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Abstract 
This paper proposes a power allocation method based on particle swarm optimization (PSO) to enhance spectrum sensing 

performance in downlink Non Orthogonal Multiple Access (NOMA) systems employing high-order Quadrature Amplitude 

modulation (QAM) modulation for beyond 5G networks. By intelligently adjusting user power levels, the proposed approach 

significantly improves detection reliability while maintaining stringent false alarm constraints, even under challenging low-

SNR conditions. The goal is to enhance spectrum sensing performance by maximizing the probability of detection (Pd) while 

maintaining a constrained probability of false alarm (Pf). Cyclostationary Feature Detection (CFD) and Matched Filter 

Detection (MFD) techniques are applied to evaluate detection performance under varying Signal to noise ratio (SNR) 

conditions. Simulation results demonstrate that the optimized framework not only strengthens detection performance 

particularly for high order QAM but also enhances overall system responsiveness.  Also CFD surpasses MFD in higher SNR 

scenarios due to its ability to exploit cyclic features of modulated signals, which are preserved even in moderately noisy 

environments. The integration of PSO further enhances system performance, offering a practical and scalable solution for 

next-generation Internet of Things (IoT)-enabled spectrum sharing environments. 

 

Keywords: Non Orthogonal Multiple Access (NOMA); Matched Filter Detection (MFD); CFD, PSO; Cognitive Radio 

Networks (CRN); Next Generation Networks (NGN).

1- Introduction 

The increase in the number of connected devices and the 

rapid expansion of wireless services are creating an 

unprecedented need for spectral resources, pushing 

networks toward the capabilities envisioned for beyond 

5G and 6G systems [1]. Because cognitive radio (CR) 

technology allows for dynamic spectrum access and 

opportunistic usage of unused frequency bands, it has 

become a key paradigm to solve spectrum shortages [2]. 

NOMA has simultaneously become well-known as a 

crucial method for enhancing spectral efficiency and 

facilitating huge connections [3-4]. CR employs three 

primary sensing methods to detect available spectrum: 

Energy Detection (ED), Matched Filter Detection (MFD), 

and Cyclostationary Feature Detection (CFD). It has been 

found in recent surveys that over 75% of spectrum is 

wasteful [4]. Therefore, it is crucial to make use of 

unutilized spectrum. Primary users (PUs) possessing 

license do not always use the allocated spectrum, causing 

spectrum to be wasted. Assigning spectrum to unlicensed 

users, frequently referred to as secondary users or SU, is 

one method of increasing spectrum utilization when PUs 

are discovered to be inactive [5]. Simultaneously, the 

spectrum ought to be redistributed to the PUs whenever 

they choose to utilize it, without affecting the SU’s 

performance [6]. This implies that SUs should use the 

spectrum whether or not PUs are present. There is great 

potential for attaining high data rates and effective 

spectrum usage when CR and NOMA are combined, 

especially when using high order modulation techniques 

like 64-QAM and 256-QAM [7-8]. These benefits, 

however, come at the expense of more complicated 

spectrum sensing and a greater susceptibility to fading and 

noise, particularly in the low signal-to-noise ratio (SNR) 

conditions typical of CR situations [9]. For secondary 

users to operate dependably in shared spectrum scenarios 

and to prevent detrimental interference with primary 

users, accurate spectrum sensing is necessary [10]. This 

study addresses the central question of whether an 

intelligent power allocation strategy can enhance 

spectrum sensing performance in CR-enabled NOMA 

systems while maintaining strict constraints on false alarm 

rates. We hypothesize that a Particle Swarm Optimization 

(PSO)-based approach can dynamically allocate user 

power in a manner that maximizes detection probability, 
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reduces sensing time, and maintains efficient spectrum 

utilization even under challenging conditions. 

Conventional sensing techniques, including CFD and 

MFD, often exhibit degraded performance in low SNR 

conditions, particularly when dealing with high-order 

modulations [11-12]. Moreover, many existing studies 

focus solely on detection algorithms without considering 

adaptive resource allocation as part of the sensing 

framework. Our work bridges this gap by integrating 

PSO-based power optimization into the CR-NOMA 

sensing process, offering a holistic solution that jointly 

considers sensing accuracy and power efficiency. This 

represents a substantial contribution toward enabling 

practical, robust CR-NOMA implementations. The 

motivation for this research lies in the growing demand 

for agile and energy-efficient spectrum sharing techniques 

capable of supporting high-throughput applications, 

Internet of Things (IoT) deployments, and massive 

machine-type communications. By optimizing power 

allocation, we aim to achieve reliable detection 

performance without excessive sensing overhead, paving 

the way for practical deployment of cognitive radio 

systems in next-generation networks. Motivated by the 

need for improved detection in noisy NOMA-QAM 

environments, this work proposes a PSO-based power 

allocation framework to enhance spectrum sensing 

performance. Key contributions include: 

 

(i) Development of a PSO-optimized power allocation 

scheme for NOMA systems with high-order QAM to 

boost detection accuracy. 

(ii) Comparative analysis of CFD and MFD for QAM-64 

and QAM-256 modulation schemes. 

(iii) Simulation results showing up to 47.91% 

improvement in detection probability (Pd) over 

conventional MFD, validating the approach in challenging 

noise conditions. 

This is how the rest of the paper is structured. Relevant 

literature related to NOMA, QAM, MFD, CFD and PSO 

is given in Section 2. The system model and the suggested 

PSO-based optimization methodology are covered in 

depth in Section 3. Simulation data, performance 

comparisons, and information on the efficacy of the 

suggested strategy are presented in Section 4. The paper's 

conclusion and some future study directions are covered 

in Section 5 and 6. 

2-  Literature review 

Lately, a number of research on spectrum 

sensing techniques using NOMA have 
demonstrated potential in fulfilling the spectrum needs of 

several 5G applications. 5G mobile communications are 

about to become worldwide. For an OFDM system, cyclic 

prefix detection was proposed by Arun et al. [13]. The 

recommended method's demand for previous knowledge 

from the principal user is one of its key drawbacks. The 

energy detection method of SS for OFDM system was 

implemented by the authors [14]. The simulation results 

show that while OFDM without CP performs better 

towards Pf, OFDM system consisting of CP shows 

improved throughput performance. Recent studies further 

extended the applicability of NOMA-based cognitive 

systems [21-22]. Recent advancements in spectrum 

sharing and NOMA integration have focused on 

intelligent resource allocation and IRS-assisted systems to 

enhance performance in Beyond 5G networks [25-26]. 

Additionally, Bala Kumar and Nanda Kumar [28] 

explored block chain-enabled cooperative spectrum 

sensing in MIMO-NOMA CRNs for improved security 

and sensing accuracy. For instance, Salameh et al. [29] 

feature-based spectrum sensing to adaptively detect 

primary user signals in fading channels without requiring 

a fixed detection threshold while Zhai et al. [30] proposed 

a joint optimization scheme combining active IRS and 

multicluster NOMA to improve spectral efficiency. These 

works underscore a growing trend toward intelligent, 

adaptive spectrum management strategies. However, most 

of these approaches either focus on physical-layer 

improvements or overlook sensing complexity under 

high-order modulation and low-SNR conditions. In 

contrast, this study addresses the need for efficient 

spectrum sensing by integrating PSO-based power 

allocation with advanced detection techniques in high-

QAM NOMA-CR systems. Detailed literature specifically 

for NOMA-QAM systems is given in Table 1. 
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Table 1 :- Literature Review relevant to proposed Work 

S.No Reference Year Aim Findings 

1 [15] 2010 Implement and examine a MIMO-OFDM system 
Implementation and analysis done 

using MATLAB simulations 

3 [4] 2019 Enhance sensor performance at low SNR 
3 dB gain with optimized NOMA 

over O-NOMA 

4 [1] 2019 
Explore advanced spectral efficiency techniques in CRNs 

using NOMA and 5G signals. 

NOMA-CRN outperforms 

conventional CR in spectrum 

efficiency 

5 [3] 2020 
To Integrate NOMA into CR networks to enhance spectrum 

efficiency and accommodate large number of users 

High SE and large user support 

shown in CR scenarios 

6 [22] 2021 Use NOMA to efficiently utilize the spectrum 

Allows SU to use several PU 

types with and without 

interference 

7 [24] 2021 
To Assess the effectiveness of NOMA in uplink 
communications using fixed power coefficients. 

Weak user power boost improves 

performance, especially at low 

SNRs 

8 [27] 2021 Apply Swarm Intelligence to address future network issues 
SI types classified; challenges and 

research opportunities discussed 

9 [26] 2022 Detailed review of 5G waveforms using sensing methods 

Cyclostationary methods show 2 

dB advantage over traditional 
techniques 

10 [28] 2024 

Introduce block chain-enabled cooperative 

spectrum sensing for 5G/B5G CR using 

massive MIMO-NOMA 

 

Demonstrated enhanced security 

and reliability in spectrum sensing 
using decentralized block chain 

mechanisms in MIMO-NOMA 

CRNs. 

11 [29] 2025 

Machine learning-driven, feature-based spectrum sensing 

approach to improve NOMA signal detection in dynamic IoT 
networks operating under fading channels. 

Method Employs feature-based 

spectrum sensing to adaptively 

detect primary user signals in 
fading channels without requiring 

a fixed detection threshold. 

2-1- Research Gap and Motivation 

Despite the extensive efforts to enhance spectrum 

efficiency using CR and NOMA techniques, several 

challenges remain unaddressed. Most of the prior works 

focus on static or suboptimal power allocation strategies, 

often overlooking the impact of dynamic power tuning 

under high-order modulation schemes. Furthermore, few 

studies have explored the integration of advanced 

optimization algorithms such as swarm intelligence for 

real-time adaptation in CR-NOMA environments under 

low-SNR conditions. Additionally, limited work has been 

done to jointly optimize sensing accuracy and power 

distribution while accounting for false alarm constraints in 

high-QAM signal environments. As a result, a critical gap 

persists in developing unified frameworks that can 

adaptively optimize both detection performance and 

spectral efficiency in practical CR scenarios. Motivated 

by this gap, the present study proposes a novel power 

allocation framework based on Particle Swarm 

Optimization (PSO), tailored for CR-enabled NOMA 

systems operating under high-order QAM. The approach 

aims to achieve enhanced sensing accuracy, reduced false 

alarm rates, and optimized throughput, all while 

maintaining practical feasibility for next-generation 

wireless systems. 

3- Proposed System Model 

This work investigates a downlink NOMA-based 

communication system utilizing QAM modulation for 

Beyond 5G scenarios. Multiple users are multiplexed in 

the power domain and served concurrently over a shared 

channel. Power levels for each user are dynamically 

allocated using Particle Swarm Optimization (PSO) to 

enhance overall detection performance while maintaining 

user fairness. At the receiver, spectrum sensing is carried 

out using both CFD and MFD, with performance 

evaluated across different SNR values for QAM-64 and 

QAM-256 schemes. The PSO algorithm optimizes power 

allocation by maximizing the Pd under a constraint on the 

Pf ≤ 0.5. These methods help the CR identify when the 

spectrum is idle based on two hypotheses: H1(primary 

user presence) and H0(absence of a primary user). 
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Table 2.Comparison between traditional and proposed sensing technique 

 

{
𝐻0                          ∶ Xj(t) = Nj(t)

H1: Xj(t) = hjS(t) + Nj(t),   j =  1, … … … . Nu
}  (1) 

The fitness function is defined as:  

 F(P) =  𝑃𝑑(P) − λ. max (0, 𝑃𝑓(P) − 0.5)              (2) 

where P  is the power allocation vector, lambda  is a 

penalty factor, and  Pd(P) and Pf(P) are computed based on 

the NOMA-QAM system model. Although PSO is a 

widely established optimization technique, its 

characteristics make it particularly suitable for power 

allocation in dynamic CR-NOMA environments. PSO 

efficiently handles multi-objective, non-convex 

optimization problems without requiring gradient 

information, which is especially important under real-

time, non-linear, and noisy conditions typical of cognitive 

radio systems. Moreover, PSO’s low computational cost 

and adaptability enable quick convergence in 

environments where SNR and user demands fluctuate. 

This makes PSO a practical and effective choice for 

simultaneously optimizing detection probability and 

power distribution in high-QAM scenarios. The novelty 

of this work lies in embedding PSO within a joint 

spectrum sensing and power allocation framework, where 

the optimization process is directly influenced by 

detection metrics (Pd and Pf). This unique application is 

further distinguished by its evaluation under high-QAM 

and CFD/MFD trade-offs. Comparison of proposed model 

with benchmarking techniques is given in Table 2.  

3-1- Matched Filter Detection 

The MFD technique evaluates whether primary users are 

present by comparing the detected signal with a reference 

signal. The next step involves comparing the output with 

a dynamic threshold. It is extremely effective in low SNR 

since it optimizes SNR in presence of AWGN. The 

formula for the test statistic is TMF = ∑y (n)*x (n). The 

PU signal in this case is represented by (𝑥), the SU signal 

by (𝑛), and the test parameter for MFD is TMF. It then 

compares a threshold with the test statistics (TMF) to 

ascertain availability of spectrum. The signal received 

from Secondary and Primary user are roughly modeled as 

random Gaussian variables as depicted in fig. (1). 

 

Figure 1.  Block diagram for NOMA MFD 

3-2- Cyclostationary Feature Detection 

CFD is amongst the most significant technique for 

advanced as it is able to identify the spectrum at low SNR 

without the impact of noise. It uses signal's periodicity 

features as it calculates mean and autocorrelation of the 

signal. The spectrum correlation density functions and 

cyclic autocorrelation are useful in order to estimate the 

CS signals. The initial stage in CS is to use a number of 

procedures, including filtering, encoding, and sampling, 

to convert the signal into second-order CS. 

   {y(+)} =  {y (t + to)}                            (3) 
    The (𝑟) is represented as cyclic auto-correlation 

function at: 

    βγ =  {M/To}                                         (4) 

 

 

S. No. Spectrum Sensing 

Technique 

Remarks 

1 Conventional Energy 

Detection 

Simple to implement with low computational complexity. 

Poor performance at low SNR (Pd = 0 at SNR < -12 dB). 

Susceptible to interference be- tween PUs and SUs. 

2 Conventional CFD  Robust detection at low SNR (Requires prior knowledge of signal periodicity). 

Moderate computational complexity due to autocorrelation. 

3 Conventional MFD Effective at low SNR (Pd = 0.19 at SNR = 4 dB for QAM-256). 

Requires prior knowledge of PU signal. 

SUs can only use spectrum in absence of PUs. 

4 Proposed Optimized MFD 

& CFD 

 

 

High Pd (0.83 at Pf = 0.5 for QAM-256, 47.91% improvement over MFD). 

Robust at low SNR (Pd = 0.79 at SNR = -5 dB).  

Increased computational complexity due to PSO optimization. 
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Figure 2.  Block diagram for NOMA CFD 

 

In a NOMA system, each subcarrier's power spectrum 

density (PSD) can be characterized. For n-th subcarrier, 

PSD can be represented as: 

𝜑𝑛(𝑓) = 𝑃𝑛𝑇𝑠 (
𝑆𝑖𝑛𝜋𝑓𝑇𝑠

𝜋𝑓𝑇𝑠
)

2

                         (5)                                                         

where, Ts stands for the symbol duration, φ is the PSD of 

the next subcarrier, and Pn is transmit power that is 

released by preceding subcarrier. A possible technique to 

represent CFD using NOMA is as 

 𝜑𝑛(𝑓) = |𝐻𝑛(𝑓)|2                                (6)  

The prototype filter's frequency spectrum with coefficient 

h[n] and n = 0, 1... W-1 is represented as Hn(f) [6]. An 

example of a frequency response's source is:  

|Hn(f)|=h [
W

2
] +2 ∑ h [(

W

2
)  1] cos(2∏r)  

W

2
-1

i=1

      (7) 

 The following formula determines the phase angle: 

Ph(u) = [sou, s1u, s2u … …  sl − 1u]  (8)                                                                                                                                                   

for u=1, 2...U 

sj(u) = exp (jɵ0
(𝑢)

)                                                 (9) 

j=0, 1, L-1, and where jɵ0
(𝑢)

  denotes random phase angle. 

So the representation of NOMA symbol can be shown as:  

𝑌𝑘 = [𝑌𝑘,0, 𝑌𝑘,1 … … … … … … … … 𝑌𝑘,𝑙−1] (10)                                                                                      

 The phase angle is applied to the NOMA symbols as 

follows: 

𝑌𝑘
(𝑣) = 𝑝(𝑢)  ∗ 𝑌𝑘                                         (11) 

yu(t)= ∑ ∑ X
k

'
,I

(Umin)
h(t-

K'T

2

k-1

K'=0

L-1
I=0 ))e

j2∏It

T ejɵK'I+ ∑ dk,I
(u)

h(t-L-1
I=0

KT

2
))e

j2∏It

T ejɵK'I                                          (12) 

Lastly, the following represents the received NOMA 

signal: 

Y’(t)=∑ 𝑋
𝑘′,𝑙

(𝑈𝑚𝑖𝑛)
𝑒𝑗ɵ𝑘,𝐼𝐾−1

𝑘=0 ℎ(𝑡 − 𝑘𝑅0)         (13) 

We can infer from Eq. (13) that the NOMA - CR system 

is capacious than traditional OFDM system. The block 

diagram of the recommended technique is displayed in 

Fig. 2. A sequential generation process generates a 

random parallel symbol. IFFT is used to examine the 

signal in the time domain, and once it has been transmitted 

across a Rayleigh channel, SC permits many users to use 

the sub-channel. The receiver uses SIC to decode the time 

domain signal and FFT to translate it to the frequency 

domain. In the end, a threshold is determined and if 

received symbol's energy exceeds the threshold value, 

identification will occur; otherwise, no detection will be 

taken into account. 
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Figure 3.  Flowchart of MFD and CFD Technique using PSO  

 

4- Simulation Parameters and Performance 

analysis.                    

 

In an effort to implement the suggested algorithm shown in 

Fig.  3 MATLAB 2022 is used. Table 3. depicts the 

simulation parameters for optimizing and analyzing NOMA 

QAM CFD and MFD using PSO. Simulation results of 

matched filter spectrum sensing method and 

Cyclostationary feature detection based on NOMA are used 

to comprehensively examine the results. This study 

determines the threshold value at the NOMA system's 

receiver end.  

 
               

 

 

 

Table 3. Simulation Parameters 

 

 

 

 

 

 

 

 

 

 

 
It is based on the idea that only detection will be presumed 

if the signal received equals or exceeds the threshold value; 

otherwise, no detection will be inferred. When assessing the 

effectiveness of MFD and CFD, a constant threshold value 

is taken into account because a changing threshold can 

deteriorate the efficiency of spectrum sensing methods. To 

Parameters Description Values 

f frequency 16 MHz 

M QAM order 64,256 

BW Bandwidth 30 MHz 

N Number of users 50 

n Population size 100 

SNR Signal to noise ratio -20dBto 5 dB 

k FFT Size 1024 
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investigate the role of thresholds in MFD and CFD 

identification, QAM-64 and QAM-256 transmission 

systems with 64 and 256 sub-carries were used. Table 4 and 

Figure 4 display the Pd for various Pf values. Pf indicates the 

false representation of noise as a desired signal.  SNR = 10 

dB was fixed in the current simulation to analyze the 

effectiveness of MFD & CFD strategy for NOMA. It is seen 

from fig.4 and table 4 that NOMA M-256 Pd is higher than 

M-64. So it is inferred that NOMA-QAM-MFD 256 Pd is    

better than QAM-64 as shown in fig (4).   

Figure 4: Pd Vs Pf for M-QAM MFD 
    

Table 4:  NOMA-QAM MFD Pd vs Pf result 

 
Pf/Pd 

(MFD) 
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1 

NOMA 

M-256 
0 0 0 0.07 0.14 0.27 0.47 0.76 1 

NOMA 

M-64 
0 0 0 0.05 0.09 0.18 0.33 0.56 1 

 

 

     
Figure.5. Pd Vs Pf for CFD for M-QAM. 

       

Table 5: Pd vs Pf for NOMA-QAM using CFD 

 
Table 5 and Figure 5 shows the Pd vs Pf values for M-QAM 

CFD. A comparative analysis demonstrates the clear 

advantage of the proposed NOMA-CFD approach over 

MFD. At Pf = 0.5 and SNR = 10 dB, CFD with QAM-256 

achieves a Pd of 0.76, outperforming both QAM-64 (Pd = 

0.68) and MFD, with an observed 44.28% improvement in 

detection probability. Across the full range of Pf values, 

CFD consistently maintains higher Pd, indicating superior 

sensing reliability and robustness to false alarms compared 

to conventional techniques. 

 

Figure 6. Plot for MFD Pd against SNR. 

 
Table 6.  Pd against SNR for MFD in NOMA-QAM 

SNR/Pd 

(MFD) 
-

20 
-

16 
-12 -8 -4 0 4 8 12 16 

NOMA 

M-256  
0 0 0 0 0.19 0.965 1 1 1 1 

NOMA 

M-64 
0 0 0.004 0.02 0.14 0.66 1 1 1 1 

 

The Pd is displayed as a function of SNR in Table 6 and 

Fig.6. We do analysis and simulations across a variety of 

SNR values (10 dB to 20 dB) for MFD. For QAM-64 & 

256, 100% Probability of detection (Pd) is achieved at 4 dB 

and 6 dB, respectively. Therefore, QAM-Pd can be 

considered better than QAM-256. For instance, at SNR = –

10 dB, MFD yields a Pd of 0.56 (QAM-256), while CFD 

fails to detect (Pd ≈ 0). However, at SNR = 4 dB, CFD 

rapidly improves to Pd = 1.0, outperforming MFD’s Pd of 

Pf /Pd 

(CFD) 

0.01  0.11 0.22 0.28 0.33 0.39 0.44 0.50 

NOMA 

QAM-

256 

0.22  0.46 0.59 0.61 0.66 0.69 0.73 0.76 

NOMA 

QAM-

64 

0.12  0.32 0.45 0.51 0.56 0.60 0.65 0.68 
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0.97. This demonstrates CFD’s steeper gain in detection 

performance once the SNR threshold is crossed. 

Table 6 and Figure 6 shows the Pd for various Pf values. 

SNR = 10 dB was fixed in the current simulation to measure 

the effectiveness of the CFD strategy for NOMA. It is seen 

that for NOMA QAM CFD Pd value is 0.76 for Pf of 0.50 

as compared to 0.68 Pd value for NOMA QAM-64. Also  

 
Table7.Pd vs SNR for NOMA-QAM with CFD. 

SNR(dB)/P

d 
-25 -20 -15 -10  -5 0 +5 

NOMA 

QAM-256 
0.1

1 
0.1

6 
0.3

3 
0.5

6 
 0.7

9 
0.9

7 
1 

NOMA 

QAM-64 
0.1

0 
0.1

5 
0.3

0 
0.5

0 
 0.7

4 
0.9

1 
0.9

8 

 
Table 8. BER vs SNR of NOMA-QAM MFD & CFD 

Pf /Pd 0.0

1 
0.0

6 
0.1 0.1

5 
0.2 0.2

5 
0.3 0.4 0.5

0 
Optimiz

ed Pd of 

MFD 

0.3

3 
0.3

7 
0.3

9 
0.4

0 
0.4

2 
0.4

3 
0.4

5 
0.4

7 
0.4

9 

Optimiz

ed Pd of 

CFD 

0.5
1 

0.5
9 

0.6
3 

0.7
0 

0.7
3 

0.7
5 

0.7
9 

0.8
1 

0.8
3 

results improve by 44.28% when compared with MFD 

technique. The figure illustrates that NOMA-QAM-256 Pd 

is better than QAM-64. Also it is clear from results that 

NOMA-CFD outperforms the results of MFD. 

Figure.7. Pd Vs SNR for CFD. 

The table 7 and Fig. 7 depicts results of Pd vs SNR of 

NOMA-QAM CFD. We examine and model Pd throughout 

a spectrum of SNR ranging from -25 to 5dB. From obtained 

results it is evident that at 0 dB and 5dB in the case of QAM-

64 and QAM-256, Pd reaches an ideal value of 100%.Thus, 

it may be said that QAM- 64 Pd is superior to QAM-

256's.The superior low-SNR performance of MFD is due to 

its reliance on known signal templates. In contrast, CFD 

requires stronger signals to detect Cyclostationary features 

but eventually surpasses MFD in higher-SNR regions, 

making it better suited for mid-to-high-SNR cognitive 

environments. 

 

 
Figure 8. BER vs SNR of NOMA-QAM MFD & CFD 

 

As SNR increases, the BER lowers, as Fig. 8 and Table 8 

demonstrate. For M-256, a BER of 0.309 is obtained at 6 

dB using the MFD technique and 0.212 at 12 dB using the 

CFD technique. Matched Filter Detection MFD 

consistently achieves lower BER compared to CFD across 

all SNR levels due to its reliance on known signal patterns. 

CFD shows limited improvement at low SNR but performs 

better as SNR increases beyond 10 dB. Overall, MFD is 

more reliable for low-SNR environments, while CFD 

requires stronger signals to reduce errors. 

Figure 8 reinforces these findings, showing that MFD 

achieves a BER of 0.309 at 6 dB, while CFD only achieves 

0.212 at 12 dB. This indicates that while MFD offers lower 

BER in noisy environments, CFD benefits more from clean 

conditions. As observed in Tables 5 and 7, Pd increases with 

SNR for both MFD and CFD. Notably, MFD achieves a Pd 

of 0.97 at 0 dB for QAM-256, while CFD reaches similar 

performance only at higher SNR levels (>4 dB). This 

indicates that MFD is more suitable for low-SNR 

environments due to its coherent detection mechanism. 
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Figure 9. Optimized Pd using MFD and CFD using PSO 

 
Table 9.  Pf against optimized Pd using PSO for CFD in NOMA-QAM 

BER 

of 

CFD 0.484 0.491 0.493 0.495 0.496 0.312 0.212 
BER 

of 

MFD 0.39 0.37 0.339 0.309 0.272 0.237 0.199 
SNR 0 2 4 6 8 10 12 

 
Table 9 and Fig. 9 shows PSO-optimized Pd vs Pf plot using 

PSO in MFD and CFD technique. Results improved and 

high value of Pd was achieved for lesser Pf values showing 

improved detection performance (Pd of 0.75) at reduced 

false alarm rates (Pf of 0.33). At Pf = 0.3, PSO-optimized 

CFD achieves Pd = 0.79, which translates to a 35% increase 

in successful PU detection compared to MFD. This is 

critical in CR-IoT applications where minimizing missed 

detection reduces interference and improves network 

reliability. CFD surpasses MFD in higher SNR scenarios 

due to its ability to exploit cyclic features of modulated 

signals, which are preserved even in moderately noisy 

environments. The integration of PSO further enhances 

detection performance by adaptively selecting parameters 

that maximize Pd under false alarm constraints. Despite its 

superior performance, CFD exhibits higher computational 

complexity compared to MFD, making it less suitable for 

real-time or resource-constrained IoT nodes. Additionally, 

PSO   requires tuning and incurs optimization overhead, 

which may limit deployment in ultra-low-latency scenarios. 

5- Conclusion 

 This study introduces a PSO-optimized power allocation 

framework for NOMA-QAM systems in cognitive radio 

environments, targeting enhanced detection using CFD and 

MFD techniques. The proposed model significantly 

improves detection performance, particularly for high-order 

modulation schemes like QAM-256, achieving up to 

47.91% gain in Pd over traditional MFD approaches. CFD 

demonstrates superior robustness at low SNR and reduced 

sensing time when optimized via PSO. These improvements 

contribute to more reliable and energy-efficient spectrum 

access, addressing the demands of IoT-enabled Beyond 5G 

networks. Future work will explore integration with IRS-

assisted channels and deep learning-based sensing 

optimization for dynamic environments. 

6- Future Research Directions 

Future research can extend the proposed PSO-based power 

allocation framework to support advanced modulation 

schemes like OFDM and OTFS. Incorporating adaptive 

sensing techniques, such as machine learning-based 

threshold selection or reinforcement learning, may further 

enhance detection in dynamic environments. Additionally, 

integrating Intelligent Reflecting Surfaces (IRS) to improve 

signal quality and spectral efficiency, especially in 

obstructed scenarios, is a promising direction. Finally, 

validating the system's scalability in large-scale IoT 

deployments and testing it on real-world platforms would 

strengthen its practical relevance. 
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