An effective cooperative cognitive radio system is proposed, when the wireless channels are highly correlated. The system model consists of two multi-antenna secondary users (SU TX and SU RX), constituting the desired link and some single-antenna primary and secondary u More
An effective cooperative cognitive radio system is proposed, when the wireless channels are highly correlated. The system model consists of two multi-antenna secondary users (SU TX and SU RX), constituting the desired link and some single-antenna primary and secondary users. The objective is the maximization of the data rates of the desired SU link subject to the interference constraints on the primary users. An effective system, exploiting Transmit Beamforming (TB) at SU TX, cooperation of some single-antenna SUs and Cooperative Beamforming (CB) at them and the antenna selection at SU RX to reduce the costs associated with RF-chains at the radio front end at SU RX, is proposed. Due to the issue of MIMO channels with correlated fading, some problems arise such as inapplicability of the well-known Grassmanian Beamforming as TB scheme at SU TX. We then propose a method to overcome this problem. After formulating the problem, a novel iterative scheme is proposed to find the best TB weight vector in SU TX and best subset of antennas at SU RX, considering the correlated channel.
Manuscript profile
In this work, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The system consists of a number of secondary users (SUs) in the secondary network and a primary user (PU) in the prima More
In this work, the issue of joint relay selection and power allocation in Underlay MIMO Cooperative Cognitive Radio Networks (U-MIMO-CCRN) is addressed. The system consists of a number of secondary users (SUs) in the secondary network and a primary user (PU) in the primary network. We consider the communications in the link between two selected SUs, referred to as the desired link which is enhanced using the cooperation of one of the existing SUs. The core aim of this work is to maximize the achievable data rate in the desired link, using the cooperation of one of the SUs which is chosen opportunistically out of existing SUs. Meanwhile, the interference due to the secondary transmission on the PU should not exceed the tolerable amount. The approach to determine the optimal power allocation, i.e. the optimal transmits covariance and amplification matrices of the SUs, and also the optimal cooperating SU is proposed. Since the proposed optimal approach is a highly complex method, a low complexity approach is further proposed and its performance is evaluated using simulations. The simulation results reveal that the performance loss due to the low complexity approach is only about 14%, while the complexity of the algorithm is greatly reduced.
Manuscript profile