• Home
  • About Rimag
  • Contact Us
  • Register
  • Log in
  • Order
Advanced
  • Home
  • Mohan Kumar
  • Current Issue

    41
    Issue 41   Vol 11 Winter 2023
    Submit Your Paper List of Journal Reviewers

    Published Issues

    • Vol. 11
      • ✓ Issue 41 - Winter 2023
    • Vol. 10
      • ✓ Issue 40 - Autumn 2022
      • ✓ Issue 39 - Summer 2022
      • ✓ Issue 38 - Spring 2022
      • ✓ Issue 37 - Winter 2022
    • Vol. 9
      • ✓ Issue 36 - Autumn 2021
      • ✓ Special Issue
      • ✓ Issue 35 - Summer 2021
      • ✓ Issue 34 - Spring 2021
      • ✓ Issue 33 - Winter 2021
    • Vol. 8
      • ✓ Issue 32 - Autumn 2020
      • ✓ Issue 31 - Summer 2020
      • ✓ Issue 30 - Spring 2020
      • ✓ Issue 29 - Winter 2020
    • Vol. 7
      • ✓ Issue 28 - Autumn 2019
      • ✓ Issue 27 - Summer 2019
      • ✓ Issue 26 - Spring 2019
      • ✓ Issue 25 - Winter 2019
    • Vol. 6
      • ✓ Issue 24 - Autumn 2018
      • ✓ Issue 23 - Summer 2018
      • ✓ Issue 22 - Spring 2018
      • ✓ Issue 21 - Winter 2018
    • Vol. 5
      • ✓ Issue 20 - Autumn 2017
      • ✓ Issue 19 - Summer 2017
      • ✓ Issue 18 - Spring 2017
      • ✓ Issue 17 - Winter 2017
    • Vol. 4
      • ✓ Issue 16 - Autumn 2016
      • ✓ Issue 15 - Summer 2016
      • ✓ Issue 14 - Spring 2016
      • ✓ Issue 13 - Winter 2016
    • Vol. 3
      • ✓ Issue 12 - Autumn 2015
      • ✓ Issue 11 - Summer 2015
      • ✓ Issue 10 - Spring 2015
      • ✓ Issue 9 - Winter 2015
    • Vol. 2
      • ✓ Issue 8 - Autumn 2014
      • ✓ Issue 7 - Summer 2014
      • ✓ Issue 6 - Spring 2014
      • ✓ Issue 5 - Winter 2014
    • Vol. 1
      • ✓ Issue 4 - Autumn 2013
      • ✓ Issue 3 - Summer 2013
      • ✓ Issue 2 - Spring 2013
      • ✓ Issue 1 - Winter 2013

    Browse

    • •  Current Issue
    • •  By Issue
    • • Author Index
    • •  By Subject
    • •  By Author

    Menu

    • •  Editorial Board
    • •  Journal Policy
    • •  About Journal
    • •  Special Issues
    • •  Author Guide
    • •  Article Processing Charges (APC)
    • •  Evaluation Process
    • Contact Journal
    OpenAccess
    • List of Articles Mohan Kumar

      • Open Access Article
        • Abstract Page
        • Full-Text

        1 - Breast Cancer Classification Approaches - A Comparative Analysis
        Mohan Kumar Sunil Kumar Khatri Masoud Mohammadian
        10.52547/jist.33395.11.41.1
        Cancer of the breast is a difficult disease to treat since it weakens the patient's immune system. Particular interest has lately been shown in the identification of particular immune signals for a variety of malignancies in this regard. In recent years, several methods More
        Cancer of the breast is a difficult disease to treat since it weakens the patient's immune system. Particular interest has lately been shown in the identification of particular immune signals for a variety of malignancies in this regard. In recent years, several methods for predicting cancer based on proteomic datasets and peptides have been published. The cells turns into cancerous cells because of various reasons and get spread very quickly while detrimental to normal cells. In this regard, identifying specific immunity signs for a range of cancers has recently gained a lot of interest. Accurately categorizing and compartmentalizing the breast cancer subtype is a vital job. Computerized systems built on artificial intelligence can substantially save time and reduce inaccuracy. Several strategies for predicting cancer utilizing proteomic datasets and peptides have been reported in the literature in recent years.It is critical to classify and categorize breast cancer treatments correctly. It's possible to save time while simultaneously minimizing the likelihood of mistakes using machine learning and artificial intelligence approaches. Using the Wisconsin Breast Cancer Diagnostic dataset, this study evaluates the performance of various classification methods, including SVC, ETC, KNN, LR, and RF (random forest). Breast cancer can be detected and diagnosed using a variety of measurements of data (which are discussed in detail in the article) (WBCD). The goal is to determine how well each algorithm performs in terms of precision, recall, and accuracy. The variation of each classification threshold has been tested on various algorithms and SVM turned out to be very promising. Manuscript profile
  • Home Page
  • Site Map
  • Contact Us
  • Home
  • Site Map
  • Regional Science and Technology Information Center
  • Contact Us

The rights to this website are owned by the Raimag Press Management System.
Copyright © 2017-2023

Home| Login| About Rimag| Contact Us|
[فارسی] [العربية] [fa] [ar]
  • Ricest
  • Login
  • email