• OpenAccess
    • List of Articles Radio

      • Open Access Article

        1 - Cyclic Correlation-Based Cooperative Detection for OFDM-Based Primary Users
        Hamed Sadeghi paeez azmi
        This paper develops a new robust cyclostationary detection technique for spectrum sensing of OFDM-based primary users (PUs). To do so, an asymptotically constant false alarm rate (CFAR) multi-cycle detector is proposed and its statistical behavior under null hypothesis More
        This paper develops a new robust cyclostationary detection technique for spectrum sensing of OFDM-based primary users (PUs). To do so, an asymptotically constant false alarm rate (CFAR) multi-cycle detector is proposed and its statistical behavior under null hypothesis is investigated. Furthermore, to achieve higher detection capability, a soft decision fusion rule for performing cooperative spectrum sensing (CSS) in secondary networks is established. The proposed CSS scheme aims to maximize the deflection criterion at the fusion center (FC), while the reporting channels are under Rayleigh fading. In order to be able to evaluate the performance of the cooperative detector, some analytic threshold approximation methods are provided for the cases where the FC has direct sensing capability or not. Through numerical simulations, the proposed local and CSS schemes are shown to significantly enhance CR network performance in terms of detection probability metric. Manuscript profile
      • Open Access Article

        2 - A New Cooperative Approach for Cognitive Radio Networks with Correlated Wireless Channels
        Mehdi  Ghamari Adian Hassan Aghaeenia
        An effective cooperative cognitive radio system is proposed, when the wireless channels are highly correlated. The system model consists of two multi-antenna secondary users (SU TX and SU RX), constituting the desired link and some single-antenna primary and secondary u More
        An effective cooperative cognitive radio system is proposed, when the wireless channels are highly correlated. The system model consists of two multi-antenna secondary users (SU TX and SU RX), constituting the desired link and some single-antenna primary and secondary users. The objective is the maximization of the data rates of the desired SU link subject to the interference constraints on the primary users. An effective system, exploiting Transmit Beamforming (TB) at SU TX, cooperation of some single-antenna SUs and Cooperative Beamforming (CB) at them and the antenna selection at SU RX to reduce the costs associated with RF-chains at the radio front end at SU RX, is proposed. Due to the issue of MIMO channels with correlated fading, some problems arise such as inapplicability of the well-known Grassmanian Beamforming as TB scheme at SU TX. We then propose a method to overcome this problem. After formulating the problem, a novel iterative scheme is proposed to find the best TB weight vector in SU TX and best subset of antennas at SU RX, considering the correlated channel. Manuscript profile
      • Open Access Article

        3 - Video Transmission Using New Adaptive Modulation and Coding Scheme in OFDM based Cognitive Radio
        Hassan Farsi Farid Jafarian
        As Cognitive Radio (CR) used in video applications, user-comprehended video quality practiced by secondary users is an important metric to judge effectiveness of CR technologies. We propose a new adaptive modulation and coding (AMC) scheme for CR, which is OFDM based sy More
        As Cognitive Radio (CR) used in video applications, user-comprehended video quality practiced by secondary users is an important metric to judge effectiveness of CR technologies. We propose a new adaptive modulation and coding (AMC) scheme for CR, which is OFDM based system that is compliant with the IEEE.802.16. The proposed CR alters its modulation and coding rate to provide high quality system. In this scheme, CR using its ability to consciousness of various parameters including knowledge of the white holes in the channel spectrum via channel sensing, SNR, carrier to interference and noise ratio (CINR), and Modulation order Product code Rate (MPR) selects an optimum modulation and coding rate. In this scheme, we model the AMC function using Artificial Neural Network (ANN). Since AMC is naturally a non-liner function, ANN is selected to model this function. In order to achieve more accurate model, Genetic algorithm (GA) and Particle Swarm Optimization (PSO) are selected to optimize the function representing relationship between inputs and outputs of ANN, i.e., AMC model. Inputs of ANN are CR knowledge parameters, and the outputs are modulation type and coding rate. Presenting a perfect AMC model is advantage of this scheme because of considering all impressive parameters including CINR, available bandwidth, SNR and MPR to select optimum modulation and coding rate. Also, we show that in this application, GA rather than PSO is better choice for optimization algorithm. Manuscript profile
      • Open Access Article

        4 - GoF-Based Spectrum Sensing of OFDM Signals over Fading Channels
        Seyed Sadra Kashef paeez azmi Hamed Sadeghi
        Goodness-of-Fit (GoF) based spectrum sensing of orthogonal frequency-division multiplexing (OFDM) signals is investigated in this paper. To this end, some novel local sensing methods based on Shapiro-Wilk (SW), Shapiro-Francia (SF), and Jarque-Bera (JB) tests are first More
        Goodness-of-Fit (GoF) based spectrum sensing of orthogonal frequency-division multiplexing (OFDM) signals is investigated in this paper. To this end, some novel local sensing methods based on Shapiro-Wilk (SW), Shapiro-Francia (SF), and Jarque-Bera (JB) tests are first studied. In essence, a new threshold selection technique is proposed for SF and SW tests. Then, three studied methods are applied to spectrum sensing for the first time and their performance are analyzed. Furthermore, the computational complexity of the above methods is computed and compared to each other. Simulation results demonstrate that the SF detector outperforms other existing GoF-based methods over AWGN channels. Furthermore simulation results demonstrate the superiority of the proposed SF method in additive colored Gaussian noise channels and over fading channel in comparison with the conventional energy detector. Manuscript profile
      • Open Access Article

        5 - Joint Relay Selection and Power Allocation in MIMO Cooperative Cognitive Radio Networks
        Mehdi  Ghamari Adian Hassan Aghaeenia
        In this work, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The system consists of a number of secondary users (SUs) in the secondary network and a primary user (PU) in the prima More
        In this work, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The system consists of a number of secondary users (SUs) in the secondary network and a primary user (PU) in the primary network. We consider the communications in the link between two selected SUs, referred to as the desired link which is enhanced using the cooperation of one of the existing SUs. The core aim of this work is to maximize the achievable data rate in the desired link, using the cooperation of one of the SUs which is chosen opportunistically out of existing SUs. Meanwhile, the interference due to the secondary transmission on the PU should not exceed the tolerable amount. The approach to determine the optimal power allocation, i.e. the optimal transmits covariance and amplification matrices of the SUs, and also the optimal cooperating SU is proposed. Since the proposed optimal approach is a highly complex method, a low complexity approach is further proposed and its performance is evaluated using simulations. The simulation results reveal that the performance loss due to the low complexity approach is only about 14%, while the complexity of the algorithm is greatly reduced. Manuscript profile
      • Open Access Article

        6 - A Novel Resource Allocation Algorithm for Heterogeneous Cooperative Cognitive Radio Networks
        Mehdi Ghamari Adian
        In cognitive radio networks (CRN), resources available for use are usually very limited. This is generally because of the tight constraints by which the CRN operate. Of all the constraints, the most critical one is the level of permissible interference to the primary us More
        In cognitive radio networks (CRN), resources available for use are usually very limited. This is generally because of the tight constraints by which the CRN operate. Of all the constraints, the most critical one is the level of permissible interference to the primary users (PUs). Attempts to mitigate the limiting effects of this constraint, thus achieving higher productivity is a current research focus and in this work, cooperative diversity is investigated as a promising solution for this problem. Cooperative diversity has the capability to achieve diversity gain for wireless networks. Thus, in this work, the possibility of and mechanism for achieving greater utility for the CRN when cooperative diversity is incorporated are studied carefully. To accomplish this, a resource allocation (RA) model is developed and analyzed for the heterogeneous, cooperative CRN. In the considered model, during cooperation, a best relay is selected to assist the secondary users (SUs) that have poor channel conditions. Overall, the cooperation makes it feasible for virtually all the SUs to improve their transmission rates while still causing minimal harm to the PUs. The results show a remarkable improvement in the RA performance of the CRN when cooperation is employed in contrast to when the CRN operates only by direct communication. Manuscript profile
      • Open Access Article

        7 - Energy Efficient Cross Layer MAC Protocol for Wireless Sensor Networks in Remote Area Monitoring Applications
        R Rathna L Mary Gladence J Sybi Cynthia V Maria Anu
        Sensor nodes are typically less mobile, much limited in capabilities, and more densely deployed than the traditional wired networks as well as mobile ad-hoc networks. General Wireless Sensor Networks (WSNs) are designed with electro-mechanical sensors through wireless d More
        Sensor nodes are typically less mobile, much limited in capabilities, and more densely deployed than the traditional wired networks as well as mobile ad-hoc networks. General Wireless Sensor Networks (WSNs) are designed with electro-mechanical sensors through wireless data communication. Nowadays the WSN has become ubiquitous. WSN is used in combination with Internet of Things and in many Big Data applications, it is used in the lower layer for data collection. It is deployed in combination with several high end networks. All the higher layer networks and application layer services depend on the low level WSN in the deployment site. So to achieve energy efficiency in the overall network some simplification strategies have to be carried out not only in the Medium Access Control (MAC) layer but also in the network and transport layers. An energy efficient algorithm for scheduling and clustering is proposed and described in detail. The proposed methodology clusters the nodes using a traditional yet simplified approach of hierarchically sorting the sensor nodes. Few important works on cross layer protocols for WSNs are reviewed and an attempt to modify their pattern has also been presented in this paper with results. Comparison with few prominent protocols in this domain has also been made. As a result of the comparison one would get a basic idea of using which type of scheduling algorithm for which type of monitoring applications. Manuscript profile
      • Open Access Article

        8 - Study and Realization of an Alarm System by Coded Laser Barrier Analyzed by the Wavelet Transform
        meriane brahim Salah Rahmouni Issam Tifouti
        This article introduces the study and realization of the laser barrier alarm system, after the laser is obtained by an electronic card, the wireless control system is connected to the control room to announce the application in real time, and the laser is used in many a More
        This article introduces the study and realization of the laser barrier alarm system, after the laser is obtained by an electronic card, the wireless control system is connected to the control room to announce the application in real time, and the laser is used in many applications fields, from industry to medicine, in this article on the basis of Industrial applications such as laser barrier. It uses an alarm system to detect and deter intruders. Basic security includes protecting the perimeter of a military base or a safety distance in unsafe locations or near a government location. The first stage secures surrounding access points such as doors and windows; The second stage consists of internal detection with motion detectors that monitor movements, In this article, we adopt the embodiment of a coded laser barrier that is transmitted between two units, processes the signal, compares the agreed conditions, and to be high accuracy, we suggest using wavelet transmission to process the received signal and find out the frequencies that achieve alarm activation considering that the transmitted signal They are pulses, but after analysis with a proposed algorithm, we can separate the unwanted frequencies generated by the differential vibrations in order to arrive at a practically efficient system. Manuscript profile
      • Open Access Article

        9 - Spectrum Sensing of OFDM Signals Utilizing Higher Order Statistics under Noise Uncertainty Environments in Cognitive Radio Systems
        MOUSUMI HAQUE Tetsuya Shimamura
        Cognitive radio (CR) is an important issue to solve the spectrum scarcity problem for modern and forthcoming wireless communication systems. Spectrum sensing is the ability of the CR systems to sense the primary user signal to detect an ideal portion of the radio spectr More
        Cognitive radio (CR) is an important issue to solve the spectrum scarcity problem for modern and forthcoming wireless communication systems. Spectrum sensing is the ability of the CR systems to sense the primary user signal to detect an ideal portion of the radio spectrum. Spectrum sensing is mandatory to solve the spectrum scarcity problem and the interference problem of the primary user. Noise uncertainty consideration for orthogonal frequency division multiplexing (OFDM) transmitted signals in severe noise environments is a challenging issue for measuring the performance of spectrum sensing. This paper proposed a method using higher order statistics (HOS) functions including skewness and kurtosis for improving the sensing performance of a cyclic prefix (CP) based OFDM transmitted signal for noise uncertainty. The detection performance of OFDM systems is measured for various CP sizes using a higher order digital modulation technique over a multipath Rayleigh fading channel for low signal-to-noise ratio (SNR) cases. In the proposed method, the CP-based OFDM transmitted signal sensing performance is measured and compared with the conventional methods under noise uncertainty environments. Through comprehensive evaluation of simulation, it is demonstrated that the sensing performance of this method significantly outperforms conventional schemes in the case of noise uncertainty in severe noise environments. Manuscript profile