Scheme for Hierarchical Network Using Combinatorial Design
      Siddiq Iqbal B R  Sujatha
      The wireless sensor network (WSN) signifies to a gathering of spatially spread and committed sensors for observing and logging the physical states of the environment and for organizing the information gathered at the central Base station. Many security threats may affec More
      The wireless sensor network (WSN) signifies to a gathering of spatially spread and committed sensors for observing and logging the physical states of the environment and for organizing the information gathered at the central Base station. Many security threats may affect the functioning of these networks. Security of the data in the system depends on the cryptographic procedure and the methods where encryption and decryption keys are developed among the sensors. Symmetric key foundation is one of the best applicable ideal models for safe exchanges in WSNs. The main goal is to improve and evaluate certain issues, such as node attack, to provide better key strength, connectivity, security for node interaction, and throughput. Uniform Balanced Incomplete Block Design (UBIBD) is used to generate the keys allocated by the base station to the cluster head. The cluster head distributes keys to its members using Symmetric Balanced Incomplete Block Design (SBIBD), and the keys are refreshed on a regular basis to avoid out-of-date entries. In wireless sensor networks, compromised nodes can be used to inject false reports. The concept of interacting between sensor nodes using keys and establishing a secure connection aids in ensuring the network's security. Manuscript profile
    • Open Access Article

      35 - A Novel Approach for Establishing Connectivity in Partitioned Mobile Sensor Networks using Beamforming Techniques
      Abbas Mirzaei Shahram Zandian
      Network connectivity is one of the major design issues in the context of mobile sensor networks. Due to diverse communication patterns, some nodes lying in high-traffic zones may consume more energy and eventually die out resulting in network partitioning. This phenomen More
      Network connectivity is one of the major design issues in the context of mobile sensor networks. Due to diverse communication patterns, some nodes lying in high-traffic zones may consume more energy and eventually die out resulting in network partitioning. This phenomenon may deprive a large number of alive nodes of sending their important time critical data to the sink. The application of data caching in mobile sensor networks is exponentially increasing as a high-speed data storage layer. This paper presents a deep learning-based beamforming approach to find the optimal transmission strategies for cache-enabled backhaul networks. In the proposed scheme, the sensor nodes in isolated partitions work together to form a directional beam which significantly increases their overall communication range to reach out a distant relay node connected to the main part of the network. The proposed methodology of cooperative beamforming-based partition connectivity works efficiently if an isolated cluster gets partitioned with a favorably large number of nodes. We also present a new cross-layer method for link cost that makes a balance between the energy used by the relay. By directly adding the accessible auxiliary nodes to the set of routing links, the algorithm chooses paths which provide maximum dynamic beamforming usage for the intermediate nodes. The proposed approach is then evaluated through simulation results. The simulation results show that the proposed mechanism achieves up to 30% energy consumption reduction through beamforming as partition healing in addition to guarantee user throughput. Manuscript profile
    • Open Access Article

      36 - Mathematical Modeling of Flow Control Mechanism in Wireless Network-on-Chip
      Fardad Rad Marzieh Gerami
      Network-on-chip (NoC) is an effective interconnection solution of multicore chips. In recent years, wireless interfaces (WIs) are used in NoCs to reduce the delay and power consumption between long-distance cores. This new communication structure is called wireless netw More
      Network-on-chip (NoC) is an effective interconnection solution of multicore chips. In recent years, wireless interfaces (WIs) are used in NoCs to reduce the delay and power consumption between long-distance cores. This new communication structure is called wireless network-on-chip (WiNoC). Compared to the wired links, demand to use the shared wireless links leads to congestion in WiNoCs. This problem increases the average packet latency as well as the network latency. However, using an efficient control mechanism will have a great impact on the efficiency and performance of the WiNoCs. In this paper, a mathematical modeling-based flow control mechanism in WiNoCs has been investigated. At first, the flow control problem has been modeled as a utility-based optimization problem with the wireless bandwidth capacity constraints and flow rate of processing cores. Next, the initial problem has been transformed into a dual problem without limitations and the best solution of the dual problem is obtained by the gradient projection method. Finally, an iterative algorithm is proposed in a WiNoC to control the flow rate of each core. The simulation results of synthetic traffic patterns show that the proposed algorithm can control and regulate the flow rate of each core with an acceptable convergence. Hence, the network throughput will be significantly improved. Manuscript profile
    • Open Access Article

      37 - Cache Point Selection and Transmissions Reduction using LSTM Neural Network
      Malihe  Bahekmat Mohammad Hossein  Yaghmaee Moghaddam
      Reliability of data transmission in wireless sensor networks (WSN) is very important in the case of high lost packet rate due to link problems or buffer congestion. In this regard, mechanisms such as middle cache points and congestion control can improve the performance More
      Reliability of data transmission in wireless sensor networks (WSN) is very important in the case of high lost packet rate due to link problems or buffer congestion. In this regard, mechanisms such as middle cache points and congestion control can improve the performance of the reliability of transmission protocols when the packet is lost. On the other hand, the issue of energy consumption in this type of networks has become an important parameter in their reliability. In this paper, considering the energy constraints in the sensor nodes and the direct relationship between energy consumption and the number of transmissions made by the nodes, the system tries to reduce the number of transmissions needed to send a packet from source to destination as much as possible by optimal selection of the cache points and packet caching. In order to select the best cache points, the information extracted from the network behavior analysis by deep learning algorithm has been used. In the training phase, long-short term memory (LSTM) capabilities as an example of recurrent neural network (RNN) deep learning networks to learn network conditions. The results show that the proposed method works better in examining the evaluation criteria of transmission costs, end-to-end delays, cache use and throughput. Manuscript profile
    • Open Access Article

      38 - Energy-Efficient User Pairing and Power Allocation for Granted Uplink-NOMA in UAV Communication Systems
      Seyed Hadi Mostafavi-Amjad Vahid Solouk Hashem Kalbkhani
      With the rapid deployment of users and increasing demands for mobile data, communication networks with high capacity are needed more than ever. Furthermore, there are several challenges, such as providing efficient coverage and reducing power consumption. To tackle thes More
      With the rapid deployment of users and increasing demands for mobile data, communication networks with high capacity are needed more than ever. Furthermore, there are several challenges, such as providing efficient coverage and reducing power consumption. To tackle these challenges, using unmanned aerial vehicles (UAVs) would be a good choice. This paper proposes a scheme for uplink non-orthogonal multiple access (NOMA) in UAV communication systems in the presence of granted and grant-free users. At first, the service area users, including granted and grant-free users, are partitioned into some clusters. We propose that the hover location for each cluster is determined considering the weighted mean of users’ locations. We aim to allocate transmission power and form NOMA pairs to maximize the energy efficiency in each cluster subject to the constraints on spectral efficiency and total transmission power. To this end, the transmission powers of each possible pair are obtained, and then Hungarian matching is used to select the best pairs. Finally, finding the flight path of the UAV is modeled by the traveling salesman problem (TSP), and the genetic algorithm method obtains its solution. The results show that the increasing height of the UAV and density of users increases the spectral and energy efficiencies and reduces the outage probability. Also, considering the quality of service (QoS) of granted users for determining the UAV's hover location enhances the transmission's performance. Manuscript profile
    • Open Access Article

      39 - An Analysis of the Signal-to-Interference Ratio in UAV-based Telecommunication Networks
      hamid jafaripour Mohammad Fathi
      One of the most important issues in wireless telecommunication systems is to study coverage efficiency in urban environments. Coverage efficiency means improving the signal-to-interference ratio (SIR) by providing a maximum telecommunication coverage and establishing hi More
      One of the most important issues in wireless telecommunication systems is to study coverage efficiency in urban environments. Coverage efficiency means improving the signal-to-interference ratio (SIR) by providing a maximum telecommunication coverage and establishing high-quality communication for users. In this paper, we use unmanned aerial vehicle (UAVs) as air base stations (BS) to investigate and improve the issue of maximizing coverage with minimal interference. First, we calculate the optimal height of the UAVs for the coverage radius of 400, 450, 500, 550, and 600 meters. Then, using simulation, we calculate and examine the value and status of SIR in UAVs with omnidirectional and directional antenna modes in symmetric and asymmetric altitude conditions, with and without considering the height of the UAVs. The best SIR is the UAV system with a directional antenna in asymmetric altitude conditions where the SIR range varies from 4.44db (the minimum coverage) to 52.11dB (maximum coverage). The worst SIR is the UAV system with an omnidirectional antenna in symmetrical height conditions without considering the height of the UAV. We estimate the range of SIR changes for different coverage ranges between 1.39 and 28dB. Factors affecting the SIR values from the most effective to the least, respectively, are coverage range and the antenna type, symmetrical and asymmetric height, and finally, considering or not considering the height of the UAV. Manuscript profile