Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches
Subject Areas : Cloud computing
Ali Baydoun
1
*
,
Ahmed S Zekri
2
1 - Department of Mathematics & Computer Science, Beirut Arab University, Lebanon
2 - Department of Mathematics & Computer Science, Alexandria University, Egypt
Keywords: Cloud computing, VM placement, network-aware, Energy-efficient, Network architecture,
Abstract :
Cloud data centers (CDCs) have witnessed significant growth to meet the increasing demands of modern applications. However, this expansion has raised concerns regarding the environmental impact, energy requirements, and electricity costs associated with data centers. The network infrastructure, serving as the communication backbone of these data centers, plays a crucial role in their scalability, performance, cost, and, most importantly, energy consumption. This review provides meaningful perspectives and valuable insights into the state-of-the-art research regarding the problem of virtual machine placement (VMP), focusing on the network-aware energy efficiency aspects of data centers. It provides an overview of VM placement and presents a comprehensive survey of prominent VM placement algorithms from the existing literature. Additionally, a thematic taxonomy of network-aware algorithms is introduced, highlighting the key energy consumption metrics and presenting a new classification of VMP algorithms that considers datacenter network (DCN) topology, traffic patterns, communication patterns, and energy reduction strategies. Besides addressing pertinent research questions in this domain, this review summarizes the findings and suggests potential avenues for future research, guiding researchers in designing and implementing more effective and efficient network-aware VM placement algorithms that optimize energy consumption, improve network performance, and minimize migration costs.
[1] P. M. Mell and T. Grance, “The NIST definition of cloud computing,” Gaithersburg, MD, 2011. doi: 10.6028/NIST.SP.800-145.
[2] D. Bliedy, S. Mazen, and E. Ezzat, “Datacentre Total Cost of Ownership (TCO) Models : A Survey,” International Journal of Computer Science, Engineering and Applications, vol. 8, no. 2/3/4, pp. 47–62, 2018, doi: 10.5121/ijcsea.2018.8404.
[3] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,” Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, pp. 267–280, 2010, doi: 10.1145/1879141.1879175.
[4] L. Zhou, C. H. Chou, L. N. Bhuyan, K. K. Ramakrishnan, and D. Wong, “Joint server and network energy saving in data centers for latency-sensitive applications,” Proceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium, IPDPS 2018, pp. 700–709, 2018, doi: 10.1109/IPDPS.2018.00079.
[5] K. Bilal et al., “A survey on Green communications using Adaptive Link Rate,” Cluster Comput, vol. 16, no. 3, pp. 575–589, Jul. 2013, doi: 10.1007/s10586-012-0225-8.
[6] A. C. Orgerie, M. D. De Assuncao, and L. Lefevre, “A survey on techniques for improving the energy efficiency of large-scale distributed systems,” ACM Comput Surv, vol. 46, no. 4, 2014, doi: 10.1145/2532637.
[7] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, Network-aware virtual machine placement and migration in cloud data centers, no. May. 2015. doi: 10.4018/978-1-4666-8213-9.ch002.
[8] A. Hammadi and L. Mhamdi, “A survey on architectures and energy efficiency in Data Center Networks,” Comput Commun, vol. 40, pp. 1–21, 2014, doi: 10.1016/j.comcom.2013.11.005.
[9] K. Bilal et al., “A taxonomy and survey on Green Data Center Networks,” Future Generation Computer Systems, vol. 36, pp. 189–208, Jul. 2014, doi: 10.1016/j.future.2013.07.006.
[10] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and F. Xia, “A survey on virtual machine migration and server consolidation frameworks for cloud data centers,” Journal of Network and Computer Applications, vol. 52, pp. 11–25, 2015, doi: 10.1016/j.jnca.2015.02.002.
[11] F. L. Pires and B. Baran, “A virtual machine placement taxonomy,” Proceedings - 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, no. July, pp. 159–168, 2015, doi: 10.1109/CCGrid.2015.15.
[12] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual machine placement schemes in cloud computing,” Journal of Network and Computer Applications, vol. 66, pp. 106–127, 2016, doi: 10.1016/j.jnca.2016.01.011.
[13] H. Talebian et al., Optimizing virtual machine placement in IaaS data centers: taxonomy, review and open issues, vol. 23, no. 2. Springer US, 2020. doi: 10.1007/s10586-019-02954-w.
[14] H. Zhuang and B. Esmaeilpour Ghouchani, “Virtual machine placement mechanisms in the cloud environments: a systematic review,” Kybernetes, vol. 50, no. 2, pp. 333–368, 2021, doi: 10.1108/K-09-2019-0635.
[15] L. Helali and M. N. Omri, “A survey of data center consolidation in cloud computing systems,” 2021. doi: 10.1016/j.cosrev.2021.100366.
[16] A. Sumathi, … B. K.-T. J. of, and undefined 2023, “Advancements in Energy-Efficient Virtual Machine Placement Survey for Cloud Computing,” Researchgate.Net, no. February, 2024, doi: 10.13140/RG.2.2.17918.36164.
[17] N. Rana et al., “A systematic literature review on contemporary and future trends in virtual machine scheduling techniques in cloud and multi-access computing,” Front Comput Sci, vol. 6, 2024, doi: 10.3389/fcomp.2024.1288552.
[18] J. Zou, K. Wang, K. Zhang, and M. Kassim, “Perspective of virtual machine consolidation in cloud computing: a systematic survey,” Telecommun Syst, p. 11235, 2024, doi: 10.1007/s11235-024-01184-9.
[19] S. R. Swain, A. Parashar, A. K. Singh, and C. Nan Lee, “An Energy Efficient Virtual Machine Placement Scheme for Intelligent Resource Management at Cloud Data Center,” in OCIT 2023 - 21st International Conference on Information Technology, Proceedings, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 65–70. doi: 10.1109/OCIT59427.2023.10430915.
[20] S. Kumar, S. Mittal, and M. Singh, “Active VM Placement Approach Based on Energy Efficiency in Cloud Environment,” in Lecture Notes in Networks and Systems, Springer Science and Business Media Deutschland GmbH, 2022, pp. 35–46. doi: 10.1007/978-981-19-1018-0_4.
[21] Z. Li, K. Lin, S. Cheng, L. Yu, and J. Qian, “Energy-Efficient and Load-Aware VM Placement in Cloud Data Centers,” J Grid Comput, vol. 20, no. 4, 2022, doi: 10.1007/s10723-022-09631-0.
[22] H. Xing, J. Zhu, R. Qu, P. Dai, S. Luo, and M. A. Iqbal, “An ACO for energy-efficient and traffic-aware virtual machine placement in cloud computing,” Swarm Evol Comput, vol. 68, no. November 2021, p. 101012, 2022, doi: 10.1016/j.swevo.2021.101012.
[23] D. Dabhi and D. Thakor, “Utilisation-aware VM placement policy for workload consolidation in cloud data centres,” International Journal of Communication Networks and Distributed Systems, vol. 28, no. 6, pp. 704–726, 2022, doi: 10.1504/ijcnds.2022.126224.
[24] E. I. Elsedimy, M. Herajy, and S. M. M. Abohashish, “Energy and QoS-aware virtual machine placement approach for IaaS cloud datacenter,” 2025. doi: 10.1007/s00521-024-10872-1.
[25] K. Lu, R. Yahyapour, P. Wieder, C. Kotsokalis, E. Yaqub, and A. I. Jehangiri, “QoS-aware VM placement in multi-domain service level agreements scenarios,” IEEE International Conference on Cloud Computing, CLOUD, no. April 2014, pp. 661–668, 2013, doi: 10.1109/CLOUD.2013.112.
[26] T. Renugadevi, K. Geetha, K. Muthukumar, and Z. W. Geem, “Optimized energy cost and carbon emission-aware virtual machine allocation in sustainable data centers,” Sustainability (Switzerland), vol. 12, no. 16, pp. 1–27, 2020, doi: 10.3390/SU12166383.
[27] S. Rawas, A. Zekri, and A. El Zaart, “Power and Cost-Aware Virtual Machine Placement in Geo-Distributed Data Power and Cost-aware Virtual Machine Placement in Geo-distributed Data Centers,” no. March, 2018, doi: 10.5220/0006696201120123.
[28] G. P. Maskare and S. Sharma, “The Hybrid ACO, PSO, and ABC Approach for Load Balancing in Cloud Computing,” vol. 10, 2023, Accessed: May 07, 2025. [Online]. Available: www.jetir.org.
[29] M. H. Kim, J. Y. Lee, S. A. Raza Shah, T. H. Kim, and S. Y. Noh, “Min-max exclusive virtual machine placement in cloud computing for scientific data environment,” Journal of Cloud Computing, vol. 10, no. 1, pp. 1–17, Dec. 2021, doi: 10.1186/S13677-020-00221-7/FIGURES/12.
[30] M. Koubàa, R. Regaieg, A. S. Karar, M. Nadeem, and F. Bahloul, “A Multi-Objective Approach for Optimizing Virtual Machine Placement Using ILP and Tabu Search,” Telecom, vol. 5, no. 4, pp. 1309–1331, 2024, doi: 10.3390/telecom5040065.
[31] X. Zheng and Y. Xia, “Exploring mixed integer programming reformulations for virtual machine placement with disk anti-colocation constraints,” Performance Evaluation, vol. 135, 2019, doi: 10.1016/j.peva.2019.102035.
[32] S. Yang, P. Wieder, R. Yahyapour, S. Trajanovski, and X. Fu, “Reliable Virtual Machine Placement and Routing in Clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp. 2965–2978, 2017, doi: 10.1109/TPDS.2017.2693273.
[33] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing,” Future Generation Computer Systems, vol. 28, no. 5, pp. 755–768, 2012, doi: 10.1016/j.future.2011.04.017.
[34] J. Wang, J. Yu, R. Zhai, X. He, and Y. Song, “GMPR: A Two-Phase Heuristic Algorithm for Virtual Machine Placement in Large-Scale Cloud Data Centers,” IEEE Syst J, vol. 17, no. 1, pp. 1419–1430, Mar. 2023, doi: 10.1109/JSYST.2022.3187971.
[35] S. Jangiti, V. Vijayakumar, and V. Subramaniyaswamy, “Hybrid best-fit heuristic for energy efficient virtual machine placement in cloud data centers,” EAI Endorsed Transactions on Energy Web, vol. 7, no. 26, pp. 1–7, 2020, doi: 10.4108/eai.13-7-2018.162689.
[36] R. Keshri and D. P. Vidyarthi, “Communication-aware, energy-efficient VM placement in cloud data center using ant colony optimization,” International Journal of Information Technology (Singapore), vol. 15, no. 8, pp. 4529–4535, Dec. 2023, doi: 10.1007/S41870-023-01531-0/METRICS.
[37] N. Donyagard Vahed, M. Ghobaei-Arani, and A. Souri, “Multiobjective virtual machine placement mechanisms using nature-inspired metaheuristic algorithms in cloud environments: A comprehensive review,” International Journal of Communication Systems, vol. 32, no. 14, 2019, doi: 10.1002/dac.4068.
[38] A. S. Abohamama and E. Hamouda, “A hybrid energy–Aware virtual machine placement algorithm for cloud environments,” Expert Syst Appl, vol. 150, p. 113306, 2020, doi: 10.1016/j.eswa.2020.113306.
[39] A. M. Baydoun and A. S. Zekri, “Network-, Cost-, and Renewable-Aware Ant Colony Optimization for Energy-Efficient Virtual Machine Placement in Cloud Datacenters,” Future Internet, vol. 17, no. 6, p. 261, Jun. 2025, doi: 10.3390/fi17060261.
[40] S. Talwani et al., “Machine-Learning-Based Approach for Virtual Machine Allocation and Migration,” Electronics (Switzerland), vol. 11, no. 19, 2022, doi: 10.3390/electronics11193249.
[41] S. Rawas, A. Zekri, and A. El-Zaart, “LECC: Location, energy, carbon and cost-aware VM placement model in geo-distributed DCs,” Sustainable Computing: Informatics and Systems, vol. 33, 2022, doi: 10.1016/j.suscom.2021.100649.
[42] A. Jumnal and S. M. Dilip Kumar, “Optimal VM placement approach using fuzzy reinforcement learning for cloud data centers,” in Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, Institute of Electrical and Electronics Engineers Inc., Feb. 2021, pp. 29–35. doi: 10.1109/ICICV50876.2021.9388424.
[43] H. Padmanaban, “Machine Learning Algorithms Scaling on Large-Scale Data Infrastructure,” Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, vol. 3, no. 1, pp. 1–26, Apr. 2024, doi: 10.60087/JAIGS.VOL03.ISSUE01.P26.
[44] H. A. Alharbi, T. E. H. Elgorashi, A. Q. Lawey, and J. M. H. Elmirghani, “The Impact of Inter-Virtual Machine Traffic on Energy Efficient Virtual Machines Placement,” in 2019 IEEE Sustainability through ICT Summit, StICT 2019, 2019. doi: 10.1109/STICT.2019.8789381.
[45] F. kamoun-abid, H. Frikha, A. Meddeb-Makhoulf, and F. Zarai, “Allocation of virtual machine in a cloud environment based on machine learning,” Res Sq, Jan. 2023, doi: 10.21203/RS.3.RS-2483861/V1.
[46] N. Tziritas, T. Loukopoulos, S. Khan, C. Z. Xu, and A. Zomaya, “A communication-aware energy-efficient graph-coloring algorithm for VM placement in clouds,” Proceedings - 2018 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovations, SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 1684–1691, 2018, doi: 10.1109/SmartWorld.2018.00286.
[47] S. Sadegh, K. Zamanifar, P. Kasprzak, and R. Yahyapour, “A two-phase virtual machine placement policy for data-intensive applications in cloud,” Journal of Network and Computer Applications, vol. 180, no. December 2020, p. 103025, 2021, doi: 10.1016/j.jnca.2021.103025.
[48] J. Gedeon, M. Stein, L. Wang, and M. Mühlhäuser, “On Scalable In-Network Operator Placement for Edge Computing”.
[49] T. Huang, W. Huang, B. Zhang, W. Chen, and X. Pan, “Optimizing energy consumption in centralized and distributed cloud architectures with a comparative study to increase stability and efficiency,” Energy Build, vol. 333, 2025, doi: 10.1016/j.enbuild.2025.115454.
[50] S. S. Nabavi, S. S. Gill, M. Xu, M. Masdari, and P. Garraghan, “TRACTOR: Traffic-aware and power-efficient virtual machine placement in edge-cloud data centers using artificial bee colony optimization,” International Journal of Communication Systems, vol. 35, no. 1, pp. 1–20, 2022, doi: 10.1002/dac.4747.
[51] S. Azizi, M. Shojafar, J. Abawajy, and R. Buyya, “GRVMP: A Greedy Randomized Algorithm for Virtual Machine Placement in Cloud Data Centers,” IEEE Syst J, vol. 15, no. 2, pp. 2571–2582, 2020, doi: 10.1109/jsyst.2020.3002721.
[52] W. Wei, H. Gu, W. Lu, T. Zhou, and X. Liu, “Energy Efficient Virtual Machine Placement with an Improved Ant Colony Optimization over Data Center Networks,” IEEE Access, vol. 7, pp. 60617–60625, 2019, doi: 10.1109/ACCESS.2019.2911914.
[53] S. Bani-Ahmad, S. Sa’adeh, S. Bani-Ahmad, and S. Sa’adeh, “Scalability of the DVFS Power Management Technique as Applied to 3-Tier Data Center Architecture in Cloud Computing,” Journal of Computer and Communications, vol. 5, no. 1, pp. 69–93, Dec. 2016, doi: 10.4236/JCC.2017.51007.
[54] J. Masoudi, B. Barzegar, and H. Motameni, “Energy-Aware Virtual Machine Allocation in DVFS-Enabled Cloud Data Centers,” IEEE Access, vol. 10, pp. 3617–3630, 2022, doi: 10.1109/ACCESS.2021.3136827.
[55] “ElasticTree: Saving Energy in Data Center Networks,” in Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, San Jose, CA, USA, Apr. 2010.
[56] S. Xiao, Y. Cui, X. Wang, Z. Yang, S. Yan, and L. Yang, “Traffic-aware Virtual Machine Migration in Topology-adaptive DCN,” Proceedings - International Conference on Network Protocols, ICNP, vol. 2016-December, Dec. 2016.
[57] A. Akbari, A. Khonsari, and S. M. Ghoreyshi, “Thermal-aware virtual machine allocation for heterogeneous cloud data centers,” Energies (Basel), vol. 13, no. 11, 2020, doi: 10.3390/en13112880.
[58] J. Lin, W. Lin, W. Wu, W. Lin, and K. Li, “Energy-aware virtual machine placement based on a holistic thermal model for cloud data centers,” Future Generation Computer Systems, vol. 161, pp. 302–314, 2024, doi: 10.1016/j.future.2024.07.020.
[59] S. Omer, S. Azizi, M. Shojafar, and R. Tafazolli, “A priority, power and traffic-aware virtual machine placement of IoT applications in cloud data centers,” Journal of Systems Architecture, vol. 115, no. April, 2021, doi: 10.1016/j.sysarc.2021.101996.
[60] A. K. Singh, S. R. Swain, D. Saxena, and C. N. Lee, “A Bio-Inspired Virtual Machine Placement Toward Sustainable Cloud Resource Management,” IEEE Syst J, vol. 17, no. 3, pp. 3894–3905, 2023, doi: 10.1109/JSYST.2023.3248118.
[61] H. F. Farimani, S. R. K. Tabbakh, D. Bahrepour, and R. Ghaemi, “Reallocation of virtual machines to cloud data centers reduce service level agreement violation and energy consumption using the FMT method,” Journal of Information Systems and Telecommunication, vol. 7, no. 4, pp. 316–325, 2019.
[62] F. Alharbi, Y. C. Tian, M. Tang, W. Z. Zhang, C. Peng, and M. Fei, “An Ant Colony System for energy-efficient dynamic Virtual Machine Placement in data centers,” Expert Syst Appl, vol. 120, pp. 228–238, 2019, doi: 10.1016/j.eswa.2018.11.029.
[63] S. Mashhadi Moghaddam, M. O’Sullivan, C. Walker, S. Fotuhi Piraghaj, and C. P. Unsworth, “Embedding individualized machine learning prediction models for energy efficient VM consolidation within Cloud data centers,” Future Generation Computer Systems, vol. 106, pp. 221–233, 2020, doi: 10.1016/j.future.2020.01.008.
[64] A. Kamalinia and A. Ghaffari, “Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms,” Journal of Information Systems and Telecommunication, vol. 4, no. 16, pp. 1–10, 2017, doi: 10.1007/s11277-017-4839-2.
[65] S. Sadegh, K. Zamanifar, P. Kasprzak, and R. Yahyapour, “A two-phase virtual machine placement policy for data-intensive applications in cloud,” Journal of Network and Computer Applications, vol. 180, p. 103025, Apr. 2021, doi: 10.1016/J.JNCA.2021.103025.
[66] Y. Fan, H. Ding, L. Wang, and X. Yuan, “Green latency-aware data placement in data centers,” Computer Networks, vol. 110, pp. 46–57, 2016, doi: 10.1016/j.comnet.2016.09.015.
[67] S. Farzai, M. H. Shirvani, and M. Rabbani, “Communication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology,” no. May, 2021.
[68] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers,” Concurrency Computation Practice and Experience, vol. 24, no. 13, pp. 1397–1420, 2012, doi: 10.1002/cpe.1867.
[69] S. Fang, R. Kanagavelu, B. S. Lee, C. H. Foh, and K. M. M. Aung, “Power-efficient virtual machine placement and migration in data centers,” Proceedings - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013, pp. 1408–1413, 2013, doi: 10.1109/GreenCom-iThings-CPSCom.2013.246.
[70] S. Georgiou, K. Tsakalozos, and A. Delis, “Exploiting network-topology awareness for VM placement in IaaS clouds,” in Proceedings - 2013 IEEE 3rd International Conference on Cloud and Green Computing, CGC 2013 and 2013 IEEE 3rd International Conference on Social Computing and Its Applications, SCA 2013, 2013, pp. 151–158. doi: 10.1109/CGC.2013.30.
[71] “Data center network architectures.” [Online]. Available: https://en.wikipedia.org/wiki/Data_center_network_architectures.
[72] C. Guo et al., “BCube: A high performance, server-centric network architecture for modular data centers,” Computer Communication Review, vol. 39, no. 4, pp. 63–74, 2009, doi: 10.1145/1594977.1592577.
[73] L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network inspired data center architecture,” 2010. doi: 10.1145/1880153.1880155.
[74] A. Singla, C. Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data centers randomly,” Proceedings of NSDI 2012: 9th USENIX Symposium on Networked Systems Design and Implementation, pp. 225–238, 2012.
[75] M. C. Çavdar, I. Korpeoglu, and Ö. Ulusoy, “A Utilization Based Genetic Algorithm for virtual machine placement in cloud systems,” Comput Commun, vol. 214, pp. 136–148, Jan. 2024, doi: 10.1016/J.COMCOM.2023.11.028.
[76] K. Lacurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo: Network-Aware Task Placement for Cloud Applications,” 2013, doi: 10.1145/2504730.2504744.