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Abstract 
The tiny and low-cost sensors cannot simultaneously sense more than one channel since they do not have high-speed 

Analog-to-Digital-Convertors (ADCs) and high-power batteries. It is a critical problem when they are used for multi-

channel sensing in cognitive sensor networks (CSNs). One solution for this problem is that the sensors sense various 

channels at different sensing periods. Due to the energy limitation in these scenarios, the lifetime maximization will 

become an important issue. In this paper, maximizing the lifetime of a CSN is investigated by selecting both the 

cooperative sensors and their detector threshold, such that the desired detection performance constraints are satisfied. This 

is a NP-complete problem, and obtaining the optimum solution needs exhaustive search with exponential complexity order. 

Here we have proposed two convex-based optimization algorithms with low order of complexity. First algorithm applies 

the known instantaneous Signal-to-Noise-Ratio (SNR) and obtains the proper detector thresholds by solving an equation for 

every channel. Investigation the effect of detector thresholds on the energy consumption, the false alarm probability and the 

detection probability shows that we can minimize the detector thresholds such that the detection constraints are met. In the 

second algorithm in order to reduce the needed time for obtaining answers, the Bisection method is proposed for 

determining detector thresholds. Because knowing the instantaneous SNR is difficult, we have investigated the 

performance of the second algorithm by average value of SNR. Simulation results show that the proposed algorithms 

improve the performance of the network in case of lifetime and energy consumption. 

 

Keywords: Cognitive Sensor Network; Detection Probability; False Alarm Probability; Lifetime; Multi-Channel 

Cooperative Spectrum Sensing. 
 

 

1. Introduction 

With the increasing use of wireless applications, the 

lack of spectrum issue has emerged. Cognitive radio 

networks (CRNs) have been proposed to overcome this 

issue. In these networks secondary users (SUs) sense the 

spectrum to find and access free sections of the licensed 

bands as long as they do not cause harmful interference 

with the primary users (PUs). Because of fading or 

shadowing effects, SUs might not be able to reliably 

monitor all PUs. Therefore, cooperative spectrum sensing 

(CSS) schemes are proposed in which the detection 

results from spatially distributed multiple sensors are 

combined to make a final decision [1]. 

If an SU performs both sensing the channels and 

transmission on the detected idle channels, it cannot sense 

and transmit simultaneously, because of hardware limitations, 

so it reduces the opportunistic access efficiency. Also, one 

SU may fail to sense all the channels simultaneously. 

Therefore, CSN composed of tiny and low-cost frequency 

sensors is one solution, where sensors are used for spectrum 

sensing [2] [3], and then the sensing results are sent to the 

SUs. The CSN provides higher throughput for the SUs, and 

better protection of PUs against interference.  

Multi-channel spectrum sensing is ambitiously 

proposed to efficiently monitor a wideband spectrum 

which is used by multiple PUs. This functionality causes 

to increase the SUs throughput, to improve spectrum’s 

maintenance, and to reduce transmission interruptions, 

while it increases the complexity and requirements for 

adequate quality of sensing. The limited sampling rate of 

ADCs complicates the multi-channel spectrum sensing 

[4]. A practical method is monitoring the channels 

separately, which in this method, sensors cooperate with 

each other to sense all the channels.  

Simple implementation, low computational complexity 

and energy consumption are the reasons that determine 

energy detector (ED) as a useful detector for multi-channel 

sensing [4]. The cooperation between cognitive sensors 

improves the performance of this technique, too. Employing 

an array of EDs, each of which detects one frequency 

channel, has been used for multi-channel joint detection. 
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This method enables SUs to simultaneously detect PU 

signals across multiple channels [5], but this scheme is 

complicated costly and non-applicable for such a CSN.  

On the other hand, ED with fixed threshold is 

sensitive to noise and it cannot perform well in low SNR. 

So, it leads to interference with PUs, and decreases the 

throughput of SUs. Dynamic threshold selection for 

energy detector improves its performance [6], because the 

threshold is adjusted on demand with regard to the 

different SNR. Also, dynamic threshold selection is a way 

to energy conservation of a cognitive network [7].  

Because of small size and weight of sensors, there are 

limitations on their energy and cost. These physical 

constraints of sensors and the prohibitive costs to replace 

the depleted sensors in the CSNs make energy an important 

consideration to design a long lifetime network [3]. 

Mechanism of energy consumption of a CSN has a great 

impact on the network lifetime. Lifetime extending 

techniques can improve the energy utilization and hardware 

efficiencies. Therefore, reducing the energy consumption 

and balancing the residual energy of sensors are both 

critical in CSN design. If all the sensors perform sensing, it 

leads to high energy consumption and it raises the false 

alarm probability without increasing significant detection 

probability [8]. So sensor selection is a way to reduce 

energy cost while satisfying sensing quality constraints. In 

this paper, two ways are investigated for reducing the 

energy consumption and balancing the residual energy of 

sensors in a CSN. First is sensor selection for CSS, and the 

second is dynamic threshold selection for ED of the sensors. 

The two problems are combined and simultaneously solved. 

1.1 Prior Works 

[7] is a rich survey on the energy efficient schemes for 

CSS. Optimization of sensing nodes number and sensing 

settings are two main directions of possible energy 

conservation methods in CSS [7]. Reducing number of 

sensing nodes have been investigated with methods such 

as censoring [9], determining the optimum number of SUs 

[10]- [11], clustering [12], and node selection [13], in 

order to reduce energy consumption of CSS. They 

assumed monitoring of only one channel which is utilized 

by one PU. Also, methods such as energy harvesting (EH) 

[14], compressive sensing (CS) [15], and clustering [16], 

have been proposed for energy conservation of multi-

channel CSS in a CRN. The former two methods are 

complicated and needs particular capabilities, but the 

third method is applicable in any CSN. 

The detector threshold selection is a way of CSS 

settings optimization for energy conservation which has 

been proposed in studies such as [17]-[18]. In [17], both 

the sensor selection and ED threshold optimization for 

CSS in a CSN was investigated, although for monitoring 

only a single channel. In [18], assuming multi-channel 

CSS, schemes for assigning nodes to sense various 

channels, and then threshold optimization were proposed. 

They used clustering method for assigning all the nodes to 

adequate channels, to increase the overall throughput. 

Although this node assignment scheme improves energy 

conservation, it uses all the sensors for sensing, which is 

not optimal, meanwhile it causes to increase the false 

alarms. Also, the fixed thresholds were determined which 

is not optimum due to the time-varying nature of the 

lifetime problem. Jointly determining the optimum 

threshold of detector of sensors, and selecting sensors for 

all channels is a challenging problem, because the 

selected sensors change for different channels, and it is 

efficient to dynamically select threshold of EDs for 

selected sensors. The lifetime problem becomes more 

complicated, because the status of channels and the 

energy of sensors changes by time (i.e. channels are time 

varying and some nodes run out of battery). This paper 

pays attention to all of these challenges in node selection 

and threshold determining for the multi-channel CSS 

problem. In this paper, both dynamic thresholds and 

sensor selections for cooperative multi-channel sensing 

are assumed, with aim to energy conservation and lifetime 

maximization. For a CSN, two algorithms are proposed to 

assign the adequate sensors to various licensed channels, 

while the optimization of the detector threshold is done 

for reducing energy consumption and increasing the 

network lifetime. This paper aims to prolong the CSS 

lifetime while improving the detection performances, too. 

In the first algorithm the detector thresholds are optimized 

for cooperative sensors, but it needs a long time for 

finding the optimal solution. Second, another algorithm is 

proposed which finds efficient solution at a shorter time.  

The rest of the paper is organized as follows. In section 2, 

system model is expressed. Section 3 discusses the problem 

formulation based on the instantaneous SNR of sensors. In 

section 4 the algorithms are presented. The generalization of 

the algorithm to the average SNR scenario will be presented 

in section 5. The simulation results are explained in section 6. 

Finally, the conclusions are presented in section 7. 
 

 
Fig. 1. A sample of system model. 
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Fig. 2. The receiver circuit of every cognitive sensor. 

2. System Model 

We consider a CSN with an FC and N sensors which 

are distributed uniformly. We assume the wideband is 

divided to M channels with the same bandwidth. M PUs 

are distributed uniformly and use the channels to transmit 

their signals with the same modulation, while each PU 

can use from a single channel. A sample CSN is depicted 

in Fig.1. Because sensors have limited hardware, so a tiny 

sensor cannot sense more than one channel, 

simultaneously. A solution is proposed in which the CSN 

can simultaneously sense more than one channel by 

cooperation between sensors. It is assumed that every 

sensor is equipped with a receiver circuit which 

composed of a synthesizer, a narrowband filter, and an 

ED. The simple and low-cost receiver circuit is plotted in 

Fig. 2. In fact the narrow-band detector can only scan one 

PU at a time. However, the synthesizer tunes frequency 

with a command from FC to the center frequency of a 

channel. Because of low complexity energy detector is 

proposed for sensing the spectrum.  
   

 denotes sensor n 

detector threshold for the channel m. Generally, the 

optimal thresholds are not equal even in case of sensing a 

single channel with equal channel gains at all sensors, but 

an equal threshold for sensing a channel is asymptotically 

optimal when the number of sensors goes to infinity [15]. 

For reducing the complexity of the algorithms, it is 

assumed that all the sensors assigned to a single channel 

use equal energy detector thresholds (i.e.,  
   

  
 

), but 

in different durations of sensing this thresholds are 

determined dynamically. The signal energy at channel m 

is measured by sensor n as:      ∑ |       |
  

   , 

where         denotes the k-th sample of the discrete 

received signal of channel m that is observed by the n-th 

node, and K is the number of samples which is calculated 

as    , where    is the Nyquist sampling rate of detector 

according to the channel bandwidth, and   is the sensing 

time. In table 1, the description of each notation used in 

the paper is shown.  

We define two hypotheses for every sensor. The first, 

i.e.     , says that the m-th PU is not transmitting, i.e. 

channel m is idle, and the second, i.e.     , says that the 

m-th PU is transmitting, i.e. channel m is busy. So we 

have: 
 

{
                                                      

                                                                         
(1) 

 

{
                            (        

 )  

                                  
           

             (2) 

 

The k-th sample of transmitted primary signal on 

channel m is denoted by      , that is assumed to be an 

i.i.d random process with zero mean and variance   
 . 

     is the Gaussian i.i.d random noise with zero mean 

and variance   
 , and it is assumed that    and      are 

independent.      denotes the channel gain between the 

m-th PU and sensor n. The path loss, Rayleigh fading and 

shadowing effects are considered in order to model the 

PU-sensor channels. Hence; the channel gains are 

modeled as [19]: 
 

      

     (
 

      
)     

      ̃   (3) 
 

which     ̃  is a standard complex Gaussian random 

process (Rayleigh fading),      is a Gaussian random 

variable (in dB) with zero mean and variance   
  

(Lognormal shadowing), and the expression (
 

      
)
 

 is 

free-space path loss component, when   is the wavelength 

and      is the distance between the PU that uses channel 

m and sensor n.  

Under the hypothesis      , the ratio of measured 

signal of sensor n from the m-th PU to the noise power is 

defined as [13]: 
 

       
   |    |

 
  
 

  
      (4) 

 

We assume the FC knows the instantaneous received 

SNR of the sensors. Since the goal of this paper is not the 

SNR estimation, we ignore the estimated SNR error. 

Although, this assumption seems unrealistic for some 

scenarios, it does not have effect on the procedures of the 

proposed algorithms [9]. The sensor selection can be done 

based on the average SNR or the estimated SNR, 

similarly, which is discussed in section 5.  

There are two important metrics for the spectrum 

sensing quality which are called as false alarm and 

detection probabilities. The larger detection probability 

and the lower false alarm probability of a node provide 

more reliable spectrum sensing by the node. These 

metrics for sensor n which senses channel m are 

calculated respectively as [13]:  
 

     
  (    |    )   ((

  

  
   )√   )     (5) 

 

     
  (    |    )   ((

  

  
          )   √

   

         
)  (6) 

 

Here      denotes the complimentary distribution 

function. It is noted that the false alarm probability does 
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not depends on the received SNR of sensors, but the 

detection probability depends on the sensors received SNR.  

It is assumed that the FC uses the logic OR rule to 

fuse the decision of sensors [9]. According to the logic 

OR fusion rule, if at least one sensor detects the primary 

signal transmitting on channel m, the final decision shows 

that the PU is transmitting. If all sensors participate 

simultaneously in sensing, it leads to high energy 

consumption and it raises the false alarm probability 

without increasing significant detection probability [8]. 

Therefore, a coefficient      is considered to determine 

selected sensors, such that:        if sensor n does not 

sense channel m and        if sensor n senses channel 

m. Also, because every sensor at most can sense a channel 

for every sensing period, so for every sensor n it is 

assumed that: ∑        
   . We want to select 

cooperative nodes such that    denotes the set of selected 

sensors which cooperate with each other in sensing 

channel m. Because of limitation of sensors in sensing 

more than one channel, it is assumed that: 
 

{
                      

        {     }
        {      }           (7) 

Table 1. The description of parameters 

N Number of sensors      
Distance between m-th PU 

to sensor n 

M Number of channels/PUs      
Distance between sensor n 

to FC 

  the sensing time   The PU-signal wavelength 

   Nyquist sampling    
Detector threshold for 

channel m 

     PU-sensor channel gains     /     
Assumption of off/on for 

m-th PU 

   
PU signal with variance 

  
  over channel m 

     
/     

 
Detection/false alarm 

probability of sensor n 
about channel m 

     
Noise of PU-sensor 

channel       
   

   
/    

Global detection/false 

alarm prob. about channel 

m 

    ̃  
Rayleigh fading over PU-

sensor channels 
   

Selected nodes set for 

sensing channel m 

     

Lognormal shadowing with 

variance   
  of PU-sensor 

channels 
        

Energy for the electronic 

circuits of transmitters 

   / 

   
 

Sensing / Transmission 
energy 

     Amplifying coefficient 

    
Energy consumption for 

sensor n 
    /     

Assumption of off/on for 
m-th PU 

     Initial energy of sensor n   /   
The detection/false alarm 

prob. limits for channel m 

   
Residual energy of sensor 

n 
  

The ratio of live sensors to 
all nodes in lifetime 

moment 
 

where   and    denote two different channels. 

Therefore, the global detection probability (   
) and the 

global false alarm probability (   ) for CSS of channel m 

are respectively written as [20]: 
 

   
   ∏             

     
    (8) 

 

      ∏             
      
   (9) 

 

We want to maximize the lifetime of the multi-

channel CSS for a CSN under the global detection and 

false alarm probabilities constraints. There are different 

definition for a sensor network lifetime based on the 

network application [20]. In this paper, the lifetime of a 

CSN is defined as the time in which a certain percentage 

of the sensors run out of battery. 

Definition 1. The lifetime of a CSN is defined as the 

moment time that the number of live sensors drops under 

    where      , i.e., (1-  ).N of sensors have the 

minimum of energy and cannot sense [20].   ■ 

As mentioned before, because of battery size and 

weight limitations of sensors, energy utilization 

mechanism is an important issue in CSN which imposes a 

time limit on the network operation life. In order to 

formulate the lifetime maximization problem, first the 

needed energy consumption and the residual energy of 

sensors are calculated. We assume sensing energy of 

sensor n, i.e.   constant, is the same for all sensors (It is a 

fair assumption because of equal sensing rate and similar 

detector of sensors). Also, the energy for transmitting 

sensor n decision to the FC is denoted with    
, and it is 

calculated as [13]: 
 

   
                   

 
   (10) 

 

in which         is the energy used for the electronic 

circuits of transmitter,      is the amplifying coefficient 

and      is the distance between sensor n and the FC. 

Therefore, energy consumption of sensor n for 

participating in CSS of every channel is calculated as [13]: 
 

          
     (11) 

3. The Problem with Instantaneous SNR 

Our goal is lifetime maximization of a CSN by jointly 

selecting the appropriate cooperative nodes for sensing 

each channel, and determining the optimum detector 

threshold of selected sensors, so that, the constraints on 

the global detection probability and the global false alarm 

probability of multi-channel CSS are satisfied. These 

constraints are assumed to guarantee acceptable sensing 

quality for all channels. Max-min method is used to solve 

the problem [21]. In this method, to maximize lifetime, 

the minimum of residual energy of sensors is maximized, 

such that the sensors which have larger residual energy 

and need lower energy consumption are selected for 

sensing. Therefore, the sensors residual-energy-levels are 

kept balanced, which leads to extend the network lifetime 

significantly. On the other hand, the level of detector 

threshold affects the energy consumption, the detection 

probability, and the false alarm probability of sensors. 

Hence, the optimum threshold for sensing every channel, 

in every duration of network life is found, such that, the 

global probability of detection and the global probability 

of false alarm constraints are satisfied. This multi-channel 
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CSS lifetime maximization is written in an optimization 

problem framework as follows: 
 

Problem1:                   {    {  }
 

} 

       subject to; 

                                        (12-1) 

                                      (12-2) 

      
                  {     }            (12-3) 

∑     
 
              {     }            (12-4) 

     {   }                                   (12-5) 
 

In this problem the minimum of residual energy of 

sensors is defined as          {  }
 

. The first constraint 

shows that the minimum of residual energy of all sensors 

is    , and there is at least one sensor with this amount of 

energy. To guarantee the fair sensing quality, the 

detection constraints are assumed on every channel. The 

larger detection probability leads to lower interference 

with PUs, and the lower false alarm probability means the 

better usage of free channels. The second constraint states 

that the global false alarm probability for cooperative 

sensing of channel m should be lower than the desired 

parameter   . The third constraint states that the global 

detection probability for CSS of channel m should be 

more than the desired parameter   . The constraint (12-2) 

is simplified thanks to the fact that global probability of 

false alarm is independent of the       . Therefore, it is 

concluded from (5), (9), and (12-2) that: 
 

|  |           ⌊
          

       ((
  

  
   )√   ) 

⌋  (13) 

 

For a constant   , if more than        sensors are 

selected for channel m, the false alarm probability 

constraint for the channel is not satisfied, meanwhile the 

energy consumption increases due to higher number of 

selected sensors. Thus, for every level of   , the 

maximum number of selected cooperative nodes for CSS 

of the channel is       .  

However, Problem1 is a NP-complete problem 

because of the integer nature of     . Finding only 

sensors under fixed threshold needs an exhaustive search 

algorithm with complexity order of       [20]. Since the 

threshold level of detector is a continuous parameter, 

finding the optimal solution for the threshold and sensor 

selection is not possible. The aim of this paper is finding 

an optimum answer with a lower complexity. Hence, it is 

assumed that      is a non-negative continuous 

parameter in order to apply a continuous search algorithm. 

In fact, this continuous parameter represents the priority 

of sensor n for sensing channel m. After solving the 

problem,      is mapped to ‘0’ or ‘1’, in this way that, 

the      for sensors with the larger priority, which are 

selected, are denoted by ‘1’, and for the other nodes are 

denoted by ‘0’. Therefore, the standard optimization 

problem is written as: 
 

Problem2:                      {   } 

          subject to; 

     (    (     ∑        

 

   

))    

                                     (14-1) 

   (  ∏ (            
    )

     

)    

                           (14-2) 

∑     
 
                                             (14-3) 

∑     
 
                                        (14-4) 

                                                          (14-5) 
 

The convex optimization method can be used for 

finding a sub-optimal but efficient solution, although the 

problem is not convex because of the second constraint. 

This is a popular method to solve non-convex problems in 

a simple but efficient way [22]. Because only sensors are 

selected that their residual energy is larger than    , the 

constraint (14-5) is satisfied, and so this constraint is 

removed. The Lagrange function is formed as follows [22]: 
 

 (                 
 
   )      ∑                 

(     ∑        
 
   )   

 ∑   (     ∏ (            
    )    

)  

∑  
 
(∑     

 
     )  ∑    ∑     

 
    |      |    

      (15) 
 

where the Lagrange multipliers        
 
        are 

considered for the constraints (14-1), (14-2), (14-3), and 

(14-4), respectively. The efficient value of      are found 

by differentiating   with respect to      as [22]: 
 

  

     
        

∏ (           
)     

   

               

 

             
 
           (16) 

 

Now, the sensors priority to detect channel m, are 

obtained as: 
 

     

                           
∏             

      
   

      
  (17) 

 

We calculate the optimum value of detector threshold 

of selected sensors, by differentiating   with respect to 

    as [22]: 
 

  

   
   ∑     √

   

    
 (         )

 
     

 

    ( 
   

         
(
  

  
          )

 

)  

 

 ∏             
      

   

              (18) 

 

Therefore, the optimum value of    is found from 

solving the following equation: 
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∑     √
   

    
 (         )

 

           

     

     
   

         
(
  

  
          )

 

     (19) 

 

To obtain the optimum values of Lagrange multipliers 

in (17), the complimentary slackness conditions are 

analyzed [13]. Since the selected nodes are removed from 

the set of remained nodes, a node is not selected for more 

than one channel, thus the    can be removed from (17). 

Because    is independent from sensors number and is a 

fixed value for every m, therefore, the    is removed 

from (17), and just the selected nodes number are checked 

in order to satisfy the (14-4). The Subgradient method is 

used for finding the optimal answer of the other Lagrange 

multipliers in (17). The      and the    with step sizes 

      
  

 
 and       

  

 
 are updated as [22]: 

 

                       (            ) (20) 
 

                   (      
)  (21) 

 

where "i" is Subgradient iteration number, C1 and C2 

are constant values. This algorithm is running until 

maximum size of changes becomes lower than a small 

value  , i.e. the algorithm is running while: 
 

   (|             | |                 |)     (22) 
 

Now, priority function of sensors for sensing channel 

m is calculated as: 
 

      
        

    
 

       
∏ (           

)     
   

        
 (23) 

 

Thus, the sensor with the larger measure of     , has 

the more priority for being selected for cooperative sensing 

channel m. It is noted that the priority function is inversely 

related to the required energy consumption of sensors for 

participating in sensing, and is directly related to their 

residual energy and their detection probability of a channel. 

The above solution needs to solve the equation (19) 

which takes few seconds. Although this time is much shorter 

than exact search time, it causes a significant delay for 

sensing in a CSN. On the other hand, the energy consumption 

of sensors is an increasing function of detector thresholds [17]. 

Because increasing the threshold level decreases the detection 

probability of sensors. Therefore, more numbers of sensing 

nodes is required to satisfy the detection performance which 

increases the energy consumption. Hence, the minimum 

threshold is found so that the global probability of detection 

constraint is satisfied. The threshold optimization problem for 

every channel is written as: 
 

Problem3:              {  }               {     } 
         subject to; 
 

(  ∏ (            
    )     

)               (24-1) 
 

   (  ∏ (            
    )     

)           (24-2) 
 

, in which (24-1) is replaced with another constraint, 

the same as (14-4). Direct solving the optimization 

problem needs to solve (19). However, after sensors were 

selected, the thresholds minimization can be done by a 

simple iterative algorithm. The Bisection method is used 

for finding the optimum thresholds for selected sensors 

sensing every channel. The threshold levels of different 

channels are independent; therefore, the detector 

threshold selection for every channel is a one-dimensional 

problem which Bisection algorithm is used for 

determining the dynamic optimum threshold. The details 

of these algorithms are described in the next section. 

4. The Proposed Algorithms 

In this section, two algorithms for jointly sensor and 

detector threshold selection are proposed. Both of them 

are based on the known instantaneous SNR of sensors. 

The sensor selection algorithm for extending lifetime of a 

CSN, with fixed thresholds has been proposed in [20], 

which we call it as OLBSS (Optimal Lifetime Based 

Sensor Selection). The pseudo code of this algorithm is 

plotted in Table 3 of [20]. Here it is extended to the 

dynamic threshold selection scenario. 

In this paper, it is assumed that the PU with more 

distance from center of the region has more priority for 

assigning sensors to sense its channel. Our reason for this 

distance based order is that probably the lower numbers 

of sensors are located around the PUs which are far from 

the center. Therefore, there is limited number of sensors 

with adequate detection probability for being selected for 

monitoring the PUs. This method is not optimum 

necessarily, but it provides good solution with low 

complexity, and it is proper for high number of channels. 

Also, in all of algorithms, if the problem converged to an 

acceptable answer that satisfies detection constraints for 

all channels, the iteration is calculated as successful 

iteration of lifetime. These algorithms continue until the 

number of active-sensors is lower than    .  

4.1 Joint Sensors and Dynamic Thresholds Selection 

In every duration of lifetime, at first, with initial 

thresholds, maximum number of sensing nodes, for every 

channel is determined. Then, based on the instantaneous 

SNR of sensors, the detection probability of all sensors 

for all channels are determined. Now, sensor selection is 

done the same as OLBSS (save the sensors in S1 matrix). 

Then, the optimum thresholds are calculated from (19), 

and with the new measures of thresholds, another sensor 

selection is done the same as OLBSS (save the new 

sensors in S2 matrix). If the new selected sensors satisfy 

the global probability constraint for channel m, the loop is 

repeated. If the global probability constraint is not 

satisfied for channel m,    is increased to the last 

selection. Finally, the residual energy of selected sensors 

is updated. The proposed algorithm is called the multi-

channel lifetime maximization by jointly sensors and 
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thresholds selection (JLMTSS). The pseudo code of this 

algorithm is plotted in Table 2.  

4.2 The Reduced Time Joint Sensors and 

Dynamic Thresholds Selection 

An initial feasible set with upper and lower bounds for 

every    is determined.        for all channels are 

determined with initial thresholds which are middle of the 

feasible sets. Then, based on the thresholds and the 

instantaneous received SNR of nodes the detection 

probability of sensors for all the channels are determined. 

Now, sensor selection is done the same as OLBSS. If the 

selected sensors for channel m satisfied the global 

probability constraint, the    decreases, otherwise the    

increases. This loop is repeated until the terminating 

criterion of Bisection algorithm is met. Then residual 

energy of sensors is updated. This algorithm is called the 

first reduced time multi-channel lifetime maximization by 

jointly sensors and thresholds selection (RJLMTSS1). 

The pseudo code of this algorithm is plotted in Table3. 
 

TABLE 2  JLMTSS1 ALGORITHM 

Step1 and Step2 are done the same as OLBSS,( [20], Table 2) 

and save Set1 in S1. 

Step3:      for n=1:N 

                    for m=1:M 

                        if there is node n in m-th row of S1,      =1; 

                       else       ; 

                            end 

                        end 

                   end 

Calculate optimum thresholds from Eq.(19). 
Step4:  Repeat Step1 and Step2 with the new thresholds, and save 

the new Set1 in S2. 

             for m=1:M 

                 
    

                for   j=1:        

                   if             
                   ns=             &         

       
 (        

)  

                   end 

                 end 

              end 

Step5:         if    (   
   )   clear S1, save S2 in S1, clear S2 and 

go to step3 

                   else   S1 are the selected nodes and do step 3 of OLBSS. 

                    end 
 

TABLE 3  RJLMTSS1 ALGORITHM 

Step0 is done the same as OLBSS. The feasible set for every    is 

determined. 

Step2:   for m=1:M     
           

 
   end 

               Select nodes for every channel the same as step1 and 

step2 in OLBSS  

Step3:       if (   
   )    

                             
    

                  else       
    

                   end 

Step4:       if max(     
      

       

                       Do step3 of OLBSS 
                  else  Go to step2. 

                  end  

Table 2. The values of simulation parameters 

                                   
 =3db 

                                   =20mW 

         
       W             M=8 

5. The problem with average SNR 

Since calculating the instantaneous SNR is difficult, in 

this section the joint sensors and thresholds selection 

algorithm for multi-channel CSS is extended to the case 

that the FC knows only the average SNR of sensors. In 

this case, the false alarm probability of sensors is the 

same as (5) because it does not depends on the SNR of 

sensors. Therefore, the average global probability of false 

alarm for this problem is the same as (9), but the detection 

probability of sensors depends on their received SNR. For 

the case that the FC knows only the average SNR 

information, the average detection probability is used for 

sensors and thresholds selection. The average detection 

probability is calculated as [13]: 
 

     
̅̅ ̅̅ ̅̅  ∫      

      
(    )      

 

 
  (25) 

 

where      
(    )  denotes the probability density 

function (PDF) of the received SNR of sensor n from m-

th PU (           ). Under the assumed channel gain 

in (3), the PDF is an exponential distribution with the 

average as [17]: 
 

   ̅̅ ̅̅ ̅̅
        ̅̅ ̅̅ ̅̅  

  

  
  

 

      
         

        
 

   
   (26) 

 

Thus, the average detection probability is calculated as: 
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which the closed form of      
̅̅ ̅̅ ̅̅  is calculated as [25]: 
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  (28) 

 

Then, the average global probability of detection is a 

function of average SNR of sensors as following: 
 

   
̅̅ ̅̅ ̅    ∏             

̅̅ ̅̅ ̅̅      
   (29) 

 

Similar to the RJLTMSS1 algorithm, the optimization 

problem is solved with constraints on the average global 

detection probability. We call the investigation of 

RJLTMSS1 under the scenario as RJLMTSS2, which is 

compared to show that the proposed algorithm can be 

extended to realistic scenarios.  

6. Simulation results 

In this section, the algorithms are numerically 

evaluated through computer simulations using MATLAB. 

The Monte-Carlo method is used with 5000 number of 

iterations. An square region with      length is 

assumed. An FC is located in the center of the region. N 

sensors and M PUs are distributed identically in this 

region. The IEEE 802.15.4/Zigbee is used for the 
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cognitive sensors [26]. The simulation parameters are 

presented in Table 2. The performance of the proposed 

algorithms is compared with the following algorithms: 

 Detection based serially sensor selection and 

thresholds setting: First this algorithm selects 

sensors based on the detection probability of 

nodes, and then determines optimum detector 

thresholds for the selected sensors. This scheme is 

a conclusion from [18] by a different object. In 

that work, in multi-channel CSS with the aim at 

throughput maximization, first clustering all the 

sensors was done, then the optimum thresholds for 

the sensors was determined such that the detection 

and false alarm probability constraints are 

satisfied. The lifetime maximization by serially 

sensors and thresholds selection algorithm is 

called as LMSST. 

 Random based serially sensor selection and 

thresholds setting: This algorithm is compared 

because of its lower order of complexity respect 

with the proposed algorithms. First the sensors are 

selected randomly. Then, a random detector 

threshold, from the feasible set of   , is determined 

for channel m. This algorithm is called the random 

sensor and threshold selection algorithm (RTSS). 

One of the metrics for efficiency of algorithms is the 

rate of satisfying the problem constraints. A success 

metric is defined as the ratio of the successful-iterations-

number to the maximum-iterations-number. A successful 

iteration is iteration that an algorithm finds answer which 

satisfies all the constraints. Also, for better scaling, the 

success percentage is normalized on the basis of the 

maximum iterations between all the simulated algorithms. 

In Fig. 3, the success ratio of the both algorithms, that are 

proposed based on the known instantaneous SNR, i.e. the 

JLMTSS and RJLMTSS1 are compared at different total 

number of sensors. The higher number of sensors leads to 

higher success ratio for both algorithms, because there are 

more proper sensors for being selected. It is concluded 

that the success ratio of JLMTSS is higher than 

RJLMTSS1, because JLMTSS finds the optimum 

thresholds for selected sensors by solving the equation 

(19), but the RJLMTSS1 finds a suboptimum threshold 

for sensing every channel via a reduced complexity 

algorithm. This superior performance of JLMTSS is 

obtained in exchange for longer processing time. In Fig.4, 

the lack of instantaneous SNR effect of sensors is 

presented by comparing the success ratio of the 

RJLMTSS1 and RJLMTSS2. This plot shows that 

knowing the instantaneous SNR leads to better selection 

of sensors and thresholds, because RJLMTSS2 selects 

more sensors than RJLMTSS1 to satisfy the detection 

probability constraint. It is noted that, since the procedures 

of these algorithms are similar, the changes in the success 

ratios versus sensors number are almost the same.  

Fig. 5 compares the success ratio of the RJLMTSS1 

with the benchmark methods. It is obvious that, the higher 

number of sensors leads to higher success ratio for all the 

algorithms. The proposed algorithm has the top success 

ratio, which it leads to successful response in more than 

95% of iterations. The LMSST algorithm which serially 

selects sensors and thresholds leads to the second highest 

success ratio. Because in LMSST the sensors are selected 

based on their detection probability, in which the 

consumption and residual energy of sensors are neglected. 

Also, non-jointly sensors and thresholds selection is 

another reason of the lower success rate of LMSST. The 

OLBSS algorithm which only selects suitable sensors 

with a predefined-fixed-threshold for sensing the channels 

has the third highest success ratio. This algorithm does 

not find efficient thresholds for sensors; therefore more 

sensors are selected for satisfying the detection 

constraints. The RTSS algorithm has the lowest success 

ratio. This algorithm has lower order of complexity but 

cannot efficiently extend the network lifetime. 

In Fig. 6, the average number of selected sensors for 

sensing the channels is plotted. When the total number of 

sensors increases, the problem constraints are satisfied 

with lower number of selected sensors, because number 

of sensors with higher detection probability increases. 

This plot shows that the proposed algorithms use the least 

number of sensors. However, the JLMTSS finds optimal 

thresholds for the selected sensors which increases the 

detection probability of sensors, and therefore, it satisfies 

the detection constraints with lower number of sensors. 

RJLMTSS1 finds sub-optimal thresholds for the selected 

sensors, but its performance is more effective than other 

benchmark methods. LMTSS is the third, which it is 

concluded from ignoring the energy conservation in sensor 

selection and non-jointly sensors and thresholds selection. 

This algorithm selects sensors with higher detection 

probability that needs the lowest number of selected 

sensors at first glance. However this metric amount is 

averaged over the total number of iterations. It is noted 

that the sensors that has the highest detection probability 

may require a lot of energy to send their decision bit to the 

FC. So the selected sensors in the early iterations of 

network lifetime are selected frequently, and therefore the 

sensors batteries drain faster. Hence, on average, the 

number of selected sensors of LMSST is higher than the 

proposed algorithms. The OLBSS algorithm is the forth 

because it does not set the efficient threshold levels for 

sensor`s detector, therefore more sensors will be selected 

for satisfying the detection constraints. Also, the effect of 

knowing the instantaneous SNR on the number of selected 

sensors is shown in this plot by comparing the results of 

RJLMTSS2 with other algorithms. 

Note that all the algorithms use the instantaneous SNR 

except for RJLMTSS2. Although, estimating the 

instantaneous SNR is difficult, but using the average SNR 

necessitate us to select more sensors for satisfying the 

detection constraints. The RTSS requires the highest 

number of sensors for the multi-channel CSS because of 

ignoring the detection probability of selected sensors, and 

not setting efficient thresholds for detector. In Fig. 7, the 

average energy consumption for every sensing period of 
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multi-channel CSS is presented. This metric for every 

algorithm is averaged on the all iterations of the network 

lifetime. The proposed algorithms provide the least energy 

consumption, because they jointly select sensors and 

thresholds. When the total number of sensors increases, the 

average measure of energy consumption reduces for all 

algorithms, because number of sensors with higher detection 

probability increases, and therefore, lower number of sensors 

are required for satisfying the detection constraints. 

In table 3, the average time for finding sensors and 

detector thresholds for every iteration of multi-channel 

CSS is shown, meanwhile the successful lifetime of the 

algorithms is compared. It is noted that the optimal 

method for finding sensors and determining optimal 

thresholds is not possible to compare. The JLMTSS needs 

the longest time and the RTSS needs the shortest time to 

find answer. But, RTSS consumes more energy and it 

leads to shorter lifetime for the network. Also, most of the 

times, solution of this algorithm is not accepted because it 

does not satisfy the detection quality constraints. The 

RJLMTSS1 needs lower time to find the efficient solution 

for the problem than the JLMTSS. The RJLMTSS2 needs 

processing time the same as RJLMTSS1, because their 

procedures are similar. The LMTSS and OLBSS need 

shorter time than the proposed algorithms, but their 

solutions are not as efficiency as the proposed algorithms. 
 

 
Fig. 3. The success ratio versus the total number of sensors. 

 
Fig. 4. The success ratio versus the total number of sensors. 

 
Fig. 5. The success ratio versus the total number of sensors. 

 
Fig. 6. The number of selected sensors versus the total number of sensors. 

 
Fig. 7. The average energy consumption for multi-channel CSS versus 

the total number of sensors. 

Table 3. The average time and successful lifetime comparison 

The average time to find answer 
The average successful 

lifetime 

Number of sensors 60 120 60 120 

JLMTSS 37.722 s 73.174 s 2312 4616 

RJLMTSS1 1.0226 s 4.3317 s 2171 4429 

LMSST 0.4440 s 1.7484 s 2038 4115 

OLBSS 0.1891 s 0.7546 s 1971 4004 

RTSS 0.079s 0.841s 1108 2306 
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7. Conclusion 

In CSNs usually apply the tiny and low-cost sensors. 

These sensors cannot simultaneously sense more than one 

channel because they do not have high-speed ADCs and 

high-energy. In order to overcome this problem, in this 

paper it was proposed two novel algorithms that maximize 

the network lifetime by selecting both the cooperative 

sensors and their detector threshold. First algorithm 

applies the known instantaneous SNR and obtains the 

proper detector thresholds by solving an equation for every 

channel. In the second algorithm in order to reduce the 

complexity of the problem it is proposed the Bisection 

method for determining detector thresholds. In the first 

algorithm, i.e. JLMTSS, the detector thresholds are 

optimized for cooperative sensors, based on the known 

instantaneous received SNR of sensors. This algorithm 

provides the longest lifetime for the CSN, but it is 

complicated and needs longest time to find the optimal 

solution. Of course this time is very short in compare with 

the exact search algorithm which finds the optimal sensors 

and thresholds. The second algorithm, i.e. RJLMTSS1, 

finds efficient solution at a processing time which is 

applicable, while its performance is relatively good. From 

table 2 it is concluded that its performance is 94% of the 

JLMTSS algorithm when its processing time is 0.05% of 

the JLMTSS processing time (when the total number of 

sensors is 120). knowing the instantaneous SNR is 

difficult so we have investigated the performance of the 

second algorithm by average value of SNR. It was 

concluded that knowing the instantaneous SNR leads to 

better performance. Also, the proposed algorithms were 

compared with the other benchmark methods that can be 

performed in similar conditions. The comparisons showed 

that the proposed algorithms extend lifetime of a CSN 

with a good rate. The effect of thresholds setting on the 

energy conservation of a CSN was studied, which 

concluded that it can improve the network successful 

lifetime more than 10% (N=120, comparison between 

OLBSS and RJLMTSS1). Also, jointly sensors and 

thresholds selection based via max-min method improves 

the network lifetime more than 7.6% respect with serially 

sensors and thresholds selection based on the detection 

probability of sensors (N=120, comparison between 

LMSST and RJLMTSS1). The comparison between the 

proposed algorithms with a low-complexity algorithm 

showed that the proposed algorithms improve the network 

lifetime more than 90% respect with the random sensors 

and thresholds selection algorithm (N=120).  
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