
 

Journal of Information Systems and Telecommunication, Vol. 1, No. 3, July - September 2013 

 

175 

* Corresponding Author 

Optimal Sensor Scheduling Algorithms for Distributed 

Sensor Networks 

Behrooz Safarinejadian* 
Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran 

safarinejad@sutech.ac.ir 

Abdolah Rahimi 
Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran 

ab.rahimi@sutech.ac.ir 

 

Received: 25/Jul/2013            Accepted: 31/Aug/2013 

 

Abstract 
In this paper, a sensor network is used to estimate the dynamic states of a system. At each time step, one 

(or multiple) sensors are available that can send its measured data to a central node, in which all of 

processing is done. We want to provide an optimal algorithm for scheduling sensor selection at every 

time step. Our goal is to select the appropriate sensor to reduce computations, optimize the energy 

consumption and enhance the network lifetime. To achieve this goal, we must reduce the error 

covariance. Three algorithms are used in this work: sliding window, thresholding and randomly chosen 

algorithms. Moreover, we will offer a new algorithm based on circular selection. Finally, a novel 

algorithm for selecting multiple sensors is proposed. Performance of the proposed algorithms is 

illustrated with numerical examples. 
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1. Introduction 

In recent decades there has been much 

interest in using sensor networks to improve 

estimation process [1]. Nowadays; many projects 

have been defined based on sensor networks. 

Works such as the EYES project [2], WINS [3] 

and Smart Dust [4] are examples of systems 

implementing such networks. Such networks 

have a complex implementation. Wireless sensor 

networks have the potential to improve the 

estimation process. It is obvious that estimates 

obtained using several sensors will be better than 

estimates obtained from a single sensor. 

Furthermore, many systems are constructed 

based on using these networks. In some sensor 

networks, there are some problems in order to 

use data from multiple sensors at the same time. 

The main issue is selecting a sensor from multi 

sensors. The sensor management issues will be 

raised when we have problems in communication 

protocols or hardware sensor networks. Selection 

of the most appropriate sensor for optimal 

performance based on sensor capabilities and 

network characteristics is an important aspect of 

the problem. The choice of sensors is calculated 

off line, and then will be used by the system. 

     Sensor scheduling problems are used 

when one (or more) sensors have to be selected 

in N given sensors at every time step. This might 

be the case if there are echo-based sensors like 

sonars [5,6]. If the sensors observe a schedule 

and thus minimize simultaneous measurements, 

the total sensor power consumption can be 

reduced. Another situation where sensor 

scheduling is useful is in tracking problems, 

where radar can make different types of 

measurements by transmitting a suitable 

waveform each of which has a different power 

requirement. There might be shared 

communication resources (e.g., broadcast 

channels or a shared communication bus) that 

constrain the usage of many sensors at the same 

time. Such a situation arises in telemetry-data 

aerospace systems. 

The systems that use Bluetooth technology 

can communicate with a single system at any 

moment [7]. In such cases, the main issue is 

scheduling of sensors to minimize the error 

covariance, or cost function. In this paper, we 

consider the optimal scheduling of sensors. In 

such a way that at each time step, one (or 

multiple) sensors are allowed to send their data. 

That can be caused by several problems such as 

communication problems, system hardware 

limitations and energy problems in the system. 

There are several techniques for optimal 

scheduling of sensors in the literature. If we want 

to probe all options to choose the best 

arrangement of the sensors, we will be faced 

with a lot of computation. In order to avoid such 

a huge computation, sub-optimal algorithms can 
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be used. For example, sliding window and 

thresholding algorithms with tree structure are 

proposed. Another method that can be used is 

choosing the sensors randomly according to 

some optimal probability distribution. In this 

paper, we will present a new algorithm which 

has less computational burden than other 

algorithms. The algorithm is based on ring 

selection and can be used as a sub-optimal 

method. In this algorithm we move on a circular 

path on which all off the sensor are located, and 

considering the covariance of the error, the sub-

optimal sensor will be chosen. 

In more cases, by selecting one sensor at each 

time step, the system accuracy will not be as 

good as expected; therefore, multiple sensors 

should be selected. When the number of sensors 

increases, high accuracy will be achieved, but 

more complex hardware and energy will be 

necessary too. In this paper, an algorithm will 

also be proposed in order to select multiple 

sensors at each time step. 

The rest of the paper is organized as follows. 

In section 2, the problem formulation will be 

presented. In section 3, the question of choosing 

the optimal sensor schedule is considered and 

new algorithms will be proposed. In section 3, 

we will compare the performance of these 

algorithms using some examples. Finally, 

Section 4 concludes the paper.  

2. MODELING AND PROBLEM 

FORMULATION 

Suppose we have a linear discrete-time 

system given as follows [8,9,10]: 

 

[ 1] [ ] [ ]x k Ax k Bw k  
 (1) 

[ ] [ ] [ ]
i i i

y k C x k v k 
 

(2) 

Where         represents the state and 

        is the measurement vector. We have 

N sensors for state estimation so that       is 

output of i-th sensor in step k. It is assumed that 

w[k],      , and x[0] are independent Gaussian 

random vectors and            , 

            and            , are positive 

definite matrices where        . It is 

assumed that only one sensor can be used at any 

time. Note that each sensor can communicate 

with the fusion center in an error-free manner. 

We use the one-step Kaman filter to estimate the 

process states. Kalman filter equations are as 

follows: 

 

 

[ 1] [ ] [ ]( [ ] [ ])x k Ax k K k y k C x ki i   
 

(3) 

1

[ ] [ ] ( [ ] )
T T

k k AP k C C P k C Ri i i i



 
 

(4) 

[ 1] ( [ ] ) [ ]( [ ] )

[ ] [ ] [ ]

i
T

P k A K k C P k A K k Ci

T T
BQB K k R k K ki

   

 
 

(5) 

The optimal estimation is given by a Kalman 

filter assuming a time-varying measurement 

equation. Assuming that the i-th sensor takes the 

measurement at time step k, the covariance of the 

estimation error P[k] evolves according to the 

Riccati recursion: 

1

[ 1] [ ]

[ ] ( [ ] ) [ ]

T T

T T T

i i i i i

p k Ap k A BQB

Ap k C C p k C R C p k A

  

 
 

(6) 

In the above relations, p[k] is the error 

covariance and x[k] is the estimated state at time 

step k. In the next section, p[k] will be 

considered as the cost function. 

Now, we assume that we want to select m 

sensors throughout n sensors in a sensor network 

at each time step       [11,12]. The 

following relations can be used for data fusion in 

a central node: 

1( ):

[ 1] [ ]

[ 1] [ ]

T T

part timeupdate

p k A p k A BQ B

x k A x k

 

 

  

 
 

(7) 

 

1

2( )

[ ] [ 1] ( [ 1] )

[ 1] [ 1] [ ]( [ ] [ 1])

[ 1] ( [ ] ) [ 1]( [ ] )

[ ] [ ]

T T

i i i i i

i i i i

T

i i i i i

T

i i i

part measurment update

K k p k C C p k C R

x k x k k k y k C x k

P k I k k C p k I k k C

k k R k k

  

  

 

   

     

    


 

(8) 

Each iteration of the Kalman filter consists of 

one iteration of time update equations and m 

iterations of measurement update equations, 

where m is number of selected sensors. 

2.1 Optimization of Sensor Scheduling 

In the analysis presented so far, it is assumed 

that scheduling of the sensors is available. 

It is natural that the minimum error 

covariance that can be achieved is a function of 

the sensor schedule. We will try to find a sensor 

schedule in order to minimize the covariance 

matrix P[k], over a special time horizon. 

In order to simplify the problem, we assume 

that we have only three sensors and the cost 

function is defined to be the sum of the error 

covariance matrices for the three sensors as 

follows [5, 6]: 

1 2 30
( [ ] [ ] [ ])

N

k
J trace p k p k p k


    

(9) 
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At any time step, only one sensor is allowed 

to send its data to the central node. It is assumed 

that the system begins at time k=0 and goes on 

until k=N. 

Generally, the covariance can be variously 

weighed in cost function, because there are some 

sensors which are more important than others. 

All possible schedules for the sensors can be 

seen in Figure 1 for the case of three sensors. 

 

 
 

Figure 1. The tree structure defined by the various possible 
choices of sensor schedules illustrated for the case of 3 sensors. 

At each time step, a branch of the tree will be 

selected according to the previous selected 

branch. If we want to check all possible options 

in order to find an optimal scheduling, we may 

face problems such as large computational 

burden and lack of memory. For example, in a 

schedule with only three sensors for N time step, 

we have    selections. It should be noted that if 

x is the number of available sensors, to obtain an 

optimal scheduling,    different choices are 

available. So heavy computations are required to 

find the optimal sensor scheduling; therefore, we 

may use a sub-optimal method. In the following, 

four sub-optimal methods will be proposed for 

sensor selection. 

If we want to use multiple sensors at each 

time step by using equation 8, the cost function 

will be as follows: 

1 2 31
( [ ] [ ] [ ])

N

k
J trace p k p k p k  


  

      (10) 

The above cost function can also be used in 

cases that one sensor is selected at each time step. 

2.2 Sliding Window Algorithm 

This algorithm is similar to a pseudo real time 

version of the Viterbi algorithm [13]. A window 

size d is defined where d<N. The algorithm 

proceeds as follows: 

1) Initialization: Start from root node at 
0k   

2) Traversal: 

a) Traverse all the possible paths in the 

tree for the next d levels from the 

current node. 

b) Find the sensor sequence

1 1
, ,...,

k k k d
S S S

    that gives the 

minimum cost at the end of this 

window of size d. 

c) Choose the first sensor    from the 

sequence. 

3) Sliding the Window: 

a) If k=N then quit, else go to the next 

step. 

b) Designate the sensor    as the root. 

c) Update time k=k+1. 

d) Repeat the traversal step. 

It should be noted that the choice of the 

parameter d is arbitrary. 

2.3 Thresholding 

This algorithm is similar to the algorithm 

presented in [14], in the context of choosing the 

optimal controller from a set of many possible 

choices. We describe a factor f where    . The 

algorithm steps are as follows: 

1) Initialization: Start from root node with 

cost J=0 . 

2) Pruning: 

a) Extend the tree by one level (i.e. time 

step) through all possible paths from 

the current node. 

b) Calculate the minimum cost up to that 

time step. 

c) Remove the branches that have a cost 

greater than f times the minimum. 

d) For the remaining branches, denote 

the cost of the nodes as the cost 

achieved by moving down the tree till 

the node. 

2.4 Randomly Chosen Sensors 

In this algorithm, at each time step, the 

sensors will be chosen randomly based on some 

probability distribution. Then the probability 

distribution is chosen so as to minimize the 

expected steady state error covariance. Note that 

we can’t compute the accurate value of the error 

covariance since it will depend on the specific 

sensor schedule chosen. 

2.5 Circular selection algorithm 

This algorithm is based on a circular 

selection; all sensors are placed on a ring. The 

computational burden of algorithm is less than 

K=0 K=1 K=2 K= ...

ROOT

Sensor 1

Sensor 2

Sensor 3

Sensor 1

Sensor 1

Sensor 1

Sensor 2

Sensor 2

Sensor 2

Sensor 3

Sensor 3

Sensor 3
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other algorithms because in each time step, it is 

possible to select more than one sensor. 

Sensor selection order of the proposed 

algorithm is shown in Figure 2. 

 

Figure 2. Sensor selection in the circular selection algorithm. 

Proposed algorithm 

1) Initialization: Start with the cost function 

0J   and a time step 0k  . 

2) Calculation : 

a) Calculate the cost function of the first 

sensor. If the obtained cost function 

is less than J  then it will be 

substituted by the new cost function, 

and the first sensor is chosen as the 

optimal sensor k . Then, 1k k   

and number of the optimal sensor is 

stored in a vector z . 

b) Repeat the previous step for the next 

sensors. 

3) If in above steps the optimal sensor isn’t 

selected then the sensor with the smallest 

cost function is selected as optimal sensor 

between the sensors. J is substituted by 

cost function of the optimal sensor, and 

number of the optimal sensor is stored in 

z, and k=k+1. 

4) if     stop the iteration, else go to 2. 

2.6 A new sensor scheduling algorithm 

for selecting multiple sensors at each time 

step 

The main purpose of this sub-section is 

presenting a new algorithm that is able to select 

one or more than one sensor at each time step. 

Thus, the following algorithm is suggested. 

There are n sensors in the network which we 

want to select m sensors at each time step. The 

algorithm steps are as follows: 

1) Initialization: Start from root node at k=0. 

2) Traversal: 

a) Traverse all the possible paths in the 

tree for the next d levels from the 

current node. 

b) Find m string of sensors which have 

the least cost function and select them 

as optimal sensors at k’th time step. 

3)  

a) a) If k=N then the algorithm is 

finished, otherwise go to the next . 

b) b) k = k+1 

c) c) go to the step 2. 

3. Simulation Results 

3.1 Simulation  1 

In this part, we apply our algorithm to an 

application presented in [5] in which we have a 

system that track motion of an automobile in two 

dimensions x and y. Several sensors are located 

on the car that send information about position of 

automobile to the central node. In the central 

node, automobile velocity will be estimated. 

Equations of system are 

[ 1] [ ] [ ]x k Ax k Bw k  
 

[ ] [ ] [ ]
i i i

y k C x k v k 
 

where 

 
where h=0.2 and w[k] in equation (1) is a 

zero mean white Gaussian noise. The process 

noise is assumed to have covariance matrix Q 

given by: 

1 0.25

0.25 1
Q

 
    

We assume measurements taken by the three 

sensors being described by: 

[ ] [ ] [ ]
i

y k C X k v ki i 
 

In this simulation, the matrix    will be 

constant as below 

1 0 0 0

0 1 0 0
iC

 
  
   

The terms       model the measurement 

noise, again assumed white, zero mean and 

Gaussian and also independent from each other 

and from w[k].We consider values of the sensor 

noise covariance’s as: 

1 2 3

1.62 0 0.59 0 1.21 0
, ,

0 0.57 0 1.65 0 0.64
R RR

     
       
       

In the following figures, performance of the 

proposed algorithm and other algorithms can be 

observed: 

Sensor 1

Sensor 2 Sensor 3

2

2

0
1 0 0

2
0 1 0

0, ,2
0 0 1 0

0
0 0 0 1

0

x

y

x

y

h ph
h ph

A B X
v

h
v

h

 
    
    
     
    
           
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Figure 3: Comparison between circular selection, 
thresholding, and randomly chosen algorithms. 

 

Figure 4: Comparison between circular selection, sliding 

window (d=1), and sliding window (d=2) algorithms. 

 

Figure 5: Comparison between circular selection algorithm, sliding 

window (d=1), and sliding window (d=2) at the final steps. 

In Table I, performances of different 

algorithms are compared.  

TABLE I: comparison of different algorithms. 

Circular 
selection 

algorithm 

Randoml
y chosen 

sensors 

Threshold

1.001f 

 

Sliding 

window 

2d   

Sliding 

window 

1d   

 

1.1735 1.3010 1.1614 1.1604 1.1624 

Final 

cost 

function 
value 

0.005344 0.007952 0.009537 0.018012 0.005938 
elapsed 

time 

3.2 Simulation 2 

Six sensors have been considered in this 

simulation. 

                   
In this simulation the matrix    will be 

constant as below 

1 0 0 0

0 1 0 0
iC

 
  
   

The previous model parameters have been 

used despite of the sensor noise covariance 

which is different in this case:  

 

1 2 3

4 5 6

1.75 0 0.75 0 1.74 0
, ,

0 0.55 0 1.36 0 0.7

1.7 0 1.95 0 1.6 0
, ,

0 0.6 0 0.43 0 0.8

R R R

R R R 

  

 

     
          

     
            

We compare the results of the mentioned 

algorithms: 

 

Figure. 6: Comparison between circular selection, 

thresholding, and randomly chosen algorithms. 

 

Figure. 7: Comparison between circular selection algorithm, 

sliding window (d=1), and sliding window (d=2). 
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In table II, the results of these algorithms can 

be viewed. 

TABLE II: comparison of different algorithms 

Proposed 

algorithm 

Randomly 

chosen 
sensors 

Threshold 

1f 
 

Sliding 
window 

2d   

Sliding 
window 

1d   

 

1.1708 1. 2323 1.1686 1.1682 1.1686 

Final 

cost 
function 

value 

0.0085 0.0091 0.0293 0.1591 0.01455 
elapsed 

time 

From Tables I and II, it is clear that the 

circular selection algorithm has a good 

performance in terms of cost function reduction. 

Cost function graphs and the final cost function 

values of the sliding window, thresholding, and 

the circular selection algorithms are almost 

identical. However, in randomly chosen 

algorithm, the cost function value is higher than 

the other algorithms. 

But in terms of reducing the computational 

burden, the circular selection algorithm has the 

best performance, even better than the randomly 

chosen algorithm. From Tables I and II, we can 

see that increasing number of sensors results in a 

better performance for the circular selection 

algorithm in terms of reduction of computation. 

3.3 Simulation 3 

In the following, the new algorithm is used 

for selecting multiple sensors assuming that there 

are four sensors in the network. 

In this simulation, the matrix    will be as 

below 

1 2

3 4

0 0 0 0 0 0 0 0
,

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0
,

0 1 0 0 0 0 0 0

C C

C C

   
    
   

   
    
     

Measurement noise covariance’s are as 

follows:  

1 2

3 4

1.63 0 0.75 0
,

0 0.55 0 1.37

1.44 0 1.7 0
,

0 0.6 0 0.57

R R

R R

   
    
   

   
    
     

It is assumed that at each time step, two 

sensors are selected. Results are shown in Figure 8. 

 

Figure 8: Comparison between proposed algorithm with two 

sensor selection in each time step and sliding window (d=1). 

It is clear from Figure 8 that the proposed 

algorithm has better performance but it should be 

noted that using the proposed algorithm needs a 

more complex hardware. 

3.4 Simulation 4 

In this part, the matrix C is assumed to be 

constant and there are twelve sensors with the 

following covariance matrices 

1 2 3

1.63 0 1.59 0 1.61 0
, ,

0 1.55 0 1.69 0 1.59
R R R

     
       
     

 

4 5 6

1.61 0 1.69 0 1.63 0
, ,

0 1.57 0 1.53 0 1.51
R R R

     
       
     

 

7 8 9

1.64 0 0.59 0 1.68 0
, ,

0 1.55 0 2.75 0 1.58
R R R

     
       
     

 

10 11 12

1.44 0 1.65 0 1.65 0
, ,

0 1.6 0 1.55 0 1.53
R R R

     
       
     

Using the proposed method for multi-sensor 

selection, one, two, three, and four optimal 

sensors are selected between twelve sensors.  

 

Figure 9: comparison between selection of one, two, three, 

and four sensors from twelve sensors. 
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4. Conclusions 

It has been clarified that the circular selection 

algorithm was faster than the other algorithms 

such as sliding window and thresholding and it 

had a suitable performance in terms of finding 

optimum sensors. In other words, this algorithm 

reduces the computations while its performance 

in finding the optimal sensors is as good as other 

scheduling algorithms. According to the obtained 

results, it is possible to use the proposed 

algorithm instead of sliding window and 

thresholding algorithms. 

In the case of selecting multiple sensors at 

each time step, it can be seen that the 

performance of the system has been improved 

but hardware problems will be greater. Number 

of selected sensors at each time step is related to 

system’s expected accuracy and cost of the 

system. 
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