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Abstract 
Goodness-of-Fit (GoF) based spectrum sensing of orthogonal frequency-division multiplexing (OFDM) signals is 

investigated in this paper. To this end, some novel local sensing methods based on Shapiro-Wilk (SW), Shapiro-Francia 

(SF), and Jarque-Bera (JB) tests are first studied. In essence, a new threshold selection technique is proposed for SF and 

SW tests.  Then, three studied methods are applied to spectrum sensing for the first time and their performance are 

analyzed. Furthermore, the computational complexity of the above methods is computed and compared to each other. 

Simulation results demonstrate that the SF detector outperforms other existing GoF-based methods over AWGN channels. 

Furthermore simulation results demonstrate the superiority of the proposed SF method in additive colored Gaussian noise 

channels and over fading channel in comparison with the conventional energy detector. 

 

Keywords: Cognitive Radio, Spectrum Sensing, Goodness-of-Fit (GoF), Orthogonal Frequency Division Multiplexing 

(OFDM). 
 

 

1. Introduction 

The motivation for presentation of Cognitive Radio 

(CR) is the increasing need for higher bandwidth in 

wireless communications despite limited or licensed 

spectrum resources. Licensed spectrum is allocated over 

long time periods and is intended to be used only by 

licensed users. Different measurements of spectrum 

utilization have shown significant unused resources in 

three dimensions of frequency, time, and space [1]. 

Discovering these underutilized spectrum sources is the 

main idea behind CR by reusing spectrum holes in an 

opportunistic way [2]. In a CR network, spectrum sensing 

(SS) is the main duty of each CR user to find the unused 

spectrum, or equivalently, the primary users (PUs). One 

of the most challenging problems in this area is to find a 

solution to detect the existence and absence of PUs in the 

wireless communication [3]. 

Reliable PU detection problem is the main end of 

many SS algorithm proposals. For example, in the 

presence of PUs, when PU's signal is known, the best 

sensing method is matched filtering. However, when the 

primary signal is not perfectly known, energy detection 

(ED) method can be used instead of matched filtering [4]. 

In situations that SNR is low, distinguishing between PUs 

and noise is not simple. ED method is often considered 

for SS because of simplicity and admirable performance 

over SNR situations. However, uncertainty of the noise 

power quickly destroys the performance of ED. In 

practice, noise is an summation of various sources which 

can be changed significantly; therefore, usually 

uncertainty of noise variance exists and ranges about 1 to 

2 dB [5]. By knowing characteristics of the incoming 

signals, different algorithms were recommended to 

increase the performance of ED consisting of waveform-

based sensing and cyclostationarity-based sensing (See 

[6]). According to mathematical statistics, these methods 

are part of parametric hypothesis testing. It means that 

incorrect assumption about the received signals‟ 

parameters will degrade the performance. Accordingly, it 

is not easy to perform detecting the signal without key 

information. The appropriate signal features should be 

reported in the feature detecting methods (e.g. 

cyclostationarity). On the other hand, having information 

about the PUs is impossible practically in a CR receiver 

[7]. For instance, the matched filtering method, which 

provides the maximum SNR at the output of the detector, 

requires the exact knowledge of PU waveform. In 

addition, in the cyclostationary feature detection method, 

the cycle frequency of the primary signal should be 

known completely. Some PU detection algorithms based 

on statistical properties of eigenvalues of the covariance 

matrix of the received signals were devised in [8] in an 

attempt to compensate for the weaknesses of the above 

methods. However, the order of computational 
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complexity of these algorithms is generally huge, which 

limits their practicality in CR devices [9]. 

To compensate weakness of the above methods, some 

PU detection methods have been proposed in the literatures. 

Recently, a higher-order-statistics (HOS) techniques was 

applied in [9] in SS problem for a reliable detection of PUs 

in the low SNR situations. In addition, a powerful sensing 

algorithm based on JB test [10] has been devised in [9], 

which is inherently a GoF testing problem. It has been 

shown that this method provides a high detection 

performance in very low SNRs [9]. Several GoF-based 

sensing methods have been recently proposed in the 

literatures [11],[12],[13],[14], where they provide superior 

performance in challenging opportunistic applications. 

Note that GoF-based sensing methods do not require any 

prior knowledge about the transmitted PU signals. 

In this paper, we review three GoF techniques: 

Shapiro-Wilk (SW), Shapiro-Francia (SF), and Jarque-

Bera (JB) tests. Then, we propose two SS methods based 

on SW and SF methods. Since these tests are kinds of 

Gaussianity tests, we assume that the distribution of 

channel noise is Gaussian. We compare these algorithms 

with each other, and also with a conventional GoF-based 

sensing approach, i.e., the Anderson-Darling (AD) test. In 

essence, we show that the computational complexities of 

the proposed methods are lower than the AD method. 

Also, we show that SF is faster than JB and SW since its 

computational complexity is lower. Furthermore, we will 

show through simulation results that SF outperforms the 

other candidates in different SNR values, signal sample 

sizes, and channel characteristics. Thus, the SF detector 

can effectively contribute to future CR networks. 

It is straightforward to show that the first-order 

distribution of OFDM signals will converge to a Gaussian 

variable [15]. Suppose that an OFDM-based primary user 

signal is already present in the spectrum. In this case, the 

Gaussianity-based SS techniques would fail in PU 

detection; they will wrongly decide the hypothesis H  

instead of H . Thus, we propose using FFT block as a 

preprocessing method to fix this problem when using 

GoF-based Gaussianity tests for sensing of OFDM signals. 

The idea is the fact that OFDM signals do not show 

Gaussian behavior in the frequency domain [16]. 

The organization of this paper is as follows. Section II 

introduces the GoF-based sensing and colored noise 

concept. Section III presents the statistical GoF tests. In 

Section IV, we propose the GoF-based spectrum sensing 

method. Section 5 presents the simulation results and 

finally, Section 6 concludes the paper. 

2. GoF-based Spectrum Sensing Methods 

Spectrum sensing algorithms must detect the 

presence/absence of PUs as quick as possible. If CR 

decides that the considered channel is empty, then it uses 

that frequency band for opportunistic communication. 

However, if CR misses the PU detection, it will cause a 

harmful interference to PU. Thus, the detection 

performance of the SS algorithm is an important factor in 

CR networks. 

It is well-known that SS is a binary hypothesis testing 

problem as follows, 

    Presence of noise only 

    Presence of Primary User + noise  

Let          
  denotes    local time-domain 

observation samples collected at each CR. Without loss of 

generality,                    are assumed to be real-

valued. In situations that there is no primary transmission, 

             are only the noise samples. In this situation, 

they could be considered as an independent and 

identically distributed (i.i.d.) sequence with cumulative 

distribution function        However, based on the kind 

of modulation and communication link characteristics, the 

gathered samples              may not have distribution 

      when the PU's signal is present. In other words, this 

situation occurs when the received samples are not 

coming from the distribution function       . Thus, the 

null hypothesis can be described as: 

      is an i.i.d. sequence obtained from distribution 

       
Furthermore, the alternative hypothesis (H1) is the 

situation in which the received samples   do not form an 

i.i.d. sequence coming from distribution      . There is 

no need for the knowledge of any information about the 

PU's signal in the above-mentioned GoF-based hypothesis 

testing problem and the type of noise distribution is the 

only assumption for detection.  

Due to the presence of a colored channel interferer or 

some other reasons, the conventional white Gaussian 

noise may become colored. Therefore, in presence of 

colored noise the performance of SS methods is degraded. 

Independence of received samples is negligible in GoF 

based SS problem. The model of colored noise will be 

introduced in the next section. 

2.1 Colored noise 

It is clear that knowing the exact covariance matrix of 

the noise is necessary for the conventional energy 

detection method in colored noise, which is impractical in 

AWGN channel. The uncertainty of covariance matrix 

will lead to performance degradation because of 

inaccurate estimate of the noise parameters. According to 

the work in [17], here some new definitions on noise 

uncertainty in colored noise is introduced. 

Based on [18], the colored Gaussian noise can be seen 

as the output of a single pole recursive filter stimulated by 

a white Gaussian noise (WGN). In mathematics, it can be 

expressed as                   , where      is 

the colored noise,      is the WGN with variance   
   and 

   | |     is the correlation strength of the noise     . 

To have the exact covariance matrix of the colored 

noise, the exact   
  and    should be known. Practically, 

the two parameters should be estimated and thus there are 

uncertainties. According to what is mentioned in [17] we 
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assume the estimated parameters  ̂ 
 ,  ̂ are the multiples 

of the actual values   
 ,  , i.e.  ̂  ̂   و    

     
 . So, 

we say there are noise uncertainties for signal detection in 

colored Gaussian noise [19]. 

2.2 Anderson-darling test 

The GoF tests quantify a distance between the 

distribution functions of two sample sets. The transmitted 

signal assumption is not needed in these tests at all. 

Anderson-Darling (AD) test is a popular GoF test in 

statistics that has been applied to SS in [11] and [12]. It 

will be discussed in the following. 

AD test is an extension of the Cramer-von Mises (CM) 

test, so we will have a short description about the CM 

statistic. 

The CM statistic    is defined by [11], 

     ∫ (             )
 
      

 ∞

 ∞

  (1) 

It is obvious there is an important problem in CM 

statistic which is assigning sufficient weights to the 

sequences of the distribution        Anderson and 

Darling [20] improved the CM statistic by introducing a 

weighted statistic as follows: 

  
   ∫ (             )

 
 (     )      

  

  

  (2) 

where      is a nonnegative weight function defined 

over          A common weighting function for AD 

statistic is 

(3)      
 

      
 

Finally, in the AD test, if     is a threshold or critical 

point to be selected, the null hypothesis    is rejected if 

and only if   
       [11]. Thus, the probability of false 

alarms under    is: 

      
    |    (4) 

Now, according to this description, it is clear that the 

two phases of the Anderson-Darling test are as follows: 

1. Calculate AD test statistic using equation (2). 

2. Determine    (threshold) according to the 

probability of false alarm or α. 

The calculation of Eq. (2) is not a simple task, so it is 

not hard to show by breaking the whole integral in (2) 

into   parts as follows [11]: 

(5)   
   

∑                          
 
   

 
   

where: 

(6)           

As it is observed in Eq. (6),    or        is the 

cumulative distribution function of noise. It can be shown 

that the distribution function depends on the variance of 

the noise. Hence, uncertainty in the noise variance will 

strongly influence its performance [11]. 

To overcome this weakness, Blind AD method is 

proposed which can overcome the weakness of the AD 

test. In Blind AD method, first of all, one divisor of n 

(which is the number of samples) denoted by m is chosen. 

Then samples are divided into   
 

 
 groups, each 

containing   samples. So, we will have: 

(7)  ̅  ∑
     

 

   

   
      

  ∑
(       ̅ )

 

   

   

   
   

        
In these equations,  ̅  and   

  are the mean and 

variance of the samples in  th group, respectively. To 

remove the uncertainty effects of noise variances in 

sensing, a key equation is suggested as follows: 

(8)    
 ̅ 
  

√ 

              

It can be indicated that the primary user do not send 

any signal and the received samples only contain noise.    

is independent of the noise variance which concludes 

       , the cumulative distribution of     group, is 

independent of noise variance as well. 

Some works have been done with two-sampled GoF 

tests for modifying them to SS in [12], [11]. But there is a 

weakness in two sample tests which is the need for prior 

samples from channel noise. However, this is the first 

attempt in this paper to use one-sampled GoF tests in CR 

networks. Superiority of one-sample tests is that they 

don't need any prior information or sample about the 

channel noise. In contrast, in two-sample tests, having at 

least one noise sample is necessary as a prior sample. This 

requirement is hard to meet in some busy channels where 

the assessment of empty spectrum is difficult. Following 

section will introduce three one-sample tests and then 

modify them for SS. 

3. Presentation of Considered GoF Tests 

In this section we study three GoF tests, that is, JB, 

SW and SF. Afterwards, we study their potential for use 

in SS. 

3.1 Jarque-bera test 

The first considered test is JB. This test is a one-

sample GoF technique for measurement of deviation from 

Gaussianity and is constructed from the sample kurtosis 

and skewness. The test is entitled JB due to its pioneers 

Carlos M. Jarque and Anil K. Bera. Its test statistic is 

given by [10] 

    
 

 
     

      

 
   (9) 

where   is the number of samples,   denotes the 

sample kurtosis and   is the skewness of observation 

samples, defined as: 

   
 ̂ 

 ̂ 
  

 ̂ 

  ̂  
 

 

   

 

 
∑      ̅   

   

(
 

 
∑      ̅   

   )
   

 (10) 

http://en.wikipedia.org/wiki/Metric_%28mathematics%29


 

Kashef, Azmi & Sadeghi, GoF-Based Spectrum Sensing of OFDM Signals over Fading Channels 

 

106 

   
 ̂ 

 ̂ 
  

 ̂ 

  ̂   
   

 

 
∑      ̅   

   

(
 

 
∑      ̅   

   )
  (11) 

in which  ̂  and  ̂  are the estimates of the third and 

fourth central moments, respectively;                are 

the received samples;  ̅  is the sample mean and  ̂  

denotes the variance estimation [9]. 

If we have JB >   , the null hypothesis is rejected. In 

contrast, the null hypothesis will be accepted if JB <   . 

The threshold values are computed using the critical 

values listed in [10]. 

3.2 Shapiro-wilk test 

The S-W test relies on the correlation between “order 

statistics” of observed samples and a Gaussian 

distribution. The order statistics is used to represent that 

the data sample has to be classified, in vector form sorted 

in an increasing order as                  ; where the 

prime   denotes the transpose of a vector. The SW test 

statistic W is defined as 

  
(∑     

 
   )

 

∑      ̅   
   

 (12) 

where  ̅ is the sample mean. W can be defined as a 

ratio of two estimates of the sample variance, with the 

estimate in the numerator holding only if the sample is 

obtained from a Gaussian distribution whereby 

coefficients    are calculated by linear regression to the 

expected values of standard Gaussian order statistics. 

Notably, the expected value of W converges to zero when 

the input signal becomes non-Gaussian and the expected 

value of W converges to one for Gaussian input signal as 

the sample size grows [21]. 

Vector of coefficients              is normalized 

so       , and in the way that they become 

symmetrically mirrored, that is,       ,         , 

and so on. These coefficients exist in known statistical 

literatures. However, these tables are limited and the main 

problem is to get all of the coefficients for all N. Thus, for 

simplicity, the coefficients are approximated with the 

following polynomials [21]: 

(13) 

 
(14) 

 

                                    

                         

                           

                      

                

         ̃  (15) 

in these equations      
 

 , and Eq. (15) for  

           is established. 

In (15),  ̃    ̃      ̃   denotes a vector of 

expected values of order statistics of the standard 

Gaussian random variables which can be approximated by 

the following expression: 

(16)  ̃                        

in the above equation,     is the inverse standard 

Gaussian distribution function. Also in Eq. (15) 

(17)   
 ̃   ̃    ̃ 

    ̃   
 

     
       

  

Finally, the    values in Eq. (13) and Eq. (14) are 

determined from vector              by 

(18)    ̃   ̃   ̃     

Thus, we can calculate according to the available 

observations and using the above values in Eq. (12) [21]. 

3.3 Shapiro-francia 

Another test based on the correlation of samples is the 

so-called Shapiro-Francia (SF) [22]. In fact, this test is a 

modification to the SW test. Assume that the weights for 

this test are defined as: 

   
  

        
  (19) 

Then, statistic W‟ can be represented as follows, 

   
      

∑     ̅  
 

 ∑     
 

∑     ̅  
 (20) 

Note that   is the vector of expected values of the N 

order statistics of the standard Gaussian distribution and   

is samples‟ vector [22]. The elements of the vector   are 

defined as equation (16) [22]. 

4. Proposed Spectrum Sensing Methods 

Here we apply the presented tests in Section 3 for SS 

in this section. 

In spectrum holes observed samples are obtained 

independently from the noise distribution. So if we 

assume that the distribution of channel noise is Gaussian, 

introduced tests can be used for SS; because, these are 

Gaussianity tests. 

Assume that N received samples                  

are generated from a PU in a CR network and the channel 

is AWGN. When channel is empty and there is no 

primary signal transmission,        , where    is the 

noise vector. Without loss of generality, we use real part of 

received samples. Thus, these series are obtained from a 

real Gaussian distribution with unknown mean and 

variance. This is the null hypothesis. On the other hand, in 

transmission of PU signal we have           , where 

  shows the PU signal and   represents the channel gain 

between the PU and CR. When PU signal is present, 

alternative hypothesis is formed. In absence of PU, 

received signal is Gaussian, because of the AWGN channel 

assumption. Thus, we gather a Gaussian data sample. 

Notice that this method does not need prior 

information about PU, and the noise uncertainty does not 

affect its performance. 

The SS problem is to accept or reject the alternative 

hypothesis in favor of the null hypothesis as follows: 

   :   has non-Gaussian distribution=PU is present 
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   :   has Gaussian distribution=PU is absent (noise only) 

Therefore, according to our assumption SS changes 

based on distribution testing. Thus, we can apply the 

methods of section 3 to SS by testing the distribution of 

received signal. 

4.1 OFDM signal 

OFDM based signals have a good performance on 

various channels without the need to use sophisticated 

receivers and are ideal for use in broadband wireless 

channels. This is the reason for using this modulation in 

many systems such as WLAN. 

In OFDM systems we have: 

(21)      √
 

  
∑ ∑     

    

   

               

 

          

In this equation      is a signal with multicarrier 

modulation where        is a series of symbols that 

assume to be i.i.d.   , the number of carriers,    the 

frequency offset between carriers, g(t) the pulse function 

and P is the signal power and     is also a OFDM symbol 

time. Using the central limit theory [23] and according to 

the above equation, it can be said that the distribution of 

OFDM will converge to Gaussian. 

When the primary user signal is of a Gaussian type, 

SS will encounter detection problem, because it will 

detect and confirm the hypothesis    in the presence of 

Gaussian OFDM signals and as a result, it will not detect 

the presence of primary users. 

To fix this problem we use FFT operation because 

OFDM signal in the frequency domain has non-Gaussian 

properties [24]. 

After receiving signal, it is transformed to frequency 

domain. This alters Gaussian properties. It should be 

noted that the Gaussian noise signal has a Gaussian 

distribution in frequency domain and it does not lose 

Gaussianity properties in frequency domain. Proposed 

GoF tests can be applied to output of FFT block. 

4.2 Detection algorithms 

We use two different scenarios for evaluating 

presented tests. In the first scenario for JB, SF and SW 

tests, the test statistic is calculated and then compared 

with a threshold. In GoF tests thresholds are determined 

by using Critical Value (CV) tables. CVs depend on false 

alarm probability and number of received samples. Table 

1 includes CVs for JB test in different situations. 

If                     , the absence of PU is decided. In 

the presence of PU we have                   . 

 

 

 

Table 1: Critical values for different   values and sample size belong to 
JB test [25]. 

Sample size (n) 
Significance level     

0.01 0.05 0.1 

100 12.282 5.418 3.680 

10 4.821 2.329 1.478 

 

It‟s should be mentioned that  

SS algorithm for JB, SF and SW test can be 

summarized as follows: 

Step1 Transform received signals into Fourier domain 

using FFT. 

Step2 Compute the test statistic. 

Step2 reject    if                    . In contrast, 

accepting    and reject    if                   . 

The proposed sensing diagram is shown in  0. 

 

Fig. 1. The proposed spectrum sensing system diagram. 

Knowledge of the distribution function of test statistic 

makes it possible to compare         with   value 

directly instead of comparing test statistic with critical 

values. In statistics, the p-value of a test is defined as the 

tail integral of the particular instance of the test statistic 

over the density of the test statistic which is a random 

variable itself [14]. Assume that a goodness-of-fit test 

exists with a test statistic  . Let       be the cumulative 

distribution of   under the null hypothesis.         of the 

test statistic is obtained as follows: 

(22)               |            

Also, it is obvious 

(23) 
          |             |   

        |   
     

According to Eq. (23) and Eq. (24) we will have 

(24)        

  

 
  

    

The p-value acts as an indicator of the confidence of the 

decision reached by the goodness-of-fit test. A low p-value 

(p<0.1) shows a high uncertainty about rejecting the 

hypothesis while a high p-value indicates that we are highly 

confident in rejecting the null hypothesis (p<0.9) [26]. 

In this case, there is no need to obtain critical values from 

a significance probability of false alarm and it is enough to 

directly compare the p-value with False alarm probability. So, 

in this situation, we do not need critical value tables. 

 
Proposed 

Statistical 

Detection 

              

FFT 
y(n)     
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Fig. 2. The proposed spectrum sensing system diagram for p-value. 

In the second scenario, SF and SW tests can use p-value 

in detection procedure; because distribution of them is 

known and derived in [27], [28]. Therefore, another way 

to implement SF and SW tests for SS is using p-value. 

The detection procedure is summarized as follows: 

1. Transform the received signals into Fourier domain 

using FFT. 

2. Order the observation samples in an increasing order 

for calculation of          using Eq.(20) or Eq. (12). 

3. Compute    and          using the test statistic 

distribution. 

4. Choose an appropriate significance level  . 

5. Compare          with  . If          , the 

null hypothesis will be rejected and     will be 

confirmed. 

The proposed detection diagram changes as Fig.2 for 

SF and SW tests. 

4.3 Computational complexity analysis 

Here, the computational complexity of the proposed 

sensing algorithms and AD method as a conventional 

method are discussed. 

Table 2 lists the order of required execution time versus 

the number of samples for various mathematical operations. 

Here, to estimate the computational complexity of a test, 

the highest order of the time complexity is considered. 

Table 2: order of computational complexity for different operations [29]. 

Complexity Order Operations 

      Multiplication & Division 

     Summation & Subtraction 

      Square 

             Natural Logarithm 

           FFT 

 

In the AD test, the natural logarithm is used which is 

more complex than the proposed methods. The proposed 

methods have just the four main mathematic operators in 

which multiplication has the maximum complexity. So, 

the maximum complexity order for the proposed methods 

is equal to       because of multiplication complexity. 

However, the highest order of complexity for AD test is 

belonging to the natural logarithm which is equal 

to             . 

In the proposed methods, an FFT block operation is 

used for the detection of the OFDM signals. The order of 

computational complexity for FFT is            and is 

less than complexity order of multiplication. Therefore, 

there is no change in the maximum complexity order of 

the proposed methods since the maximum complexity 

order is still       which is lower than the AD again. 

Due to the same complexity order of the proposed 

algorithms, other methods are also needed to compare their 

computational complexity. For instance, calculating the 

number of mathematic operators is another method of 

measuring the computational complexity of an algorithm in 

which the operator with the highest complexity is counted. 

In this method, the maximum complexity order of the 

proposed methods is related to multiplication (or division). 

It is assumed that the number of operators which are 

not dependent on the number of samples is negligible; 

since the number of operators increases with the rise of 

samples numbers. 

Table 3 shows the number of multiplication (or 

division) of the three methods. 

Table 3: number of operators for proposed methods. 

Proposed method Operator numbers 

JB     

SW     

SF     

 

In Table 3, N represents the number of received 

samples. It is shown that the computational complexity of 

SF test is less than JB and SW tests. Therefore, SS can be 

done faster. 

We need to do interpolation or extrapolation to find 

some critical values which do not exist in ready tables. 

Interpolation or extrapolation increases computational 

complexity of methods. P-value solves the problem and 

decreases the computational complexity of SF and SW 

methods. 

5. Simulation Results 

In this section, simulation results are demonstrated for 

different scenarios. Our main goal is to compare the 

performance of the proposed GoF–based sensing methods 

with each other and with a conventional approach (i.e. AD). 

Before describing the achieved results, it should be 

noted that WLAN signal is used as the reference signal in 

this study. The applied WLAN signal in this article is 
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simulated based on available standards [30]. Obviously, 

WLAN uses OFDM modulation which is one of the most 

deployed methods in wireless communication. Taking 

into account that WLAN signal is based on OFDM, we 

can generalize our results to other OFDM based signals 

such as WiMAX and D-VBT. 

In implementing the offered methods, an FFT block is 

used before OFDM detection like OFDM demodulator. It 

is assumed that N samples are collected from environment 

by CRs, written as    for           which are complex 

valued. When we calculate proposed tests, without loss of 

generally, we use real-parts of samples. 

Fig. 3 depicts the detection probability of five SS 

methods including Blind AD, SF, JB, SW and AD. The 

false alarm probability equals 5% (      ) and the 

environment noise is considered to be Gaussian. The 

number of available samples from the received signals 

equals N=4000, which is equivalent to 50 OFDM symbols. 

As shown in the Fig. 3, JB and the SF methods have 

almost similar performance outperforming the other 

methods.  

 

Fig. 3. Detection rate versus SNR value for the simulated WLAN signal 
(N=4000) over AWGN channels (Pfa=0.05). 

The computational complexity of the SF method is 

much less than AD. Also JB method has high complexity 

order because of calculating high order statistics. On the 

other hand, statistic calculations are done only twice for 

the SF method with less complexity. In addition, JB 

method needs extrapolation and interpolation. Thus 

finding CV adds more complexity. 

In results of Fig. 4 the same parameters are also taken 

into account. The only difference is that in this situation, 

the signal has undergone Rayleigh fading. This figure also 

supports the fact that the offered SF method has much 

better performance in comparison with the other methods. 

 

Fig. 4. Detection rate versus SNR for simulated WLAN signal (N=4000) 

over frequency-flat Rayleigh fading channels (Pfa=0.05). 

According to Fig. 5, when the number of received 

samples reduces to N=800 (i.e. 10 OFDM symbols), the 

performance of all sensing methods are decreased, while 

the SF method works better than the others in both low and 

high SNR values. This observation shows the superiority of 

the SF sensing method over JB-based method, since the JB 

method requires a relatively large number of received 

samples for providing good detection performance. Since 

the CRs should detect PUs as soon as possible, the SF 

method would be preferred over JB-based SS. 

 

Fig. 5. Detection rate versus SNR value for simulated WLAN signal 
(N=800) over AWGN channels (Pfa=0.05). 

Fig. 6 shows the detection performances over 

frequency-flat Rayleigh fading channels for N=800. As 

we can see, the Blind AD performance is very poor, while 

the mixed method performs better than the other methods 

and has a close performance comparing AD. Considering 

the acceptable performance of SF method, and the less 

complexity of SF, it has the best performance due to its 

less complexity and high detection probability. 

 

Fig. 6. Detection rate versus SNR value for the simulated WLAN signal 
(N=800) over Rayleigh fading channels (Pfa=0.05). 
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In Fig. 7, the performance of the proposed methods 

versus false alarm probability is shown. The ROC of the 

proposed methods for sample size 3200 (40 OFDM 

symbol) in WLAN signal is compared with AD method 

showing improvement in AD algorithm. 

Considering Fig. 3 to Fig. 7, SF test has the best 

performance, so, we chose SF detector to compare with ED. 

Fig. 7 shows the detection performance of SF test in 

comparison to Energy Detector in presence of uncertainty 

for        in colored WGN. 

 

Fig. 7. ROC figure in WLAN for 3200 sample size (40 OFDM symble) 

over frequency-flat Rayleigh fading channels with         . 

Fig.8 demonstrates that correlation between noise 

sample does not affect performance of proposed GoF 

methods; because there is no any assumption in proposed 

methods about independent of noise samples. Results of 

Fig. 8 are verified by our assumptions about the lack of 

need for independent signal samples. 

Usually uncertainty in noise variance exists and 

ranges about 1 to 2 dB [5]. As it is evident, the SF test 

works better than the ED against noise uncertainty. This 

figure demonstrates that correlation between noise sample 

does not affect performance of proposed GoF methods 

and lack of need for independent samples in our 

assumptions verifies results of Fig. 8. 

 

 

Fig. 8. Signal detection probability versus SNR for WLAN (N=800) 

Additive colored Gaussian noise in the channel and over Rayleigh fading. 

6. Conclusion 

In this paper, three one-sample GoF techniques are 

introduced and modified to detect OFDM-based primary 

signals. The methods are compared through simulations 

with each other and a conventional approach (i.e. AD). 

We showed that the proposed methods‟ computational 

complexity is much less than the AD approach. 

Moreover, Monte-Carlo simulation results for OFDM-

based primary signals demonstrate that the SF method 

outperforms the other techniques in terms of probability 

of detection. In particular, we have shown that the SF 

method performs well even in very short sensing 

durations, in comparison with other GoF-based sensing 

methods. Furthermore, simulation results show that the 

SF method outperforms the classical ED in presence of 

noise uncertainty over different level of SNR. Besides, it 

is not sensitive to the noise uncertainty which is 

favorable. Therefore, it can be concluded that the SF 

method is an appropriate representative of GoF tests in 

order to be applied in CR networks. 
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