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Abstract  
In massive Multiple Input Multiple Output (MIMO) or large scale MIMO systems, uplink detection at the Base Station 

(BS) is a challenging problem due to significant increase of the dimensions in comparison to ordinary MIMO systems. In 

this letter, a novel iterative method is proposed for detection of the transmitted symbols in uplink multiuser massive MIMO 

systems. Linear detection algorithms such as minimum-mean-square-error (MMSE) and zero-forcing (ZF), are able to 

achieve the performance of the near optimal detector, when the number of base station (BS) antennas is enough high. But 

the complexity of linear detectors in Massive MIMO systems is high due to the necessity of the calculation of  the inverse 

of a large dimension  matrix. In this paper, we address the problem of reducing the complexity of the MMSE detector for 

massive MIMO systems. The proposed method is based on Gram Schmidt algorithm, which improves the convergence 

speed and also provides better error rate than the alternative methods. It will be shown that the complexity order is reduced 

from     
   to     

  , where    is the number of users. The proposed method avoids the direct computation of matrix 

inversion. Simulation results show that the proposed method improves the convergence speed and also it achieves the 

performance of MMSE detector with considerable lower computational complexity. 
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1- Introduction 

In the recent years massive multiuser multiple-input and 

multiple-output (MIMO) or large scale MIMO technology 

has been suggested for next generation wireless 

communication systems. In massive MIMO systems, a 

large number of antennas are used at the base station (BS). 

This structure makes it possible to detect the transmitted 

symbols of several users that they are transmitting their 

symbols at the same time and frequency. Massive MIMO 

is one of the promising solutions in future wireless 

communication systems (such as 5G systems) that 

increases spectral efficiency and it reduces interference [1-

6]. In spite of the benefits of massive MIMO systems, 

there exist several challenges in these systems such as 

hardware implementation complexity, detection 

complexity, channel estimation and antenna correlation [7, 

8].  

The maximum likelihood (ML) detector is the optimal 

detector which practically is not feasible for a massive 

MIMO system, due to the exponential increase in 

computational complexity with increasing number of 

antennas [9, 10]. Therefore, suboptimal detectors with 

lower complexities are suggested. To achieve near-optimal 

performance, the sphere decoding and K-best methods 

have been suggested for ordinary MIMO systems. But, 

these methods are not practical for Massive MIMO 

systems [8, 11, 12]. 

Linear detection algorithms such as zero-forcing (ZF) and 

minimum-mean-square-error (MMSE) receivers can 

achieve a close performance to that of optimal detector in 

massive MIMO systems, due to the asymptotic orthogonal 

channel property [2, 13, 14]. Therefore, linear detection 

algorithms can be employed in massive MIMO systems 

with a large number of antennas at the BS. Unfortunately, 

these methods are involved the inversion of  a matrix with 

the size of the number users, which it imposes a 

considerable computational cost at the receiver side, due to 

the large number of users [15]. 

Recently, different algorithms have been proposed to 

avoid calculating high-dimensional matrix inversion, for 

example: Gauss-Seidel (GS) [16], Joint Steepest Descent 

and Jacobi method (JSDJD) [17], Parallelizable 

Chebyshev Iteration (PCI) [18], Hybrid Iteration Method 

(HIM) [19], Neumann series (NS) [20-22]. But 
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performance of these methods is far away from the optimal 

detector performance [23, 24].  

 In this paper, a low complexity method has been 

proposed based on Gram Schmidt method. The proposed 

method avoids the direct computation of matrix inversion 

in MMSE detector. The numerical results verify that the 

proposed detector achieves the near-optimal performance 

of the MMSE detector with a significantly reduced 

computational complexity. Performance of the proposed 

method has been compared with GS, JSDJD, PCI and 

HIM methods. 

The rest of the paper is organized as follows. Section 2 

describes the system model of uplink multiuser massive 

MIMO system. In section 3 the proposed detector and 

convergence analysis are presented. Complexity analysis is 

shown in Section 4. In Section 5, the simulation results 

and discussions about the performance of the proposed 

algorithm are presented and finally the paper is concluded 

in Section 6. 

    Notation: Boldface capital letters and lowercase letters 

represent matrices and vectors, respectively.    denotes the 

    identity matrix;     ,       ,       and ‖ ‖denotes 

conjugate transposition, inversion, transposition and the 

Euclidean norm of a vector, respectively.      denote the 

set of all     complex matrices. 

2- System Model 

We consider uplink multiuser massive MIMO system 

with    single antenna users transmitting data to a base 

station with    antennas. The transmitted vector   

[           
]
 
 includes    data symbols that the elements 

of   come from the M-QAM constellation with average 

power   
  per symbol i.e.  {   }    

    
. The received 

vector at the BS can be represented by 

 

                        = +y Hx n                                              (1) 
 

Where          is the channel matrix between the BS 

and the    users, whose entries are modeled as 

independent and identically distributed (iid) complex 

Gaussian random variables with zero mean and unit 

variance, and   is a white Gaussian noise vector with zero 

mean and correlation matrix of      {   }       
 , where 

   is the variance of the noise. It is assumed that channel 

matrix is known perfectly at the BS, but it is unknown at 

the transmitter. 

The BS detects the transmitted symbols,  , knowing the 

received vector,    and the channel matrix,  . Since in 

massive MIMO systems the number of users,   , and the 

number of BS antennas ,   , may be in order of hundreds, 

detection methods which are conventionally used in 

typical (low scale) MIMO systems are not applicable in 

massive MIMO scenario.  

2-1- MMSE Detection 

The MMSE detector is a linear detector which minimizes 

the mean square error between the transmitted vector and 

its estimation. The MMSE estimation of the vector   can 

be denoted by [16] 

 

                   ̂  (    
  

  
    

)
  

                   (2) 

 

Where         is the output of matched filter and     

      
  

  
    

 is the MMSE filtering matrix. It is 

noteworthy that, the MMSE detection generally is not 

optimum, but it has been shown that its performance in 

massive MIMO systems, with a large number of antennas, 

is very close to optimum Maximum Likelihood (ML) 

detector [17]. 

 Since in massive MIMO systems, the dimension of 

matrix       
 is very large, the inversion of this matrix in 

(2) is very complex.  To avoid calculating the inversion of 

matrix  , which has the complexity of     
  , the 

solution of the following linear equation is found using 

iterative methods [25].  
 

                                                                               (3) 
  

When     ,   becomes diagonal dominant, which 

means |   |  ∑ |   |
  
        , where     is the element of 

the  th raw and the  th column of the matrix when the 

matrix   is diagonal dominant, some iterative methods can 

be used to solve (3) instead of using the direct matrix 

inversion. 

3- Proposed Detection Algorithm 

In this section, an iterative detector based on the Gram 

Schmidt method is proposed for detection of the 

transmitted symbols in massive MIMO systems. This 

method iteratively achieves the near-optimal performance 

of the MMSE detector without calculation the matrix 

inversion. 

The main advantage of this method is that it converges 

faster than the previously proposed methods such as NS 

[20], HIM [19],GS [16] and JSDJD [17]. In [26, 27] the 

well-known conjugate Gram Schmidt method has been 

used to solve an approximated solution of linear equations. 

We have used this method to solve (3) and to achieve 

estimation of transmitted symbols in massive MIMO 

systems.  The pseudo-code of the proposed algorithm has 

been shown in Algorithm 1. 

 

Algorithm 1: Proposed Detector 
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Input:  ,  ,    and    
  

 parameters:    ‘number of iterations’ 

Output: The final estimation of transmit symbols:  ̂    

 

initialization:  

1:       
  

  
 
   

  and   = diag( ) 

2:  ̂          ‘Initial Estimation’ 

3:        ̂   and       

Iteration: 

4:        

5:    
  
   

  
   

 

6:  ̂     ̂       

7:               

8:            ∑
    
   

  
   

 
       

9: if       break else go back to step 4 

10: return  ̂    

 

 

The proposed algorithm is initialized using steps 1, 2 

and 3. In these steps, the MMSE filtering matrix ,  , is 

calculated. Then in step 2 an estimation of vector   is 

calculated using the inversion of   instead of inversion of 

 : 
 

 ̂                                                (4) 
 

  is defined as a diagonal matrix which its diagonal 

elements is equal to the diagonal elements of the matrix  . 

Sine   is diagonal the calculation of its inversion in (4) is 

not complex. 

 As mentioned before in massive MIMO systems the 

matrix   is diagonal dominant, thus  ̂  is a good 

estimation for initialization of the algorithm. 

In the       th iteration, the estimated vector  ̂    is 

calculated by adding a vector in direction of    to the 

previous estimation  ̂ .  

 

                          ̂     ̂                                            (5) 

 

where  ̂  is the estimated vector after the  th iteration 

and    is search direction vector. The search directions    

is chosen such that the residual error      is minimized. To 

find the value of    , we use the fact that error in the       

th iteration should be orthogonal to    (  
       ) [27]. 

Since the error vector is unknown, in [27], the Gram 

Schmidt orthogonalization process is used to find the  -
orthogonal search direction vector   , where  -orthogonal 

is defined as follows: 

 

                           
                                                  (6) 

 

The interpretation of (6) is that each direction, after the 

multiplication by the matrix   is orthogonal to the 

direction vectors of the previous iterations.  

In [27] it has been shown that the search direction 

vector    is calculated by 

 

                                ∑    
   
                                    (7) 

 

which means that     is generated by  the subtraction of the 

previous directions    ,         from the residual vector   . 

In equation (7), the coefficients     (for    ) is defined by 

[27] 
 

                                
  
    

  
    

                                            (8) 

 

The coefficient    in (5) is calculated as [27] 
 

                            
  
   

  
    

                                                (9) 

 

3-1- Convergence analysis 

The convergence of the proposed Gram-Schmit based 

method depends on the condition number of matrix   [27]. 

The matrix   is Hermitian Positive Definite (HPD), and its 

condition number is defined as follows: 

 

                           
       

        
                                            (10) 

 

Where         and          are the largest and smallest 

eigenvalues of the matrix  , respectively. Suppose that the 

exact solution of the linear equation (3) is  ̂        , 

then it has been shown in [27] that 
 

                         ‖ ̂   ̂   ‖   (
√   

√   
)
 

‖ ̂   ̂ ‖         (11) 

 

Fig. 1 Comparison between the simulation and analytical estimation error 

versus the number of iterations with        and      . 
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Fig. 2 Comparison between the simulation and analytical estimation error 

versus   
  

  
 with     (3 iterations). 

 

Where  ̂  is the initial estimation obtained by (4). 

Therefore, after   iterations, the error,      satisfies the 

following inequality 
 

                         ‖    ‖   (
√   

√   
)
 

‖  ‖                      (12) 

 

If  (
√   

√   
)    then based on (12), the error is decreased 

after each iteration and the algorithm converges.  

In massive MIMO systems the largest and smallest 

eigenvalues of  matrix   can be approximated by [8] 
 

 

                                   (  
 

√ 
)
 

                      (13) 

and  

                                   (  
 

√ 
)
 

                       (14) 

Where   
  

  
.  

Using (13) and (14), the estimation error can be obtained 

as shown in Lemma 1. 

Lemma 1. In large-Scale MIMO systems, the estimation 

error generated by a detector based on Gram Schmidt 

method at the  -th iteration can be obtained by  

 

                         ‖    ‖   (
  

  
)
   

‖  ‖                       (15) 

 

Proof: Substituting the equation (13) and (14) into the 

equation (10) can be rewritten as follows: 

 

                           
(  √ )

 

(  √ )
                                            (16) 

 

By applying (16) in the equation (12), the inequality (15) 

is simply derived. 

As can be seen from (15), the error is exponentially 

decreased when   is increased if      . The rate of the 

convergence depends on  . The convergence rate depends 

on the ratio between the number of users and number of 

BS antennas.  

Fig. 1. shows comparison between the simulation result 

and analysis of the estimation error versus the number of 

iterations for        and      . From this figure, it 

can be seen that the analytical error is very close to 

simulation error especially when the number of iterations 

increases. In Fig. 2, the comparison between the 

simulation and analysis of the estimation error versus   

has been repeated, while the number of iterations is 

assumed to be 3. As can be seen, the distance between the 

simulation and analytical results is negligible especially 

when   increases. 

4- Complexity Analysis 

The computational complexity of this method can be 

analyzed with respect to the number of multiplications. It 

has been assumed that the complexity of division 

operation is the same as the multiplication. In this section, 

the order of complexity is calculated for proposed method 

and alternative methods. In the proposed method, we first 

calculate  ,    and  ̂  in steps 1 , 2 and 3 of Algorithm 1 

which has the order of complexity of      
   

multiplications. The number of required multiplications for 

  iterations of the Gram Schmidt method is     
  

                 [27]. Therefore, the total  

complexity for the proposed algorithm is      
   . The 

proposed method requires a similar number of 

multiplications compared to the JSDJD  and GS methods  

in the same number iterations [16, 17], while the 

complexity of MMSE method is      
  . Thus the 

proposed algorithm has lower complexity than the MMSE 

algorithm. Since    is usually large for large-scale MIMO 

systems, it can be observed that the proposed algorithm 

can evidently reduce the complexity, which it means that 

the proposed algorithm is suitable for large-scale MIMO 

systems. As mentioned before, the complexity order of the 

proposed method and other methods is      
  , but as it 

will be shown in simulations the proposed method 

converges in lower number of iterations than that of other 

methods. 

5- Simulation Result 

In this section, performance of the proposed detector in 

massive MIMO system with 64-QAM and 16-QAM 

modulations have been evaluated. It is also assumed in all 

detection methods that the receiver knows the channel 

matrix completely. 
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Fig. 3 Normalized estimation error versus the number of iterations for 
different algorithms at SNR = 15 dB with 64-QAM modulation for 

       and      . 
 
 

Fig.3. shows error of different detection methods versus 

number of iterations for 64-QAM modulation, when SNR 

is 15dB with        and      . The normalized error 

has been defined by 

 

                            
‖    ‖

‖ ‖
                                         (17) 

 

Where ‖  ‖  is the output of each method and   is the 

exact vector of transmitted symbols. 

As can be seen, since the number of  BS antennas is 

more than the number of users, all methods converge to 

the estimation error of the original MMSE detector in a 

few number of iterations. 

In Fig. 4. simulations have been repeated for        
and      . As it can be seen form this figure, when the  

 
 

Fig. 4 Normalized estimation error versus the number of iterations for 

different algorithms at SNR = 15 dB with 64-QAM modulation for 

       and      . 

 
Fig. 5 Normalized estimation error versus the number of iterations for 
different algorithms at SNR = 15 dB with 64-QAM modulation for 

       and       . 
 

 

number of users increases, the JSDJD algorithm can not 

converge and performances of PCI method and HIM 

method are degraded. The PCI and HIM converge to the 

original MMSE detector after 10 and 18 iterations, 

respectively while our proposed and GS converge faster 

than PCI and HIM methods. 

Fig. 5. Shows error of different detection methods 

versus number of iterations with        and       . 

In this case, the JSDJD and PCI algorithms do not 

converge and performance of Gauss-Seidel and HIM 

methods are not enough close to that of MMSE detector 

after even 20 iterations, while performance of proposed 

method is very close to the MMSE detector after only 10 

iterations. 

 

 

 
 
Fig. 6 BER performance comparison between the proposed and other 

methods in the uplink massive MMO for 64-QAM modulation for 

       and        with      (15 iterations). 
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In summary, performance of the Gauss-Seidel, JSDJD, 

HIM and PCI methods are degraded when the number of 

users becomes comparable with the number of BS 

antennas. Even JSDJD and PCI methods do not converge, 

when the number of users is close to the number of BS 

antennas. Unlike these methods, the normalized error of 

the proposed algorithm converges to that of MMSE 

detector after a few number of  iterations, even when the 

number of users is close to the number of  BS antennas. 

Fig. 6 shows BER of different detection methods versus 

SNR for 64-QAM modulation. In this figure, the number 

of base station antennas and the number of single-antenna 

users are considered to be        and       . As it 

can be seen form this figure, the proposed method has a 

very close BER to that of original MMSE detector while 

the  performances of Gauss-Seidel, HIM and PCI methods  

are not enough close to that of MMSE detector. It should 

be noted that, the JSDJD method does not converge at all 

and its BER is 1/2. As can be seen, the proposed method 

has about 5dB and 6dB performance improvement 

compared with HIM and Gauss–Seidel algorithms, 

respectively. In the following, all simulations have been 

repeated for 16-QAM modulation. 

Fig.7. shows normalized error of different detection 

methods versus number of iterations for 16-QAM 

modulation when SNR is 15dB with        and 

     . As it can be seen form this figure, the JSDJD 

algorithm can not converge to the estimation error of the 

original MMSE detector. 

The HIM and Gauss-Seidel methods converge to the 

original MMSE detector after 17 and 11 iterations, 

respectively. Also, performance of PCI method is not 

enough close to that of MMSE detector after 20 iterations, 

while performance of proposed method is very close to the 

MMSE detector after only 9 iterations. 

 
 

Fig. 7 Normalized estimation error versus the number of iterations for 

different algorithms at SNR = 15 dB with 16-QAM modulation for 

       and      . 

 
 

Fig. 8 Normalized estimation error versus the number of iterations for 
different algorithms at SNR = 15 dB with 16-QAM modulation for 

       and       . 

 

In Fig. 8 simulations have been repeated for        

and       . In this case, the JSDJD and PCI algorithms 

do not converge to the normalized error of the original 

MMSE detector and performance of Gauss-Seidel method 

is not enough close to that of MMSE detector after 20 

iterations, while performance of proposed method is very 

close to the MMSE detector after only 10 iterations. Also, 

performance of HIM method is not enough close to that of 

MMSE detector even after 20 iterations. 

As it can be seen form this figure, when the number of 

users increases, the JSDJD algorithm can not converge to 

the estimation error of the original MMSE detector and 

performance of PCI method and HIM method are 

degraded. The PCI and HIM converge to the original 

MMSE detector after 10 and 18 iterations, respectively. 

 

 
 

Fig. 9 BER performance comparison between the proposed and other 

methods in the uplink massive MMO for 16-QAM modulation for 

       and        with      (15 iterations). 
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Fig. 9 shows BER of different detection methods versus 

SNR for 16-QAM modulation. In this figure, the number 

of base station antennas and the number of single-antenna 

users are considered to be        and       . As it 

can be seen form this figure, the proposed method is able 

to converge to the performance of the original MMSE 

detector, while the performances of Gauss-Seidel, HIM 

and PCI methods are not enough close to that of MMSE 

detector. It should be noted that, the JSDJD method does 

not converge and its BER is 1/2. As can be seen, the 

proposed method has about 5dB and 6dB performance 

improvement compared with HIM and Gauss–Seidel 

algorithms, respectively. 

It was demonstrated that the proposed method always 

converges to the original MMSE detector even when the 

number of users is very close to the number of BS 

antennas. But the propose method has a disadvantage. The 

main disadvantage is that when the number of users is 

close to the number of BS antennas (it is sometimes called 

loaded scenario), the proposed algorithm needs a high 

number of iterations to converge. This leads to the increase 

of the complexity. In future works, we try to modify the 

proposed method to accelerate its convergence in loaded 

scenario.  

6- Conclusions 

In this paper, a novel low complexity iterative detection 

algorithm for multiuser massive MIMO uplink detection 

without complicated matrix inversion was proposed. It was 

shown that the proposed method always converges to the 

original MMSE detector even when the number of users is 

very close to the number of BS antennas and its 

performance is very close to the original near optimum 

MMSE detector. 
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