

Journal of Information Systems and Telecommunication, Vol. 1, No. 3, July - September 2013

175

* Corresponding Author

Optimal Sensor Scheduling Algorithms for Distributed

Sensor Networks

Behrooz Safarinejadian*
Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran

safarinejad@sutech.ac.ir

Abdolah Rahimi
Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran

ab.rahimi@sutech.ac.ir

Received: 25/Jul/2013 Accepted: 31/Aug/2013

Abstract
In this paper, a sensor network is used to estimate the dynamic states of a system. At each time step, one

(or multiple) sensors are available that can send its measured data to a central node, in which all of

processing is done. We want to provide an optimal algorithm for scheduling sensor selection at every

time step. Our goal is to select the appropriate sensor to reduce computations, optimize the energy

consumption and enhance the network lifetime. To achieve this goal, we must reduce the error

covariance. Three algorithms are used in this work: sliding window, thresholding and randomly chosen

algorithms. Moreover, we will offer a new algorithm based on circular selection. Finally, a novel

algorithm for selecting multiple sensors is proposed. Performance of the proposed algorithms is

illustrated with numerical examples.

Keywords: Sensor scheduling, Sub-optimal algorithm, Offline optimization, Error covariance.

1. Introduction

In recent decades there has been much

interest in using sensor networks to improve

estimation process [1]. Nowadays; many projects

have been defined based on sensor networks.

Works such as the EYES project [2], WINS [3]

and Smart Dust [4] are examples of systems

implementing such networks. Such networks

have a complex implementation. Wireless sensor

networks have the potential to improve the

estimation process. It is obvious that estimates

obtained using several sensors will be better than

estimates obtained from a single sensor.

Furthermore, many systems are constructed

based on using these networks. In some sensor

networks, there are some problems in order to

use data from multiple sensors at the same time.

The main issue is selecting a sensor from multi

sensors. The sensor management issues will be

raised when we have problems in communication

protocols or hardware sensor networks. Selection

of the most appropriate sensor for optimal

performance based on sensor capabilities and

network characteristics is an important aspect of

the problem. The choice of sensors is calculated

off line, and then will be used by the system.

 Sensor scheduling problems are used

when one (or more) sensors have to be selected

in N given sensors at every time step. This might

be the case if there are echo-based sensors like

sonars [5,6]. If the sensors observe a schedule

and thus minimize simultaneous measurements,

the total sensor power consumption can be

reduced. Another situation where sensor

scheduling is useful is in tracking problems,

where radar can make different types of

measurements by transmitting a suitable

waveform each of which has a different power

requirement. There might be shared

communication resources (e.g., broadcast

channels or a shared communication bus) that

constrain the usage of many sensors at the same

time. Such a situation arises in telemetry-data

aerospace systems.

The systems that use Bluetooth technology

can communicate with a single system at any

moment [7]. In such cases, the main issue is

scheduling of sensors to minimize the error

covariance, or cost function. In this paper, we

consider the optimal scheduling of sensors. In

such a way that at each time step, one (or

multiple) sensors are allowed to send their data.

That can be caused by several problems such as

communication problems, system hardware

limitations and energy problems in the system.

There are several techniques for optimal

scheduling of sensors in the literature. If we want

to probe all options to choose the best

arrangement of the sensors, we will be faced

with a lot of computation. In order to avoid such

a huge computation, sub-optimal algorithms can

Safarinejadian & Rahimi, Optimal Sensor Scheduling Algorithms for Distributed Sensor Networks

176

be used. For example, sliding window and

thresholding algorithms with tree structure are

proposed. Another method that can be used is

choosing the sensors randomly according to

some optimal probability distribution. In this

paper, we will present a new algorithm which

has less computational burden than other

algorithms. The algorithm is based on ring

selection and can be used as a sub-optimal

method. In this algorithm we move on a circular

path on which all off the sensor are located, and

considering the covariance of the error, the sub-

optimal sensor will be chosen.

In more cases, by selecting one sensor at each

time step, the system accuracy will not be as

good as expected; therefore, multiple sensors

should be selected. When the number of sensors

increases, high accuracy will be achieved, but

more complex hardware and energy will be

necessary too. In this paper, an algorithm will

also be proposed in order to select multiple

sensors at each time step.

The rest of the paper is organized as follows.

In section 2, the problem formulation will be

presented. In section 3, the question of choosing

the optimal sensor schedule is considered and

new algorithms will be proposed. In section 3,

we will compare the performance of these

algorithms using some examples. Finally,

Section 4 concludes the paper.

2. MODELING AND PROBLEM

FORMULATION

Suppose we have a linear discrete-time

system given as follows [8,9,10]:

[1] [] []x k Ax k Bw k  
 (1)

[] [] []
i i i

y k C x k v k 

(2)

Where represents the state and

 is the measurement vector. We have

N sensors for state estimation so that is

output of i-th sensor in step k. It is assumed that

w[k], , and x[0] are independent Gaussian

random vectors and ,

 and , are positive

definite matrices where . It is

assumed that only one sensor can be used at any

time. Note that each sensor can communicate

with the fusion center in an error-free manner.

We use the one-step Kaman filter to estimate the

process states. Kalman filter equations are as

follows:

[1] [] []([] [])x k Ax k K k y k C x ki i   

(3)

1

[] [] ([])
T T

k k AP k C C P k C Ri i i i



 

(4)

[1] ([]) []([])

[] [] []

i
T

P k A K k C P k A K k Ci

T T
BQB K k R k K ki

   

 

(5)

The optimal estimation is given by a Kalman

filter assuming a time-varying measurement

equation. Assuming that the i-th sensor takes the

measurement at time step k, the covariance of the

estimation error P[k] evolves according to the

Riccati recursion:

1

[1] []

[] ([]) []

T T

T T T

i i i i i

p k Ap k A BQB

Ap k C C p k C R C p k A

  

 

(6)

In the above relations, p[k] is the error

covariance and x[k] is the estimated state at time

step k. In the next section, p[k] will be

considered as the cost function.

Now, we assume that we want to select m

sensors throughout n sensors in a sensor network

at each time step [11,12]. The

following relations can be used for data fusion in

a central node:

1():

[1] []

[1] []

T T

part timeupdate

p k A p k A BQ B

x k A x k

 

 

  

 

(7)

1

2()

[] [1] ([1])

[1] [1] []([] [1])

[1] ([]) [1]([])

[] []

T T

i i i i i

i i i i

T

i i i i i

T

i i i

part measurment update

K k p k C C p k C R

x k x k k k y k C x k

P k I k k C p k I k k C

k k R k k

  

  

 

   

     

    



(8)

Each iteration of the Kalman filter consists of

one iteration of time update equations and m

iterations of measurement update equations,

where m is number of selected sensors.

2.1 Optimization of Sensor Scheduling

In the analysis presented so far, it is assumed

that scheduling of the sensors is available.

It is natural that the minimum error

covariance that can be achieved is a function of

the sensor schedule. We will try to find a sensor

schedule in order to minimize the covariance

matrix P[k], over a special time horizon.

In order to simplify the problem, we assume

that we have only three sensors and the cost

function is defined to be the sum of the error

covariance matrices for the three sensors as

follows [5, 6]:

1 2 30
([] [] [])

N

k
J trace p k p k p k


  

(9)

Journal of Information Systems and Telecommunication, Vol. 1, No. 3, July - September 2013 177

At any time step, only one sensor is allowed

to send its data to the central node. It is assumed

that the system begins at time k=0 and goes on

until k=N.

Generally, the covariance can be variously

weighed in cost function, because there are some

sensors which are more important than others.

All possible schedules for the sensors can be

seen in Figure 1 for the case of three sensors.

Figure 1. The tree structure defined by the various possible
choices of sensor schedules illustrated for the case of 3 sensors.

At each time step, a branch of the tree will be

selected according to the previous selected

branch. If we want to check all possible options

in order to find an optimal scheduling, we may

face problems such as large computational

burden and lack of memory. For example, in a

schedule with only three sensors for N time step,

we have selections. It should be noted that if

x is the number of available sensors, to obtain an

optimal scheduling, different choices are

available. So heavy computations are required to

find the optimal sensor scheduling; therefore, we

may use a sub-optimal method. In the following,

four sub-optimal methods will be proposed for

sensor selection.

If we want to use multiple sensors at each

time step by using equation 8, the cost function

will be as follows:

1 2 31
([] [] [])

N

k
J trace p k p k p k  


  

 (10)

The above cost function can also be used in

cases that one sensor is selected at each time step.

2.2 Sliding Window Algorithm

This algorithm is similar to a pseudo real time

version of the Viterbi algorithm [13]. A window

size d is defined where d<N. The algorithm

proceeds as follows:

1) Initialization: Start from root node at
0k 

2) Traversal:

a) Traverse all the possible paths in the

tree for the next d levels from the

current node.

b) Find the sensor sequence

1 1
, ,...,

k k k d
S S S

   that gives the

minimum cost at the end of this

window of size d.

c) Choose the first sensor from the

sequence.

3) Sliding the Window:

a) If k=N then quit, else go to the next

step.

b) Designate the sensor as the root.

c) Update time k=k+1.

d) Repeat the traversal step.

It should be noted that the choice of the

parameter d is arbitrary.

2.3 Thresholding

This algorithm is similar to the algorithm

presented in [14], in the context of choosing the

optimal controller from a set of many possible

choices. We describe a factor f where . The

algorithm steps are as follows:

1) Initialization: Start from root node with

cost J=0 .

2) Pruning:

a) Extend the tree by one level (i.e. time

step) through all possible paths from

the current node.

b) Calculate the minimum cost up to that

time step.

c) Remove the branches that have a cost

greater than f times the minimum.

d) For the remaining branches, denote

the cost of the nodes as the cost

achieved by moving down the tree till

the node.

2.4 Randomly Chosen Sensors

In this algorithm, at each time step, the

sensors will be chosen randomly based on some

probability distribution. Then the probability

distribution is chosen so as to minimize the

expected steady state error covariance. Note that

we can’t compute the accurate value of the error

covariance since it will depend on the specific

sensor schedule chosen.

2.5 Circular selection algorithm

This algorithm is based on a circular

selection; all sensors are placed on a ring. The

computational burden of algorithm is less than

K=0 K=1 K=2 K= ...

ROOT

Sensor 1

Sensor 2

Sensor 3

Sensor 1

Sensor 1

Sensor 1

Sensor 2

Sensor 2

Sensor 2

Sensor 3

Sensor 3

Sensor 3

Safarinejadian & Rahimi, Optimal Sensor Scheduling Algorithms for Distributed Sensor Networks

178

other algorithms because in each time step, it is

possible to select more than one sensor.

Sensor selection order of the proposed

algorithm is shown in Figure 2.

Figure 2. Sensor selection in the circular selection algorithm.

Proposed algorithm

1) Initialization: Start with the cost function

0J  and a time step 0k  .

2) Calculation :

a) Calculate the cost function of the first

sensor. If the obtained cost function

is less than J then it will be

substituted by the new cost function,

and the first sensor is chosen as the

optimal sensor k . Then, 1k k 

and number of the optimal sensor is

stored in a vector z .

b) Repeat the previous step for the next

sensors.

3) If in above steps the optimal sensor isn’t

selected then the sensor with the smallest

cost function is selected as optimal sensor

between the sensors. J is substituted by

cost function of the optimal sensor, and

number of the optimal sensor is stored in

z, and k=k+1.

4) if stop the iteration, else go to 2.

2.6 A new sensor scheduling algorithm

for selecting multiple sensors at each time

step

The main purpose of this sub-section is

presenting a new algorithm that is able to select

one or more than one sensor at each time step.

Thus, the following algorithm is suggested.

There are n sensors in the network which we

want to select m sensors at each time step. The

algorithm steps are as follows:

1) Initialization: Start from root node at k=0.

2) Traversal:

a) Traverse all the possible paths in the

tree for the next d levels from the

current node.

b) Find m string of sensors which have

the least cost function and select them

as optimal sensors at k’th time step.

3)

a) a) If k=N then the algorithm is

finished, otherwise go to the next .

b) b) k = k+1

c) c) go to the step 2.

3. Simulation Results

3.1 Simulation 1

In this part, we apply our algorithm to an

application presented in [5] in which we have a

system that track motion of an automobile in two

dimensions x and y. Several sensors are located

on the car that send information about position of

automobile to the central node. In the central

node, automobile velocity will be estimated.

Equations of system are

[1] [] []x k Ax k Bw k  

[] [] []
i i i

y k C x k v k 

where

where h=0.2 and w[k] in equation (1) is a

zero mean white Gaussian noise. The process

noise is assumed to have covariance matrix Q

given by:

1 0.25

0.25 1
Q

 
  

We assume measurements taken by the three

sensors being described by:

[] [] []
i

y k C X k v ki i 

In this simulation, the matrix will be

constant as below

1 0 0 0

0 1 0 0
iC

 
  
 

The terms model the measurement

noise, again assumed white, zero mean and

Gaussian and also independent from each other

and from w[k].We consider values of the sensor

noise covariance’s as:

1 2 3

1.62 0 0.59 0 1.21 0
, ,

0 0.57 0 1.65 0 0.64
R RR

     
       
     

In the following figures, performance of the

proposed algorithm and other algorithms can be

observed:

Sensor 1

Sensor 2 Sensor 3

2

2

0
1 0 0

2
0 1 0

0, ,2
0 0 1 0

0
0 0 0 1

0

x

y

x

y

h ph
h ph

A B X
v

h
v

h

 
    
    
     
    
           

Journal of Information Systems and Telecommunication, Vol. 1, No. 3, July - September 2013 179

Figure 3: Comparison between circular selection,
thresholding, and randomly chosen algorithms.

Figure 4: Comparison between circular selection, sliding

window (d=1), and sliding window (d=2) algorithms.

Figure 5: Comparison between circular selection algorithm, sliding

window (d=1), and sliding window (d=2) at the final steps.

In Table I, performances of different

algorithms are compared.

TABLE I: comparison of different algorithms.

Circular
selection

algorithm

Randoml
y chosen

sensors

Threshold

1.001f 

Sliding

window

2d 

Sliding

window

1d 

1.1735 1.3010 1.1614 1.1604 1.1624

Final

cost

function
value

0.005344 0.007952 0.009537 0.018012 0.005938
elapsed

time

3.2 Simulation 2

Six sensors have been considered in this

simulation.

In this simulation the matrix will be

constant as below

1 0 0 0

0 1 0 0
iC

 
  
 

The previous model parameters have been

used despite of the sensor noise covariance

which is different in this case:

1 2 3

4 5 6

1.75 0 0.75 0 1.74 0
, ,

0 0.55 0 1.36 0 0.7

1.7 0 1.95 0 1.6 0
, ,

0 0.6 0 0.43 0 0.8

R R R

R R R 

  

 

     
          

     
          

We compare the results of the mentioned

algorithms:

Figure. 6: Comparison between circular selection,

thresholding, and randomly chosen algorithms.

Figure. 7: Comparison between circular selection algorithm,

sliding window (d=1), and sliding window (d=2).

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

Time step

C
o
s
t

Circular selection algorithm

Thresholding (f=1.001)

Randomly chosen sensors

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

Time step

C
o
s
t

Circular selection algorithm

Sliding window (d=1)

Sliding window (d=2)

19.4 19.5 19.6 19.7 19.8 19.9 20

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

Time step

C
o
s
t

Circular selection algorithm

Sliding window (d=1)

Sliding window (d=2)
0 5 10 15 20 25 30 35 40 45

1

1.5

2

2.5

3

3.5

Time step

C
o
s
t

Circular selection algorithm

Thresholding (f=1.001)

Randomly chosen sensors

0 5 10 15 20 25 30 35 40 45
1

1.5

2

2.5

3

3.5

Time step

C
o
s
t

Circular selection algorithm

Sliding window (d=1)

Sliding window (d=2)

Safarinejadian & Rahimi, Optimal Sensor Scheduling Algorithms for Distributed Sensor Networks

180

In table II, the results of these algorithms can

be viewed.

TABLE II: comparison of different algorithms

Proposed

algorithm

Randomly

chosen
sensors

Threshold

1f 

Sliding
window

2d 

Sliding
window

1d 

1.1708 1. 2323 1.1686 1.1682 1.1686

Final

cost
function

value

0.0085 0.0091 0.0293 0.1591 0.01455
elapsed

time

From Tables I and II, it is clear that the

circular selection algorithm has a good

performance in terms of cost function reduction.

Cost function graphs and the final cost function

values of the sliding window, thresholding, and

the circular selection algorithms are almost

identical. However, in randomly chosen

algorithm, the cost function value is higher than

the other algorithms.

But in terms of reducing the computational

burden, the circular selection algorithm has the

best performance, even better than the randomly

chosen algorithm. From Tables I and II, we can

see that increasing number of sensors results in a

better performance for the circular selection

algorithm in terms of reduction of computation.

3.3 Simulation 3

In the following, the new algorithm is used

for selecting multiple sensors assuming that there

are four sensors in the network.

In this simulation, the matrix will be as

below

1 2

3 4

0 0 0 0 0 0 0 0
,

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0
,

0 1 0 0 0 0 0 0

C C

C C

   
    
   

   
    
   

Measurement noise covariance’s are as

follows:

1 2

3 4

1.63 0 0.75 0
,

0 0.55 0 1.37

1.44 0 1.7 0
,

0 0.6 0 0.57

R R

R R

   
    
   

   
    
   

It is assumed that at each time step, two

sensors are selected. Results are shown in Figure 8.

Figure 8: Comparison between proposed algorithm with two

sensor selection in each time step and sliding window (d=1).

It is clear from Figure 8 that the proposed

algorithm has better performance but it should be

noted that using the proposed algorithm needs a

more complex hardware.

3.4 Simulation 4

In this part, the matrix C is assumed to be

constant and there are twelve sensors with the

following covariance matrices

1 2 3

1.63 0 1.59 0 1.61 0
, ,

0 1.55 0 1.69 0 1.59
R R R

     
       
     

4 5 6

1.61 0 1.69 0 1.63 0
, ,

0 1.57 0 1.53 0 1.51
R R R

     
       
     

7 8 9

1.64 0 0.59 0 1.68 0
, ,

0 1.55 0 2.75 0 1.58
R R R

     
       
     

10 11 12

1.44 0 1.65 0 1.65 0
, ,

0 1.6 0 1.55 0 1.53
R R R

     
       
     

Using the proposed method for multi-sensor

selection, one, two, three, and four optimal

sensors are selected between twelve sensors.

Figure 9: comparison between selection of one, two, three,

and four sensors from twelve sensors.

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

3.5

Time step

C
o
s
t

One sensor selection

Two sensor selection

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

3.5

Time Step

C
o
s
t

1 sensor selection

2 sensor selection

3 sensor selection

4 sensor selection

Journal of Information Systems and Telecommunication, Vol. 1, No. 3, July - September 2013 181

4. Conclusions

It has been clarified that the circular selection

algorithm was faster than the other algorithms

such as sliding window and thresholding and it

had a suitable performance in terms of finding

optimum sensors. In other words, this algorithm

reduces the computations while its performance

in finding the optimal sensors is as good as other

scheduling algorithms. According to the obtained

results, it is possible to use the proposed

algorithm instead of sliding window and

thresholding algorithms.

In the case of selecting multiple sensors at

each time step, it can be seen that the

performance of the system has been improved

but hardware problems will be greater. Number

of selected sensors at each time step is related to

system’s expected accuracy and cost of the

system.

References
[1] S. Roumeliotis and G. Bekey, “Distributed multi-

robot localization,” IEEE Transactions on

Robotics and Automation, vol. 18, no. 5, pp.

781–795,Oct 2002.

[2] H. Karl, “Making sensor networks useful:

Distributed services - the eyes project,” ESF

Workshop, La Spezia, Italy, 2002.

[3] D. Estrin, R. Govindan, J. Heidemann, and S.

Kumar, “Next CenturyChallenges: Scalable

Coordination in Sensor Networks,” in Proceeding

of the Fifth Annual International Conference on

Mobile Computing and Networking, Seattle, WA,

USA, August 15-19, 1999.

[4] J. Kahn, R. Katz, and K. Pister, “Next Century

Challenges: Mobile Networking for 'Smart Dust',”

in Proceeding of the fifth annual ACM/IEEE

international conference on Mobile computing and

networking, Seattle, WA, USA, August 15-19, 1999.

[5] V. Gupta, T. H. Chung, B. Hassibi, and R. M.

Murray, “On a Stochastic Sensor Selection

Algorithm with Applications in Sensor

Scheduling and Sensor Coverage,” Automatica,

vol. 42, no. 2, pp. 251-260, 2006.

[6] V. Gupta, T. Chung, B. Hassibi, and R. M. Murray.

“Sensor scheduling algorithms requiring limited

computation,” In Proceedings of the International

Conference on Acoustics, Speech and Signal

Processing, volume 3, 825-828, May 2004.

[7] J. Haartsen. “Bluetooth-the universal radio

interface for ad hoc, wireless connectivity,”

Ericsson Review, vol. 3, pp. 110-117, 1998.

[8] T. Kailath, A. Sayed, and B. Hassibi, “Linear

Estimation”. Prentice-Hall,2000.

[9] V. Gupta, T. Chung, B. Hassibi and R. M.

Murray, “Sensor scheduling algorithms requiring

limited computation,” International Conference

on Acoustics, Speech, and Signal Processing

(ICASSP), Pasadena, CA, USA,2004.

[10] B. Safarinejadian, A. Rahimi, M. Mozaffari, “A new

sensor scheduling method for distributed sensor

network,” The 21st Iranian Conference on Electrical

Engineering (ICEE), Mashhad, Iran, 2013.

[11] M. R. R. Khan and V. Tuzlukov, "Multisensor

data fusion algorithms for estimation of a

walking person position," International

Conference on Control Automation and Systems

(ICCAS), pp. 863-867, 2010.

[12] D. Hall, "The Implementation of Data Fusion

Systems," Multisensor Fusion, Springer, Vol. 70,

pp. 419-433, 2002.

[13] J. G. D. Forney, “The Viterbi algorithm,”

Proceedings of the IEEE, Volume.61 , pp. 268–

278, January 1973.

[14] B. Lincoln and B. Bernhardsson, “LQR

optimization of linear system switching,” IEEE

Transaction on Automatic Control, vol. 47, pp.

1701-1705, 2002.

Behrooz Safarinejadian received his BS and MS
degrees from the Electrical Engineering Department,
Shiraz University, Shiraz, Iran, in 2002 and 2005,
respectively. He received his Ph.D. degree from the
Electrical Engineering Department, Amirkabir University
of Technology, Tehran, Iran, in 2009. Since 2009, he
has been with the Faculty of Electrical and Electronic
Engineering, Shiraz University of Technology, Shiraz,
Iran. His research interests include distributed sensor
networks, estimation theory, statistical signal
processing, computational intelligence, control systems
theory and fault detection.

Abdolah Rahimi received his B.Sc. degree in
telecommunication engineering from Azad University,
Tehran, Iran, in 2006, and the M.Sc. degree in control
engineering from Shiraz University of Technology,
Shiraz, Iran, in 2013. His research interests include
sensor scheduling, system identification and chaotic
systems.

