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Abstract  
Cloud data centers (CDCs) have witnessed significant growth to meet the increasing demands of modern applications. 

However, this expansion has raised concerns regarding the environmental impact, energy requirements, and electricity costs 

associated with data centers. The network infrastructure, serving as the communication backbone of these data centers, plays 

a crucial role in their scalability, performance, cost, and, most importantly, energy consumption. This review provides 

meaningful perspectives and valuable insights into the state-of-the-art research regarding the problem of virtual machine 

placement (VMP), focusing on the network-aware energy efficiency aspects of data centers. It provides an overview of VM 

placement and presents a comprehensive survey of prominent VM placement algorithms from the existing literature. 

Additionally, a thematic taxonomy of network-aware algorithms is introduced, highlighting the key energy consumption 

metrics and presenting a new classification of VMP algorithms that considers datacenter network (DCN) topology, traffic 

patterns, communication patterns, and energy reduction strategies. Besides addressing pertinent research questions in this 

domain, this review summarizes the findings and suggests potential avenues for future research, guiding researchers in 

designing and implementing more effective and efficient network-aware VM placement algorithms that optimize energy 

consumption, improve network performance, and minimize migration costs. 

 

 

 

Keywords: Cloud computing; VM placement; network-aware; Energy-efficient; Network architecture. 
 

1- Introduction 

Cloud computing is an internet-based technology that 

provides services without the need for physical 

infrastructure ownership. The cloud computing model is 

responsible for managing tens of data centers that manage 

computing applications and data storage. Cloud providers 

offer three service models: Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a Service 

(SaaS), with deployment models including public, private, 

community, and hybrid [1]. Virtualization is the key factor 

in cloud computing. It improves resource efficiency and 

reduces costs. The high energy consumption in data centers 

is a significant issue, especially with cooling equipment that 

consumes 80% of available energy [2].  

In the cloud environment, virtual machine (VM) traffic can 

account for 50%-80% of total data center network traffic [3], 

motivating network-aware placement to minimize cross-

rack hops and reduce energy consumption. In this field, 

most research focuses on optimizing resource utilization 

and power consumption to address cost-related challenges. 

Proper planning of the network architecture is very 

important as the number of VMs continues to rise and data 

centers and communication networks continue to expand. 

As cloud applications handle more data, inter-VM network 

bandwidth increases due to the high demand for bandwidth 

that heavily depends on network resources. This presents a 

challenge for cloud environments to strike a balance 

between energy efficiency and performance. Conserving 

energy through reducing network equipment could lead to a 

violation of service level agreements (SLAs) and degrade 

performance [4]. 

Why Network-Aware VM Placement Matters: 

Despite growing efforts to optimize server energy use, the 

network infrastructure —comprising switches, routers, and 

links— remains a major yet often under-optimized 

contributor to overall energy consumption. What makes 

network-aware VM placement particularly compelling is its 
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dual impact: it not only reduces energy usage by limiting 

inter-rack communication and enabling low-power network 

states but also improves performance by lowering latency 

and congestion. These benefits become increasingly 

relevant as VM-to-VM communication dominates traffic 

patterns in modern data centers. As such, placement 

strategies must now evolve to consider network topology 

and traffic locality as primary optimization dimensions, not 

secondary concerns. 

This paper explores several research questions related to 

network-aware VM placement in cloud data centers (CDCs). 

It begins by analyzing the key factors previously examined 

in this domain, such as initial VM placement and potential 

migrations, and their impact on network performance. The 

study then identifies the most effective metrics for 

evaluating the success of energy-efficient, network-aware 

VM placement algorithms, considering both resource 

utilization and network performance. Additionally, it 

investigates how the network topology within a data center 

affects overall power consumption and whether enhancing 

network power efficiency can influence the costs associated 

with VM migration. 

This paper makes the following contributions to the field of 

energy‐efficient, network‐aware VM placement in CDCs: 

• Taxonomy of Methodologies 
We propose a novel taxonomy that systematically classifies 
existing network‐aware VM placement approaches, 
highlighting each approach’s underlying energy‐efficiency 
mechanisms. 

• Categorization of Existing Work 

We analyze and categorize state‐of‐the‐art algorithms based 
on key metrics —such as topology awareness, traffic 
patterns, and consolidation techniques— and evaluate their 
impact on overall energy consumption. 

• Identification of Challenges 
We pinpoint critical gaps in current research, most notably 
the lack of integration between VM placement strategies and 
dynamic network energy-saving techniques . 

• Proposed Solutions 

We suggest actionable solutions to address these challenges, 
including cross‐layer optimization frameworks and 
topology‐aware VM consolidation heuristics that co‐locate 
high‐traffic VMs to minimize network usage. 

• Future Research Directions 

We outline open problems and emerging trends; such as AI‐
driven placement and edge‐cloud coordination; to guide 
future work in this area. 

• Practical Resource for Researchers 

We provide a structured reference for practitioners, showing 
how to balance network performance and power savings 
when designing new VM placement algorithms. 

The remainder of this paper is organized as follows. Section 

2 reviews existing surveys on network-aware VM 

placement. Section 3 presents an analysis of VM placement 

(VMP) algorithms. Section 4 introduces our taxonomy of 

network-aware, energy-efficient approaches. Section 5 

discusses the limitations of today’s research. Finally, 

Section 6 concludes with key takeaways and outlines 

precise future research directions aimed at helping both 

researchers and practitioners design VM placement 

strategies that minimize power usage without 

compromising network performance. 

2- Landscape of Existing VMP Surveys 

2-1- Overview of Prior Surveys Focus Areas 

Several survey articles have previously explored VMP in 

cloud computing, addressing critical challenges in areas 

such as minimizing energy consumption, optimizing traffic 

routing, and ensuring resource allocation efficiency. These 

efforts span a wide range of algorithmic strategies, 

including heuristic algorithms, meta-heuristic optimization, 

dynamic workload balancing, and energy-aware 

scheduling. While individually rich in contributions, many 

of these surveys tend to focus on isolated dimensions of the 

VMP problem, often treating energy-efficiency and 

network-awareness as distinct objectives rather 

interdependent system constraints. 

 

Although prior surveys cover individual hardware 

mechanisms—Dynamic Voltage and Frequency Scaling 

(DVFS) and Adaptive Link Rate (ALR) —or network-

aware placement separately, no integrative framework 

treats these energy-saving techniques and network-sensitive 

parameters (traffic patterns, communication behavior, 

Datacenter Network (DCN) topology) as co-dependent. 

• DVFS dynamically lowers a processor’s supply 
voltage and clock frequency during light workloads to 
reduce power consumption.  

• ALR reduces the data-link speed (or puts links into 
low-power idle modes) on underutilized network ports, 
saving significant switch and NIC energy but introducing 
variable latency when ramping back to full rate. 

This deficiency limits the applicability of existing 

classifications in real-world CDCs where network usage 

and energy dynamics are deeply intertwined. Therefore, this 

review aims to bridge that gap by delivering a unified 

analytical lens that evaluates VMP strategies at the 

intersection of network topology, traffic behavior, and 

energy optimization—providing researchers and 

practitioners with a holistic foundation for future 

algorithmic developments. 
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2-2- Features and Gaps  

Table 1 presents a multi-dimensional mapping of prior 

VMP surveys across several core features, highlighting 

areas of emphasis and omission in relation to network-

awareness, energy-efficiency, and VM placement logic. 

 
Table 1. Comparison of Existing Surveys on Network-Aware VM Placement Across Key Dimensions 

Ref Year Placeme

nt & 

Migratio

n 

Traffic-

Eng. 

DCN 

Topology 

Inter-VM/ 

VM→Storage 

Comm. 

Pattern 

Energy-

Saving 

Hardware-

Based 

Traffic-

Based 

Thermal 

Mgmt. 

Perf. 

Impact 

App 

Focus 

[5] 2013 ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ 

[6] 2014 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 

[7] 2015 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ 

[8] 2014 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 

[9] 2014 ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ 

[10] 2015 ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ 

[11] 2015 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[12] 2016 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[13] 2020 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[14] 2020 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ 

[15] 2021 ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ 

[16] 2023 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

[17] 2024 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ 

[18] 2024 ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 

Our 

Work 

2025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

To further contextualize the strengths and omissions across 

surveys, Table 2 summarizes the primary focus of each 

reference and the most prominent gaps with respect to 

network-awareness and energy optimization. 

 
Table 2. Most Prominent Gaps Across Reviewed Surveys. 

Ref Year & Venue Primary Focus Most Prominent Gaps (in Network‐Aware Context) 

[5] 2013, Cluster Computing ALR and link‐layer energy techniques No VM placement or topology‐aware placement; lacks 

traffic pattern integration 

[6] 2014, ACM Computing Surveys High-level energy‐efficiency (DVFS, link 

sleep) 

Algorithmic VM placement details missing; no explicit 

DCN topology analysis 

[7] 2015, FGCS Network-aware VM placement & 

migration 

No link‐layer ALR/DVFS inclusion; limited thermal 

considerations 

[8] 2014, Computer Communications DCN architectures & energy-aware 
routing 

No VM consolidation or ALR integration; lacks detailed 
performance vs. energy metrics 

[9] 2014, FGCS Green DCN architectures taxonomy Hardware-level focus; lacks VM-level dynamics or 

traffic/thermal overlays 

[10] 2015, JNCA Live VM migration & server 

consolidation frameworks 

Limited network awareness (focuses on migration 

traffic); does not tie placement to topology or ALR 

[11] 2015, IEEE CCGrid General VM placement taxonomy Does not explicitly cover network-energy techniques 

(ALR) or topology variations 

[12] 2016, JNCA Algorithm catalog (ILP, heuristics, 
metaheuristics) 

Lacks network‐energy integration; does not address 
dynamic traffic patterns 

[13] 2020, JSC Multi-objective VM placement Does not integrate ALR or DCN topology; limited 

discussion of per-flow traffic metrics 

[14] 2020, Kybernetes Classification of VMP mechanisms in 
cloud 

No explicit focus on link-layer energy or inter-VM traffic 
topology 

[15] 2021, Computer Science Review Multi-level consolidation (VM, container, 

etc.) 

No focus on ALR or DCN topology; limited to 

consolidation trends 

[16] 2023, The Journal of Computational 
Science and Engineering 

Review of 7 energy-efficient VM 
placement strategies 

General efficiency metrics; lacks deep integration of 
DCN traffic patterns or communication metrics 

[17] 2024, Frontiers in Computer Science ML-based VM scheduling techniques Does not classify topologies or link-level policies; lacks 

VM clustering detail 

[18] 2024, Telecommunication Systems Phased VMC lifecycle review (PM→VM 
selection→placement) 

Does not integrate link‐layer energy or topology; focuses 
on VM phases without network-energy objectives 

— 2025, TBD (Our Work) Unified network-aware VMP taxonomy Fills all gaps by integrating ALR, topology, traffic 

patterns, and energy/thermal considerations 
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While Table 1 and Table 2  provide a 

comparative overview of survey scopes, a deeper analysis 

of each work reveals further  insights into thematic priorities 

and overlooked dimensions. As summarized in Table 2, the 

majority of prior surveys fail to integrate link-layer energy 

mechanisms, DCN topology constraints, and traffic-aware 

placement into a unified classification framework. This 

motivates the need for a closer, qualitative critique of each 

referenced study—highlighting what each survey addresses 

and, more importantly, how our work advances beyond 

them with a network-aware energy-efficient focus. 

2-3- Critical Analysis 

This subsection presents an evaluation of each major survey 

study on VMP published from 2013 through 2024, with a 

focus on their contributions to energy-efficient and 

network-aware strategies. For each referenced work ([5]- 

[18]), we describe the main idea of the survey, identify its 

strengths, and highlight gaps related to the intersection of 

communication patterns, topology constraints, and power 

efficiency. Such analysis has two goals: first, to document 

the advancement of the domain in the past ten years, and 

second, to show how most of these surveys fail to integrate 

all these aspects into a single framework.  This subsection 

also serves to demonstrate how our proposed taxonomy 

explicitly addresses these multi-layered challenges by 

integrating network topology, traffic-awareness, and 

energy-aware mechanisms under a unified VM placement 

perspective. These observations establish the rationale for 

our integrated taxonomy, as elaborated in the following 

sections. 

The survey [5] offer one of the foundational treatments of 

green networking by categorizing ALR techniques - 

dividing link-sleep policies (immediate vs. delayed wake) 

and link-rate scaling schemes- and by evaluating the IEEE 

802.3az standard’s potential to save nearly 0.9 TWh 

annually in large US data centers. Their strength lies in 

rigorously detailing how ALR can dynamically reduce link-

layer power, from NICs up to aggregation switches. 

However, because their focus remains at the hardware and 

firmware level, they do not address how VM placement or 

migration strategies might leverage fluctuating link speeds 

or ALR states to optimize overall data center energy. Our 

survey fills this gap by explicitly integrating ALR 

considerations into the network-aware VM placement 

taxonomy,  demonstrating how VM co-location based on 

communication affinity can complement hardware-level 

ALR to maximize energy savings. 

The authors of [6] present a broad, multi‐layer survey of 

energy‐efficiency techniques in large‐scale distributed 

systems, covering hardware‐level approaches (DVFS, 

power modeling), server‐level optimizations (VM 

consolidation, dynamic provisioning), and network-layer 

tactics (ALR, link‐sleep, topology reconfiguration). Their 

work’s strength is in demonstrating that up to 30–40% of a 

data center’s energy can be consumed by its networking 

infrastructure, thus motivating holistic solutions, but lacks 

a taxonomy specific to VM placement. Our work fills this 

void by extending network-layer concerns into VM 

placement contexts, thereby illustrating how topology- and 

traffic-aware placement strategies interact with server and 

link energy dynamics. 

The authors of [7] present a specialized taxonomy of 

network-aware VM placement and migration algorithms, 

classifying approaches based on problem formulation (ILP 

vs. heuristics), traffic awareness (static vs. dynamic), and 

objectives (minimizing inter-VM traffic, avoiding 

congestion, balancing network load) . They survey methods 

that co-locate high-traffic VM pairs -reducing inter-rack 

hop counts by roughly 30%. Although they excel in 

highlighting how inter-VM communication patterns drive 

placement, they do not incorporate link-layer ALR or DVFS 

as explicit dimensions in their classification, nor do they 

quantify the impact of particular DCN topologies on overall 

energy consumption. Our survey extends their work by 

embedding these network-aware placement algorithms 

within a broader framework, explicitly incorporating DCN 

structure, traffic distribution patterns, and link utilization 

characteristics into placement decision-making. 

Authors in [8] provides a focused survey on architectures 

and energy efficiency in data center networks. It covers 

DCN topologies (FatTree, VL2) and green techniques like 

link adaptation and component shutdown. However, it lacks 

granularity in VM-level policies. Our review complements 

this by showing how such architectural designs can be better 

utilized when paired with VM placement that respects 

traffic distribution and energy states, offering specific 

placement criteria that leverage topology-induced 

communication cost differences. 

The authors in [9] conducted a comprehensive survey on 

Green Data Center Networks (DCNs), focusing on energy-

efficient architectures (electrical, optical, hybrid), traffic 

management, and performance monitoring. While their 

work extensively covers network-level energy optimization 

techniques like ALR and topology-aware resource 

consolidation, it does not systematically integrate VM 

placement strategies with network energy efficiency. This 

separation weakens the applicability of their insights for 

practical scheduling decisions. This work integrates their 

hardware-level insights into VM placement taxonomy, 

connecting traffic profiles and server locality to DCN 

energy states. 

The authors of [10] deliver a deep examination of live VM 

migration and server consolidation frameworks, 

categorizing bandwidth-optimization techniques (block-

level and file-level deduplication, delta compression, 

dynamic rate limiting), storage-checkpoint approaches, and 

consolidation triggers (CPU/memory thresholds vs. 

predictive models). Their strength is in quantifying 
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migration downtime, total transfer time, and migration 

energy overhead across dozens of tools (e.g., Xen pre-copy, 

KVM post-copy, RDMA-accelerated). They also survey 

DVFS-enabled consolidation policies that reduce CPU 

power during migration windows. However, they do not 

incorporate network-awareness beyond minimizing 

migration traffic; specifically, they do not explore how VM 

selection and placement decisions could optimize for inter-

VM communication patterns. In contrast, our survey 

extends their consolidation framework by explicitly 

modeling migration and placement objectives that minimize 

both compute and network power.  

The work in [11] propose a five-axis taxonomy for VM 

placement —spanning optimization objectives (power, 

performance, network, reliability), workload models (batch, 

enterprise, web, HPC), constraints (QoS, SLA, affinity), 

problem formulations (ILP, CP, heuristics, metaheuristics), 

and placement modes (static vs. dynamic). They provided 

researchers with an early, systematic way to navigate the 

VM placement literature. Nonetheless, their taxonomy does 

not explicitly integrate network-layer energy techniques 

such as ALR or discuss how specific DCN topologies shape 

algorithmic design. Our work builds on their multi-

dimensional approach by DCN topology —thus mapping 

each placement algorithm onto a richer, network-aware 

energy context, and explicitly correlating traffic patterns 

with link-power-saving opportunities. 

Survey [12] compile an extensive algorithm-centric 

overview of VM placement techniques, grouping them into 

exact ILP/MIP formulations, multi-objective nonlinear 

programming, bin-packing heuristics (e.g., First-Fit 

Decreasing, Best-Fit Decreasing), coalition- and graph-

theory methods (e.g., Hungarian algorithm), and 

evolutionary metaheuristics (GA, PSO, ACO, SA, BBO) . 

They evaluate each category in terms of scalability, solution 

quality, and runtime, concluding that metaheuristics 

predominate for large data centers. However, their survey 

omits any discussion of network-aware energy techniques 

or DCN topology. In our work, we situate each algorithm 

class within a unified, network-aware framework that 

specifies how each network metric studied influence 

performance and energy outcomes, thereby providing 

practical guidance on selecting placement strategies based 

on the communication structure of the workload. 

In their study [13], the authors deliver a comprehensive 

multi-objective taxonomy for IaaS VM placement, 

distinguishing between single-objective (power only) and 

multi-objective (power and network, power and QoS) 

methods, and between operation modes (offline vs. online), 

while also noting emerging challenges such as AI/ML-

based placement and edge-cloud integration. However, they 

do not unify ALR or DCN topology into their taxonomy. 

Our survey builds upon their multi-objective perspective by 

adding a network-energy dimension, including 

communication-aware cost functions and DCN-aware co-

location policies. 

The survey [14] provides a comprehensive overview of 

VMP mechanisms in cloud environments by systematically 

categorizing approaches into static and schemes. Their 

strength lies in rigorously detailing the mapping algorithms, 

selection criteria, and resource-utilization impacts across 40 

carefully filtered studies. However, because their focus 

remains at the process level (static vs. dynamic) and general 

algorithmic families, they do not analyze how network-

aware strategies, thermal considerations, or renewable-

energy profiles influence VMP decisions. Our survey fills 

this gap by explicitly integrating these concerns, by 

enabling sustainability-oriented VM allocation guided by 

real-world infrastructure constraints. 

The work described in [15] resent a comprehensive survey 

of data center consolidation in cloud computing systems, 

with a significant portion dedicated to VM-level 

consolidation techniques —examining threshold-based host 

selection, VM selection heuristics, and consolidation-

driven energy models for CPU and memory utilization. 

Their strength lies in synthesizing a wide range of VM 

consolidation algorithms—ranging from simple first-fit and 

best-fit heuristics to more advanced ILP and metaheuristic 

formulations—and in highlighting how VM consolidation 

can reduce the number of active hosts and, consequently, 

overall energy consumption. However, although they touch 

on VM migration overhead, they do not incorporate 

network energy considerations nor analyze how specific 

data center topologies influence consolidation decisions. 

Our survey extends their VM-level focus by embedding 

each consolidation algorithm within a network-aware 

framework, explicitly showing how inter-VM traffic 

patterns interact with placement heuristics to maximize 

combined compute and network energy savings, resulting 

in more holistic and topology-sensitive consolidation 

strategies.  

The authors of [16] present a concise survey of seven 

energy‐efficient VM‐placement algorithms in cloud data 

centers, covering load‐balancing heuristics, metaheuristic 

methods, queuing‐based models, simulation‐driven 

approaches, static placement schemes, hybrid strategies, 

and predictive control techniques. Their work’s strength lies 

in clearly summarizing each algorithm’s core mechanism 

and practical applicability, but it lacks a systematic 

taxonomy and quantitative comparison—particularly 

omitting network‐layer energy management. Our survey 

fills this void by introducing a comprehensive, multi‐

dimensional taxonomy and detailed comparison tables that 

explicitly integrate network‐ and thermal‐aware dimensions 

into VM placement strategies, bridging infrastructure 

constraints with algorithm design. 

The authors of [17] conduct a systematic literature review 

(SLR) of VM‐scheduling studies, categorizing them into 

three principal methodologies —traditional, heuristic, and 
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meta-heuristic— and rigorously charting their problem 

formulations, performance metrics, and simulation 

environments. Their strength lies in applying a clear SLR 

protocol to distill trends and challenges across a broad 

corpus. However, because their taxonomy is organized 

solely around algorithmic families and general scheduling 

parameters, it omits network‐aware energy management 

considerations. Our survey fills this void by introducing 

dedicated network- and thermal-awareness in the VM-

placement classification, highlighting the impact of link-

power state models and topology-aware routing in 

placement evaluation. 
Authors of [18] offer a systematic overview of VM 

Consolidation (VMC) by describing the three fundamental 

phases -(1) Physical Machine (PM) detection, (2) VM 

selection, and (3) VM placement- and classifying works 

according to their problem formulation (ILP, heuristic, 

metaheuristic), constraint sets (SLA, affinity, resource 

capacities), and objective functions (power minimization, 

network traffic reduction, cost, SLA violation) . Their major 

contribution is the clear, phase-by-phase breakdown of 

VMC, which helps researchers identify algorithmic gaps in 

each subproblem. Still, although they recognize 

“minimizing network traffic” as one possible objective, 

they do not assess the role of DCN topology. In contrast, 

our survey embeds topology-aware metrics directly into the 

VMP decision model—linking traffic routing patterns, 

bandwidth bottlenecks, and link power profiles with 

placement granularity. 

2-4- Motivation Toward a Network-Energy-

Aware VMP Taxonomy 

Building on the limitations identified, we now motivate the 

need for a more unified taxonomy that explicitly links 

energy and network metrics in VM placement. 

This paper addresses these gaps by: 

• Providing an integrated taxonomy covering both 
network and energy optimization. 

• Categorizing and analyzing methods across heuristic, 
meta-heuristic, ML, and hybrid strategies. 

• Highlighting topological and communication-aware 
metrics used in real deployments. 

• Incorporating recent advancements (2022–2025) 
including RL-based, and graph-theory-informed VMP 
strategies. 

In summary, the existing body of survey work demonstrates 

valuable insights into VM placement challenges, yet lacks 

a unified treatment that integrates network topology, 

communication behavior, and energy efficiency within a 

cohesive evaluation framework. These gaps underscore the 

importance of establishing a systematic classification of 

VMP strategies, not only to contextualize existing methods 

but also to lay the groundwork for deeper, network-aware 

taxonomic analysis. 

In the following section, we present a general classification 

of VM placement approaches, categorizing them by 

strategic objectives, optimization techniques, infrastructure 

considerations, and workload profiles — all of which form 

the foundation for the specialized taxonomy introduced in 

Section 4. 

Early research prioritized server-side optimization because 

DCNs were heavily overprovisioned and per-flow traffic 

metrics were not readily exposed to hypervisors. Moreover, 

combining server and network objectives created complex 

multi-objective problems, and only with the advent of SDN-

based telemetry [7] did network-aware placement become 

both feasible and attractive. 

2-5- Bibliometric Overview 

To assess the scholarly rigor of our survey corpus, we first 

defined precise selection criteria—keywords related to 

virtual machine placement, inclusion of peer-reviewed 

articles from reputable publishers, and exclusion of non-

technical reports or non-English sources. We then executed 

systematic searches across Scopus and Web of Science 

using Boolean combinations of “virtual machine 

placement,” “cloud data center,” and “energy efficiency,” 

restricting results to publications between 2009 and 2025. 

After de-duplication and application of our 

inclusion/exclusion rules, 80 references remained for  

analysis. Table 3 summarizes the distribution of these works 

by their SCImago Journal Rank quartile and lists the 

corresponding reference numbers. Table 4 shows the 

temporal breakdown of the references into 2009–2018, 

2019–2021, and ≥ 2022 periods. Together, these tables 

provide a clear picture of both the scholarly rigor and the 

evolution of the field over time. 

Table 3. Distribution of survey references by SCImago journal rank 

quartile. 

Quartile Count References 

Q1 21 [6], [8], [9], [10], [12], [22], [26], [33], [37], 

[38], [44], [49], [52], [54], [60], [62], [69], 

[72], [73], [78], [85] 

Q2 17 [5], [13], [15], [17], [21], [24], [30], [31], 

[39], [40], [45], [50], [63], [66], [76], [79], 

[83] 

Q3 8 [14], [18], [35], [36], [47], [57], [70], [74] 

Q4 5 [2], [23], [34], [53], [80] 

N/A 34 [1], [3], [4], [7], [11], [16], [19], [20], [25], 

[27], [28], [29], [32], [41], [42], [43], [46], 

[48], [51], [55], [56], [58], [59], [61], [64], 
[65], [67], [68], [71], [75], [77], [81], [82], 

[84] 

 All Quartiles are taken from the latest SCImago data 

(2024). 

Conference proceedings, book chapters, standards, 

preprints, and other non-journal venues are marked N/A. 
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Table 4. Distribution of survey references by publication period (2009–
2018, 2019–2021, ≥ 2022). 

Date 

Range 

Count Reference Numbers 

2009–
2018 

38 [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], 
[12], [25], [27], [32], [42], [53], [54], [55], 

[56], [58], [59], [60], [62], [64], [65], [66], 

[67], [68], [70], [71], [72], [73], [74], [75], 
[77], [78], [80] 

2019–

2021 

21 [13], [14], [15], [26], [29], [31], [34], [36], 

[37], [40], [41], [43], [46], [47], [49], [50], 
[51], [57], [69], [76], [85] 

2022 and 

after 

26 [16], [17], [18], [19], [20], [21], [22], [23], 

[24], [28], [30], [33], [35], [38], [39], [44], 

[45], [48], [52], [61], [63], [79], [81], [82], 
[83], [84] 

3- VM Placement Classification 

This section reviews VM-level placement techniques in 

IaaS clouds. While container orchestration (e.g. 

Kubernetes, Docker Swarm) and serverless paradigms are 

reshaping resource management, they lie outside our VM-

centric focus. For multi-level consolidation spanning VMs 

and containers, we refer readers to [15]. 

To establish a foundation for network-aware taxonomic 

refinement, we first present a generalized classification of 

VMP strategies. This section categorizes the existing 

approaches through four essential questions as shown in 

Fig.1—Why place?(Objectives), How to place?(Methods), 

Where to place?(Constraints), and What is being 

placed?(Workload)—each representing a pillar of modern 

VMP design. It is important to note that many studies do not 

fit in a single category. Instead, authors often formulate 

their placement strategies using a combination of 

objectives, methods, and constraints, leading to intentional 

overlap across these classification boundaries. This 

multidimensional design reflects the complex, real-world 

trade-offs that cloud service providers must manage. 

3-1- Placement Objectives & Constraints (Why 

Place?) 

A- Energy Efficiency 

Energy efficiency is a foundational objective in VM 

placement, targeting both server-side and network-side 

power reductions. At the server level, strategies such as 

consolidation and intelligent VM distribution aim to reduce 

the number of active physical PMs. On the network side, 

minimizing inter-VM communication distance—by placing 

frequently interacting VMs closer within the topology—

reduces switch and link utilization. 

The Energy Efficient VM Placement (EE-VMP) model 

proposed in [19] demonstrated remarkable improvements, 

reducing power consumption by up to 56.89% and the 

number of active servers by 37%, while enhancing resource 

utilization by over 64%. These results underscore the 

potential of topology-aware consolidation combined with 

server optimization. However, the algorithm depends on 

accurate traffic matrices, which are rarely available in real 

time. 

Similarly, an Active Energy-Efficient Placement method 

[20] achieved average energy reductions of 21.2% 

compared to the First Fit baseline. This highlights the 

efficacy of lightweight heuristic decision-making when 

real-time adaptability is needed, particularly in large-scale 

public clouds. However, its simplicity ignores inter-VM 

traffic patterns, potentially increasing cross-rack 

communication. Thus, Active Placement is attractive for 

compute-heavy, low-communication workloads but falls 

short when inter-VM latency and bandwidth must also be 

managed. 

For dynamic workloads, the MOEA/D-based placement 

method proposed by [21] provides a more nuanced multi-

objective balance. It simultaneously minimizes energy 

usage and overload risks, ensuring QoS compliance while 

maintaining performance efficiency under load. This 

approach is especially valuable in heterogeneous cloud 

environments with fluctuating demand, although it comes 

at the cost of higher computational complexity. That said, it 

adds significant computational cost. Choosing MOEA/D is 

advisable when offline tuning is acceptable and runtime 

overhead is secondary to multi-objective precision; 

otherwise, one should reject it in favor of faster 

approximation methods. 

In [22], authors propose an algorithm designed to jointly 

minimize the energy consumption of both servers and 

network devices. The algorithm incorporates traffic 

awareness by co-locating highly interactive VMs and 

selecting physical paths with minimal energy costs. Their 

results demonstrated 11.4% reduction in total energy 

consumption, up to 22.3% reduction in network power 

Fig. 1. VM Placement Classification 
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usage, and significant improvement in VM-to-VM 

communication efficiency. This method shows how 

intelligent mapping of traffic-heavy VMs to proximity-

aware PMs can lower the utilization of aggregation and core 

switches, reducing link activation and routing overhead, yet 

the solution assumes that accurate traffic matrices are 

available prior to placement—a condition not always 

feasible in real-time cloud workloads. 

B- QoS/SLA Compliance  

Guaranteeing Quality of Service (QoS) and minimizing 

Service Level Agreement (SLA) violations are crucial 

objectives in VM placement. Overlooking these 

considerations can result in degraded user experience, 

financial penalties, and reduced provider reputation—

especially in multi-tenant cloud infrastructures operating 

under tight availability thresholds. 

The work in [23]  introduced a utilization-aware VM 

placement policy that anticipates workload demands and 

avoids host overloading. By forecasting CPU trends and 

limiting consolidation aggressiveness, the method 

minimizes SLA violation time per active host while 

maintaining consolidation efficiency. However, reliance on 

CPU-only forecasting neglects network congestion effects 

during live migrations, potentially shifting bottlenecks to 

oversubscribed links. Moreover, the threshold-based 

decision logic may misfire under sudden workload spikes, 

degrading performance.  

In [24], the authors proposed an Energy and QoS-aware VM 

placement algorithm (EQVMP) tailored for IaaS cloud 

environments. Their work integrates host energy modeling 

with service availability constraints, using a hybrid 

scheduling policy to minimize SLA violations. 

Experimental results show that EQVMP achieves lower 

energy consumption compared to baseline algorithms like 

RR and FF, while improving response time and reducing 

SLA violations, particularly under high-demand scenarios. 

Nevertheless, EQVMP’s energy model abstracts away fine-

grained network costs, and its rule-based availability checks 

introduce additional scheduling latency.  

In a broader context, In [25], authors developed a multi-

domain SLA management model incorporating a Generic 

SLA Manager (GSLAM) linked with OpenStack. Their 

approach models SLA violations and penalties across the 

IaaS, PaaS, and SaaS layers. The AV/AVL algorithms they 

introduce maintain availability above 99.99% and reduce 

penalty propagation across domains by controlling live 

migration overhead and optimizing host selection. While 

this multi-layer perspective improves service-level 

economics, the framework’s orchestration complexity and 

cross-layer coordination overhead pose significant 

scalability challenges.  

C- Cost Optimization  

Cost-efficient VM placement remains a critical challenge in 

cloud infrastructures, especially in geographically 

distributed data centers where energy prices, carbon taxes, 

and renewable availability vary significantly. The work in 

[26] proposed a renewable- and carbon-aware VM 

allocation model that minimizes electricity costs and CO₂ 

emissions by dynamically placing VMs across data centers 

based on green energy availability, carbon intensity, and 

electricity prices. Their system integrates DVFS techniques 

and dynamic workload balancing, optimizing both cooling 

and server power usage. This work implicitly touches on 

network-related cost considerations by analyzing the carbon 

footprint and latency constraints tied to inter-data center 

VM placement and container communication, making it 

relevant to network-aware resource allocation. However, 

the method presumes reliable, low-latency energy pricing 

and renewable forecasts, which may not be universally 

available; it also overlooks performance impacts of inter-

site VM migrations, risking degraded QoS for latency-

sensitive workloads.  

Similarly, in [27] authors designed a power and cost-aware 

placement strategy using a fuzzy decision model that 

simultaneously considers power consumption, electricity 

costs, and resource utilization. Their strategy yields 

measurable cost benefits under stable network conditions 

but omits dynamic bandwidth pricing and incurs significant 

overhead from fuzzy parameter tuning. 

D- Load Balancing  

Effective load balancing in virtual machine placement 

ensures even distribution of tasks across physical resources, 

which reduces processing delays, prevents host 

overloading, and maintains optimal system throughput. 

Load imbalance can lead to resource contention, degraded 

performance, or energy inefficiencies, particularly in high-

density cloud environments. 

In [28], a hybrid metaheuristic approach combining Ant 

Colony Optimization (ACO), Particle Swarm Optimization 

(PSO), and Artificial Bee Colony (ABC) is introduced to 

improve load distribution. This tri-hybrid method leverages 

the strengths of each algorithm: ACO's path-finding 

accuracy, PSO's global exploration, and ABC's exploitation 

of good solutions. The algorithm dynamically reallocates 

workloads among VMs based on current utilization, 

minimizing makespan and improving response time. 

Simulation using CloudAnalyst showed that the hybrid 

strategy significantly reduced average response time and 

execution time, outperforming classical load balancing 

algorithms like DLMA and IDLBA. Despite these gains, the 

combined algorithm entails high computational complexity, 

complex parameter calibration, and limited scalability 

under dynamic workloads. 
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Authors of [29] proposed the Min-Max Exclusive VM 

Placement (MMEVMP) strategy designed for scientific 

data environments, where workloads are data-intensive and 

disk I/O becomes a performance bottleneck. Unlike 

conventional CPU-centric methods, MMEVMP considers 

both disk bandwidth and CPU utilization to minimize SLA 

violations and reduce system operating costs. The algorithm 

dynamically avoids hosts likely to face disk saturation by 

analyzing historical usage patterns and applying adaptive 

time-based thresholds. Their experiments using a 

lightweight CloudSim version showed that MMEVMP 

achieved lower SLA violation rates while keeping energy 

consumption within acceptable bounds. However, the 

approach depends on accurate historical I/O profiling and 

neglects real-time network traffic patterns, potentially 

shifting bottlenecks to the network layer. 

 

3-2- Optimization Models (How to place?) 

Optimization approaches to VMP can be categorized into 

distinct yet overlapping models, each with advantages tied 

to performance, scalability, and adaptability to multi-

objective goals. These include mathematical models, 

heuristic methods, metaheuristics, and learning-based 

approaches. 

A- Mathematical Optimization  

The work [30] presents a Multi-Objective Integer Linear 

Programming (MOILP) model for optimal VM placement, 

addressing resource utilization in CDCs. Although MOILP 

offers a rigorous mathematical framework for balancing 

conflicting objectives, its computational complexity grows 

exponentially with problem size. When applied to scenarios 

involving thousands of VMs and PMs, this leads to long 

solution times and excessive resource demands—rendering 

MOILP impractical for real-time or highly dynamic cloud 

environments. Even with enhancements like Tabu Search 

acceleration, solver runtimes extend beyond acceptable 

limits for dynamic cloud environments.  

This paper [31] introduces mixed‐integer programming 

(MIP) models for virtual machine placement that embed 

disk anti‐colocation constraints—ensuring no physical disk 

hosts more than one virtual disk from the same VM—to 

optimize resource allocation in datacenters. MIP 

formulation may involve trillions of variables and/or 

constraints for large datacenter and therefore can’t solve 

VMP optimally within acceptable time. 

 

Optimization-based VM placement approaches offer 

mathematically rigorous formulations that guarantee 

optimality under well-defined constraints. These methods 

are especially suitable for precision-critical environments 

where deterministic outcomes  are essential. Their ability to 

handle multiple objectives simultaneously (e.g., minimizing 

energy while balancing load and respecting hardware 

constraints) is a significant strength not easily replicated by 

heuristics or learning-based methods. 

However, the computational cost of solving such models 

grows exponentially with problem size, making them 

impractical for large-scale cloud infrastructures [32]. 

Incorporating network-related constraints—such as inter-

VM bandwidth demands, link capacities, or communication 

topologies—further increases the complexity. Even when 

advanced solvers or acceleration techniques  are used, real-

time placement decisions remain out of reach for anything 

beyond small- to medium-scale scenarios. 

These approaches are also highly sensitive to changes in 

input parameters or constraints. A minor modification in 

workload demand or infrastructure policy may require full 

model regeneration and resolution, limiting their 

responsiveness to dynamic or elastic cloud environments. 

Furthermore, despite their theoretical strength in modeling 

energy consumption or network utilization, embedding 

such metrics into optimization formulations significantly 

delays solver convergence. 

In terms of scalability, scenarios with fewer than 500 VMs 

are well-suited to these methods. On the other hand, large-

scale, dynamic, or latency-sensitive platforms—such as 

public clouds or edge computing environments—are poorly 

matched due to the models' inability to respond within strict 

time constraints. 

This type of optimization is best suited for offline placement 

in private clouds with stable demand, small-scale 

deployments where optimality justifies runtime, and 

regulated environments requiring strict constraint handling 

(e.g., security or compliance-based placement). But they 

perform worse with rapidly scaling public clouds, edge 

scenarios with latency bounds, and dynamic workloads 

requiring frequent re-optimization. 

B- Heuristics 

Heuristic methods are variants of bin-packing and greedy 

placement. They offer rapid, scalable approximations for 

the VM placement problem. Use simple, rule-based 

strategies (e.g. First-Fit, Best‐Fit Decreasing [33])). These 

algorithms sort VMs by one or more dimensions (such as 

CPU demand or traffic volume) and assign each VM to the 

“best” host in linear or near-linear time. 

GMPR [34] is a greedy placement algorithm that first ranks 

PMs by power efficiency to minimize the number of active 

hosts, then sequentially reduces resource imbalance and 

slack. In simulations on synthetic workloads and Amazon 

EC2 traces, GMPR achieves average savings of 1.91% in 

energy consumption and 16.18% in resource wastage versus 

state-of-the-art methods yet overlooks bandwidth costs. 

Hybrid Best-Fit (HBF) [35] extends the classic Best-Fit 

heuristic by running three VM-ordering schemes (original, 

ascending size, descending size) and selecting the allocation 

with the lowest total energy. HBF consistently outperforms 
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both Best-Fit and Best-Fit Decreasing with minimal 

additional computation, but without addressing network 

proximity. 

Heuristic-based VM placement approaches are widely used 

for their speed, simplicity, and scalability, making them 

particularly effective in large-scale datacenter 

environments where rapid decisions are essential. 

Techniques such as First-Fit and Best-Fit Decreasing 

achieve linear or near-linear time complexity (O(n log n)), 

enabling quick allocation of VMs with minimal 

computational overhead. Rule-based strategies, like sorting 

VMs based on CPU demand or traffic volume, are easy to 

implement and impose very little runtime cost. These 

methods are especially well-suited for static or predictable 

workloads. 

However, the main limitation of heuristic approaches lies in 

their tendency to optimize single dimension while 

neglecting critical factors like network traffic. As a result, 

they often perform poorly in multi-objective optimization 

scenarios that require balancing energy consumption, 

latency, and SLA compliance. Their static nature also 

makes them not suitable for dynamic or unpredictable 

environments, where workload patterns change rapidly and 

real-time re-optimization is essential. While their 

computational efficiency remains a major strength, this 

speed frequently comes at the cost of placement accuracy 

compared to more adaptive metaheuristic or learning-based 

methods. 

In terms of scalability, heuristics perform well, handling 

high volumes of VM requests. They are ideal for 

environments where quick and frequent placement 

decisions are needed without deep optimization logic. 

However, their suitability for energy- and network-aware 

placement remains limited. Although variants like HBF 

reduce host-level energy consumption, they do not model 

dynamic power states or account for network bandwidth 

costs, resulting in potentially inefficient traffic patterns. 

Overall, heuristics are best reserved for static or predictable 

workloads —such as batch processing— or for initial 

placement stages before applying more adaptive 

optimization techniques. They are less appropriate for 

network-intensive applications, dynamic edge 

environments, or scenarios demanding multi-objective 

trade-offs. 

C- Metaheuristics 

Metaheuristic approaches, such as Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), 

Genetic Algorithms (GA), Grey Wolf Optimization 

(GWO), and their hybrids; tackle VM placement as a multi‐

objective optimization problem, balancing energy 

consumption, resource utilization, and SLA guarantees.  

For example, [36] propose a hybrid ACO–GWO that 

weaves in traffic‐awareness to co-locate high-

communication VMs, yielding up to 19.41% power savings 

and 10.72% bandwidth‐utilization improvements over 

baseline algorithms. 

[37] classify and critique a broad spectrum of nature-

inspired metaheuristics—SA, PSO, GA, ACO, BBO, and 

hybrids—highlighting their strengths in 

exploration/exploitation balance but noting their general 

omission of communication costs. 

The work [38] presents a hybrid GA–best‐fit scheme that 

minimizes active PMs and resource wastage, characterizing 

VMs by CPU, RAM, and bandwidth. 

Recently, the work [39] proposed the NCRA-DP-ACO 

algorithm, a network-, cost-, and renewable-aware ACO 

framework for energy-efficient VM placement across 

geographically distributed datacenters. Unlike previous 

metaheuristic solutions, this work introduces a dynamic 

Power Usage Effectiveness (PUE) model, real-time solar 

energy profiling, and carbon-aware cost modeling. By 

integrating environmental and economic factors into the 

multi-objective placement strategy, the algorithm achieved 

up to 18% energy savings and a 48% reduction in live 

migrations compared to baseline heuristics and 

metaheuristics. This approach demonstrates that 

incorporating sustainability-aware factors can significantly 

enhance placement decisions in large-scale cloud 

environments, addressing a critical gap often neglected in 

earlier VM placement studies. 

Metaheuristics offer excellent pathways to near-optimal 

placement of VMs in multi-objective environment. They 

are capable of compromising among energy efficiency, 

SLA, and resource consolidation while covering a large 

solution space.  

However, their performance heavily depends on proper 

parameter tuning, and poor configurations lead to 

suboptimal convergence. Moreover, most metaheuristics 

neglect traffic patterns or topology, and therefore require 

additional improvements for traffic- and communication-

aware optimizations. Enhanced variants can improve 

network efficiency but require additional computational 

overhead. 

Since these algorithms are iterative and population-based 

searches over multiple generations (denoted as t), they 

exhibit higher O complexity —O(n²×t), where n is the 

problem size and t is the number of iterations. This reflects 

a quadratic growth in computational cost with problem size, 

meaning convergence time increases significantly as the 

number of VMs scales. Nevertheless, these approaches 

remain effective for medium to large problem sizes. 

These approaches are best suited for offline or semi-

dynamic VM placement scenarios where computation time 

is not a concern. They excel in multi-objective optimization 

—balancing energy efficiency, performance, and cost—and 

are effective in sustainable cloud environments that require 

periodic reallocation. However, they are less ideal for low-
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latency edge computing due to slower convergence rates, 

and they tend to underperform in highly dynamic or 

unpredictable workloads where rapid re-optimization is 

essential. For small-scale deployments, simpler heuristic 

methods are often more practical. 

D- Machine Learning 

Emerging AI-driven VM placement frameworks leverage 

predictive and adaptive techniques to anticipate demand, 

group workloads, and continuously learn optimal 

allocations. Workload Forecasting Models employ 

learning-based algorithms to predict future load patterns 

and proactively select hosts that balance energy 

consumption and SLA adherence.  

Classification & Clustering approaches identify high-traffic 

VM pairs or hosts at risk of overload and refine placement 

heuristics; Finally, Reinforcement Learning optimizes VM 

placement by learning from interactions with the 

environment (servers, network,  and workloads). 

Workload Forecasting Models: The work [40] introduces 

a dynamic, learning-based scheme that continuously 

predicts per-VM resource-usage thresholds to drive 

proactive allocation and live migration decisions. The 

approach adapts to fluctuating loads by generating runtime 

data and training a hybrid model (combining swarm-

inspired search with an ML classifier), thus improving SLA 

compliance, reducing migrations, and cutting energy 

compared to standalone bio-inspired or ML methods. 

Classification & Clustering: Random Forests or K‐means 

identify which VM pairs generate the most traffic, or which 

hosts are likely to become overloaded, refining heuristic 

weightings.  LECC [41] — a multi-objective VM (and data) 

placement framework for geo-distributed clouds that jointly 

minimizes carbon emission cost, energy consumption, and 

WAN communication cost— embeds an intelligent ML 

module that is trained on historical energy, latency, and 

carbon‐cost data to dynamically adjust its multi‐objective 

weightings (carbon emission, energy, WAN cost) at 

runtime.  Extensive simulations on synthetic and real 

(PlanetLab and EC2) traces demonstrate LECC’s ability to 

reduce server energy and cut response latency compared to 

baseline methods. 

Reinforcement Learning (RL):  The work [42] proposes a 

fuzzy-based State-Action-Reward-State-Action (SARSA) 

reinforcement learning algorithm for optimal VM 

placement in CDCs, effectively reallocating VMs to 

minimize energy consumption and resource wastage while 

ensuring compliance with SLA and QoS demands during 

fluctuating workloads. 

ML-based VM placement algorithms adapt better than 

static heuristics under workload variation and fast-changing 

user demands.  

Yet, there do exist serious disadvantages. These algorithms 

need huge amounts of training data of almost perfect 

quality, and their predictive power degrades if they are not 

promptly retrained or adapted. Many approaches in ML 

tend to disregard network traffic behavior or the underlying 

topology, limiting their applicability in optimizing network 

energy consumption or communication latency. These 

models add a further computational overhead and 

convergence delays: For instance, clustering methods scale 

at O(n³), while deep-learning techniques demand 

tremendous GPU/CPU resources [43]. 

Lastly, scalability becomes an issue: whereas the bigger 

data can continue to scale the ML model, on the other side, 

training and inference times increase with the size of the 

problem. Some solutions —distributed or federated 

learning— can help but introduce synchronization and 

convergence delays.  

Network- and energy-aware suitability, and also 

optimization, are still primary concerns of most of these 

ML-based solutions. Advanced architectures like GNNs 

can integrate network topology into their learning 

workflow, but these models are computationally costly and 

thus seldom used. Without explicitly modeling bandwidth 

consumption or link-layer power states, ML-based 

placements may underperform when communication and 

geo-distribution dominate the environment [44].   

ML-based VM placement algorithms are more suited to 

dynamic and large-scale cloud environments with regular 

patterns of workload and good availability of historical data 

[45]. However, their applicability is limited in real time or 

latency-sensitive deployments, where response has to be 

immediate. They also fail in environments where the 

workloads are unpredictable or rapidly changing. 

E- Graph Approaches 

Graph-theoretic VM placement models represent PMs/ 

VMs as graph nodes, with edges encoding constraints like 

inter-VM traffic or power costs. By applying community-

detection or graph-partitioning algorithms, they co-locate 

highly communicative VMs —minimizing network hops and 

energy consumption. 

The algorithm in [46] uses a graph‐coloring algorithm that 

models VMs as graph vertices and inter-VM traffic volumes 

as weighted edges, then iteratively “colors” (assigns) and 

merges vertices to minimize both network overhead and 

server power use. Their method batches VM migrations to 

keep high-traffic groups co-located and decommission 

underutilized hosts. Extensive simulations across 

hierarchical datacenter topologies demonstrate that GCA 

halves link saturation and outperforms single-migration 

schemes by up to 65% in network-overhead reduction. 

Authors in [47] propose a two-phase, graph-theoretic VM 

placement strategy tailored for data-intensive cloud 

applications. They first model the datacenter as a complete 

weighted graph —vertices are hosts, edges carry a 

networking-cost metric combining link saturation and hop 

count. In Phase 1, a fuzzy inference system ranks racks by 
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free resources and intra-rack traffic, and a linear program 

selects the smallest set of “close” racks with low uplink 

load. In Phase 2, the Traffic-Distance-Balanced (TDB) 

greedy algorithm uses the graph’s weighted adjacency 

matrix to iteratively pick hosts minimizing total inter-host 

networking cost. This approach unifies capacity and 

communication in a single graph framework, ensuring high 

host utilization while keeping over 80% of traffic rack-local 

and halving link saturation compared to flat heuristics. 

Despite clear advantages in topology-aware grouping, 

graph methods incur O(n³) complexity and often require 

full-network snapshots, impractical for frequent re-

optimizations.  

Despite their strength in encoding traffic and topology 

awareness, these methods come with high computational 

costs. Algorithms for community detection, graph 

partitioning, and coloring frequently exhibit O(n³) 

complexity, which becomes a bottleneck in large or fast-

evolving systems [46]. 

Another limitation lies in their reliance on static or 

snapshot-based views of the network state. To remain 

effective, graph-based models require up-to-date global 

topology and traffic matrices —information that is difficult 

to capture or maintain in real time without imposing 

significant monitoring and re-computation overhead. 

Additionally, integrating these specialized algorithms into 

existing cloud controllers or schedulers remains a challenge 

due to their architectural differences. 

From an energy and network efficiency perspective, graph-

theoretic strategies outperform heuristic or ML-based 

approaches in minimizing communication overhead and 

active link utilization. However, this often comes at the 

expense of higher host-level energy consumption when 

traffic-based clustering leads to VM consolidation on less 

energy-efficient machines. While the network energy 

savings are clear, careful balance is required to avoid 

increasing overall compute energy due to suboptimal host 

selection. These algorithms are suitable for communication-

intensive workloads with predictable traffic patterns (e.g., 

Hadoop), and hierarchical (or structured) data centers where 

intra-rack traffic locality is critical. However they perform 

poor with: real-time architectures with rapidly shifting 

traffic flows, edge and fog computing scenarios with strict 

latency constraints, and hyperscale public clouds (>10,000 

VMs) where O(n³) complexity is unjustified [48]. 

Summary and Comparative Insights 

While each VM placement strategy category—

mathematical optimization, heuristics, metaheuristics, 

machine learning, and graph theory—has distinct merits, 

they also exhibit significant trade-offs in terms of 

computational complexity, scalability, and suitability for 

energy- and network-aware objectives. Mathematical 

optimization-based methods provide provable optimality 

for small-scale problems but are intractable for real-time or 

large deployments. Heuristic methods are fast and scalable 

but fail to consider complex objectives or traffic metrics. 

Metaheuristics deliver near-optimal results and support 

multi-objective optimization, yet often suffer from 

parameter sensitivity and long runtimes. ML approaches 

bring adaptability and prediction to dynamic environments 

but are data-hungry and rarely embed network topology or 

energy metrics explicitly. Graph-theoretic models excel at 

topology-aware co-location but incur high computational 

costs and require complete snapshot data. As summarized 

in Table 5, selecting an appropriate placement strategy 

requires balancing complexity, performance goals, and 

environmental context, especially when aiming to reduce 

both host and network energy consumption.

3-3- Infrastructure Considerations (where to 

place?) 

Cloud architecture plays a pivotal role in VM placement 

decisions. It encompasses the set of interconnected 

components and deployment models that define how 

compute, storage, and network services are delivered. A 

network-aware placement algorithm must adapt to the 

physical and logical characteristics of the underlying 

architecture. 

A- Cloud Infrastructure type  

Centralized Cloud: infrastructure consolidates all resources 

in a single data center, offering uniform latency and 

centralized cooling, power, and network control. Here, 

placement strategies emphasize intra-rack traffic 

minimization, server consolidation, and ALR  to reduce 

switch and server energy. Because of the homogeneous 

environment, algorithms benefit from predictable latencies 

and uniform PUE values, supporting static or light dynamic 

heuristics [49]. However, placement strategies risk creating 

network congestion at the rack level if VM affinities are 

misestimated and lack resilience against localized failures 

or flash crowd events. Centralized placements suit 

applications with consistent workload distributions but 

should be augmented with fault-tolerance and burst-

handling extensions for production deployments. 

 

Distributed Cloud: infrastructures span multiple, 

geographically dispersed sites or edge facilities. Placement 

algorithms in this context must account for WAN latency, 

variable carbon intensity, renewable energy availability, 

and differing PUE scores across locations. For instance, 

placement might favor a solar-powered region despite 

slightly higher latency. Network-aware algorithms in 

distributed contexts must balance performance against 

operational costs and inter-site bandwidth constraints [27]. 

While distributed placement can optimize global cost and 

sustainability, it introduces complexity in synchronizing 
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state across sites, handling network failures, and meeting 

latency-sensitive SLAs.  

B- Cloud Proximity Models 

Cloud Proximity Models distinguish between edge and core 

clouds based on their user-nearness and resource richness. 

 

Edge Clouds: Deployed close to users for latency-sensitive 

workloads like gaming or AR/VR; placement here must 

prioritize minimal hop counts and rapid elasticity but 

suffers from limited capacity and heterogeneous 

infrastructure. TRACTOR [50], Traffic-aware and Power-

efficient Placement in Edge-Cloud Data Centers (ECDCs), 

an Artificial Bee Colony-based multi-objective VM 

placement scheme that minimizes network traffic and 

power consumption in ECDCs. Evaluations on VL2 and 

three-tier topologies demonstrate a 3.5% reduction in server 

energy and up to 30% cut in network power usage without 

degrading QoS. However, TRACTOR presumes accurate 

pre- and post-placement traffic matrices and requires 

simulation-based calibration, limiting its adaptability to 

heterogeneous, real-world edge deployments.  

Core Clouds: located in centralized, resource-rich facilities, 

are suited for compute-heavy, batch-oriented tasks that do 

not have stringent latency demands. Placement algorithms 

in these environments optimize resource density and power 

utilization while managing rack-level heat and congestion.  

In a centralized high-density core clouds,  [51] framework 

employs a Greedy Randomized VMP (GRVMP) algorithm 

that fuses heuristic sorting with stochastic perturbations to 

escape local optima, achieving up to 12% energy reduction 

and 8% resource utilization gains compared to deterministic 

baselines. GRVMP addresses dynamic VM arrivals; 

however, its randomized nature can lead to variability in 

outcomes and overlooks network topology unless network-

aware metrics are integrated.  

C- Hardware-Based Energy Mechanisms 

Datacenter hardware often embeds energy-saving features 

at component and network levels. Placement algorithms 

that are aware of these mechanisms can reduce overall 

power draw by tailoring VM assignments to exploit them.  

We categorize three primary hardware-based strategies 

below: 

• ALR: 
ALR dynamically scales the data-link speed of network 
interfaces (e.g., from 1 Gbps to 100 Mbps) based on 
instantaneous utilization. When traffic is low, links down-
shift to a lower rate—saving up to 40 % of PHY-layer 
power—then ramp up again under load. Some VM 
placement schemes explicitly cluster bursty or low‐
throughput VMs under the same Top-of-Rack switch to 
maximize low‐speed intervals and link‐power savings [52]. 

• DVFS: 
Modern CPUs and NICs support DVFS, which lowers 
voltage and clock frequency when workload demands 
permit. Experimental studies report up to 30 % server-level 
energy reduction with minimal performance loss under 
controlled load variations [53]. Energy-aware schedulers 
simulate or predict CPU utilization to trigger DVFS states—
placing latency-insensitive VMs on hosts where cores can be 
down-clocked, while reserving full-speed nodes for critical 
workloads [54]. 

• Switch and Rack Power-Down: 
Many top-of-rack (ToR) switches and rack PDUs can enter 
sleep modes or shut down unused ports when idle. Research 
prototypes have shown up to 50 % energy savings in 
underutilized racks by consolidating traffic and powering 
down dormant switches [55]. Topology-aware schemes fold 
traffic into active racks during off-peak periods, allowing 
idle switches or PDUs to sleep or power off; the migration 
cost is balanced against the long-term energy gains [56]. 

Placement algorithms treat ALR, DVFS, and switch/rack 

power‐down not as standalone placement steps but as 

hardware‐aware objectives or constraints that guide where 

and when to place or migrate VMs. In other words, these 

features aren’t separate “phases” of VM placement; rather, 

placement algorithms incorporate knowledge of link‐rate 

scaling, voltage/frequency capabilities, or switch on/off 

thresholds to shape consolidation decisions. 

Integrating these hardware-based mechanisms into 

placement and migration heuristics unlocks significant 

energy savings that complement software techniques. 

D- Thermal-Aware Placement Strategies 

Integrating thermal dynamics into VM placement helps 

prevent hotspots and reduces cooling energy consumption 

by considering rack- and node-level temperature 

distributions during allocation and migration decisions [57]. 

Multi-objective formulations jointly optimize computing 

energy and cooling load, enabling VM placement 

algorithms to trade off consolidation benefits against the 

risk of creating thermal hotspots [58].  

3-4- Workload Characteristics (What is being 

placed) 

A- Arrival rate 

Static: Static workloads such as batch jobs in scientific 

computing, benefit from heavy-weight optimizations like 

ILP, yielding near-optimal resource packing when demands 

are known in advance [59][60]. The term "static allocation" 

usually refers to the initial VM placement which is the 

allocation of VMs to PMs is done during deployment and 

remains fixed throughout the VMs' lifecycle. The goal is to 

optimize allocation based on resource requirements and 
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constraints. However, the assumption of stable load profiles 

renders it brittle when workloads fluctuate unpredictably. 

Dynamic: Dynamic scenarios characterized by real-time 

VM arrivals in auto-scaling web services or event-driven 

microservices. Dynamic VM placement includes placing 

new VMs and migrating existing ones, considering future 

live migrations, and needs more resources than static 

solutions.  

In this context, reactive placement adapts the initial 

allocation of resources based on the current state of the 

system, while proactive placement predicts future 

conditions and adjusts allocations before problems occur. 

• Reactive Placement: Migration or reallocation is 
triggered by observed thresholds, such as CPU/memory 
utilization exceeding a limit, network congestion detected on 
a link, or thermal hot spots. Reactive methods respond to 
current system state ([61][62]) but often react too late to 
avoid SLA violations or suboptimal energy states. 

• Proactive Placement: Predictive models anticipate 
future workloads or traffic spikes and migrate VMs 
preemptively. While more complex, requiring accurate 
demand prediction, proactive approaches can better prevent 
overloads and exploit low‐utilization windows for 
consolidation [20], [21]). 

B- Workload Type (Application-Centric) 

We present the main application categories in the literature 

used to guide placement heuristics. 

  

Bag of Tasks: Independent parallel tasks requiring minimal 

inter-communication. Placement focuses on maximizing 

throughput and minimizing makespan by grouping tasks 

(VMs) on minimal PMs [41]. 

CPU-Intensive Workloads: Require sustained processor 

capacity and thermal stability. Placement must dedicate 

cores to each VM and move workloads off busy hosts to 

prevent contention and overheating [64]. 

Data-Intensive Workloads: Require high I/O and low-

latency access to shared storage. Placement must reduce 

traffic to storage nodes (SNs) and minimize bottlenecks 

[65]. 

Latency-Sensitive Applications: Include gaming, financial 

systems, or telemedicine, where delays severely degrade 

user experience. These demand edge-aware, low-hop-count 

VM placement [66]. 

C- Workload Data Sources for Algorithm Evaluation 

The following are the ways researchers evaluate their work 

against other algorithms. However, researchers may 

combine two or more types of workload data. 

• Benchmark Datasets: Standardized collections of 
VM workload traces detailing CPU, memory, I/O and 

network usage, collected via monitoring tools, application 
profilers or user logs. They enable controlled, repeatable 
comparisons of placement algorithms by quantifying 
impacts on network utilization, availability and cost.  

• Synthetic data: Synthetic data is generated using 
mathematical models and statistical techniques that simulate 
the behavior of real-world applications and infrastructure 
components. It allows researchers to control the workload 
and resource utilization characteristics of the cloud 
infrastructure and to compare different algorithms under the 
same conditions. Researchers evaluated their work using 
synthetic scenarios with several performance metrics [67]. 

• Real Traces: Real traces are collected from real cloud 
computing environments (Amazon EC2, PlanetLab, and 
Google Cluster) to evaluate VM  placement algorithms 
under realistic conditions. In [51], Amazon EC2 data was 
used to optimize power consumption. In [68], PlanetLab 
network traces were utilized to assess algorithm 
performance. Both methods provide insights into workload 
behaviors and resource utilization for algorithm evaluation. 

These classifications create a multidimensional lens to 

evaluate VM placement strategies and pave the way for 

our specialized network-aware taxonomy in Section 4. 

4- Taxonomy of Network-aware VM 

Placement Approaches 

This section synthesizes the contextual shifts and motivates 

the need for a new taxonomy—one that maps VM 

placement methods not only to their algorithmic families 

(heuristic, ML-based) but also to the underlying network 

dynamics they aim to optimize. As shown in Fig.2, our 

taxonomy therefore introduces a cross-layer perspective 

that bridges DCN topology, traffic characteristics, 

communication patterns, and energy reduction strategies, 

reflecting how emerging solutions should be evaluated in 

modern cloud environments. Additionally, a sub-taxonomy 

at the bottom of Fig.2 classifies network-aware VMP 

algorithms according to their energy consumption 

strategies. 

In a typical cloud computing environment, VMs are 

interconnected with physical hosts through a network, 

generating substantial network traffic from the applications 

they run. Consequently, the placement of VMs on physical 

hosts significantly impacts network performance, which in 

turn affects overall application performance. Given that the 

network is a major consumer of energy, minimizing 

network traffic and optimizing topology can lead to 

substantial energy savings. 

Therefore, it is critical to consider network-related factors 

throughout placing and migrating VMs. This means that the 

VMP algorithm should not only consider the usual metrics 
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and resource requirements of VMs and PMs but also 

incorporate network considerations. The algorithm can 

make more informed decisions regarding VM placement 

and consolidation by incorporating network conditions, 

topology, and traffic patterns.  

Customers utilize VMs to conduct specific jobs that are 

frequently parts of larger applications, such as tiers of multi-

tier applications. As these VMs start communicating with 

each other, it can involve the transfer of significant amounts 

of data, which might increase latency or response times to 

intolerable levels. In addition, the power consumption of the 

hardware components involved, such as PMs, routers, 

switches, and other networking equipment, can also be 

affected by such communication patterns. 

For the reasons listed above, it is ideal to have VMs that 

communicate frequently placed on the same server, or at the 

very least within the same DC. Additionally, VMs 

belonging to the same application may have load 

correlation, making it more likely that they may peak at the 

same time; this must also be carefully considered when 

allocating VM resources.  

Network bandwidth can often become a bottleneck, 

particularly in scenarios involving data mapping on SNs. 

High network traffic between VMs and SNs can arise when 

workloads require extensive data mapping. To prevent too 

many high network loads, it is necessary to consider both 

the placement of VMs on PMs and application data on SNs.  

To facilitate this, we categorize network-aware VMP 

algorithms into four groups based on their focus on network 

considerations: 

4-1- DCN Topology 

DC topology involves organizing physical and logical 

components in a network, including servers, network 

devices, and SNs. It enables efficient connections with 

multiple PMs, enhancing energy efficiency and reducing 

reliability concerns. Various network topologies tackle 

scalability and energy consumption differently and offer 

insights for future VM placement research. Researchers can 

examine the advantages, drawbacks, and enhancements of 

these topologies to improve current VM placement 

methods, as discussed in Section V. 

A- Hierarchical three-tier 

This architecture manages traffic using a structured 

approach. The access layer connects servers to edge 

switches, which then relay information to interconnected 

aggregate switches. The core layer serves as the spine, 

linking all aggregate switches and handling external 

connections, providing a scalable and efficient solution for 

internal data center communication. 

• Fat-tree: A three-tier architecture utilizing bipartite 
graphs with pods as the basic unit, where each pod contains 
access and aggregation switches. This topology offers 
efficient routing paths for reducing congestion and power 
consumption [69]. 

• VL2: Like fat-tree, this three-tier topology connects 
core and aggregation switches in a bipartite graph. Valiant 
load balancing routes traffic by randomly selecting a core 
switch, reducing congestion and power consumption. A 
customized VMP technique further optimizes network 
traffic. [67]. 

• Portland: This architecture comprises pods with 
access and aggregation switches forming bipartite graphs, 
connecting to all core switches. VM placement algorithms 
prioritize proximity to enhance quality of service (QoS)[70]. 

B- Recursive 

These topologies are constructed recursively, combining 

smaller building blocks into larger network structures, 

allowing for scalable and modular designs. 

• DCell: a server-centric data center network design 
with a hierarchical structure. Servers connect directly with 
multiple NICs, organized into cells like cell0, cell1, and cell2 
[71]. 

• BCube: BCube is a multi-level data center network 
architecture focused on servers, integrating them into the 
network infrastructure. It is derived from hypercube 
architecture, connecting hosts via switches based on port 
availability for efficient packet forwarding [72]. 

Fig.2 Network-aware VM placement taxonomy. 
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C- Rack to Rack  

Rack-to-rack networks prioritize communication between 

server racks. Their design focuses on efficient data transfer 

within and across racks. 

• Scafida:  a method inspired by scale-free networks to 
create asymmetric data center topologies with high fault 
tolerance and small diameters. It allows for flexible scaling 
but faces challenges with link correlation as the network 
grows [73]. 

• Jellyfish: Jellyfish network with random graph 
topology offers cost-efficiency, 25% more server support, 
scalability, and flexibility for high-capacity 
interconnectivity [74]. 

4-2- Traffic Type 

Traffic type categorization in cloud DCs (considered in 

VMP) optimizes network performance and energy usage by 

placing VMs with similar traffic types together, reducing 

data transfers across the network and minimizing energy 

consumption. 

A- Cross-traffic 

Cross-traffic is the data flow between VMs or applications 

that may be located on different servers within the same 

rack or across different racks. This type of traffic can impact 

network performance and energy usage. Allocating VMs 

and data on physically closer PMs can improve efficiency, 

as explored in [75]. 

B- Inter-VM communication 

North-south traffic involves data flow between virtual 

machines (VMs) and the Internet, while inter-VM 

communication refers to data exchange within the same 

data center. The latter is often high-bandwidth and low-

latency, with different application requirements.  

Studies are focusing on reducing network energy usage by 

optimizing VM placement to minimize inter-rack traffic 

and reduce delays, consequently cutting down on power 

consumption and costs [76]. 

 

C- Traffic between VM and data 

This traffic occurs when VMs access data stored on storage 

devices. VMs send requests to these devices via the 

network, and the data is transmitted back to the requesting 

VM. Factors influencing traffic volume include data size, 

access frequency, and the type of storage device used. In 

distributed object storage systems, each storage node 

manages a group of servers. When a server and its 

corresponding storage node are within the same group, data 

transfer is optimized, thereby reducing overall traffic flow 

[77]. 

4-3- Traffic Patterns 

Understanding traffic patterns in cloud networks is crucial 

for optimizing performance by placing virtual machines in 

strategic locations to improve network performance and 

reduce energy consumption. Research indicates that 

network status changes over time due to unpredictable 

traffic characteristics, regardless of data center size or type. 

Authors advocate for traffic-aware VM placement to 

enhance network scalability by aligning traffic patterns with 

communication distances. Empirical studies reveal 

imbalanced communication patterns, link losses, and ON-

OFF traffic patterns with varying distributions, 

emphasizing the need for optimized VM allocation and 

routing in cloud networks [3] [78].  

4-4- Communication Patterns 

Communication patterns in VM placement refer to how 

VMs interact with each other and with external networks. It 

is a useful resource for perceiving the parallel application 

communication behavior and is extracted from 

communication trace, where machines form multiple 

groups or tiers each of which serves a specific part needed 

for the accomplishment of the overall task. Energy 

consumption heavily depends on the communication 

pattern [79]. 

A- Fixed 

Fixed communication patterns between virtual machines 

(VMs) exhibit predictable and consistent interactions that 

remain unchanged during runtime. VM placement 

strategies often aim to co-locate VMs with frequent 

communication to minimize network latency and overhead 

[76]. 

B- Dynamic 

Dynamic communication patterns between VMs change 

during runtime, in contrast to fixed patterns. This requires 

adaptable VM placement solutions that monitor and adjust 

VM locations based on evolving communication needs. The 

technique introduced in [80] uses a decentralized migration 

approach considering VM affinity. It dynamically adjusts 

VM placement through a distributed bartering algorithm to 

minimize communication overhead and adapt to changing 

patterns, while maintaining low overhead. 

4-5- Energy Reduction Achievement 

The energy reduction classification in our taxonomy in 

Fig.2 is centered around strategies and methodologies in 

reducing energy consumption in network-aware VM 

placement. This section highlights how researchers have 

leveraged network awareness to achieve considerable 

energy savings in CDCs. In this section, we review different 

approaches for network traffic minimization, 

communication cost minimization, data transfer time 

reduction, and network performance improvement. 



    
Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches 

 

 

 

226 

A- Minimizing network traffic  

One of the effective strategies is to optimize VM placement 

with the co-location of VMs that communicate with each 

other with high volume on the same physical hosts. In this 

way, the distance that data needs to travel is minimal and 

reduces traffic in the network. For example, the work in [50] 

suggested a multi-objective VM placement algorithm using 

a bee colony method, achieving 3.5% power reduction, 15% 

less network traffic, and 30% lower network power. 

Similarly, the work in [22] proposed an ant colony 

optimization algorithm considering both energy usage and 

network bandwidth, which effectively reduced traffic and 

outperformed other heuristics. 

B- Minimize communication cost  

Network communication costs refer to expenses in terms of 

bandwidth utilization, latency, and rate of data transfer. For 

VM placement, reducing such costs minimizes resource 

consumption and overall expenses. The work in [59] 

introduced a "network consumption" metric to identify 

optimal VM placements within a fat-tree architecture to 

minimize network traffic. This approach led to a significant 

reduction in overall network usage and power consumption, 

decreasing resource wastage by up to 20%. Similarly, the 

approach in [81] focused on enhancing VM-to-VM 

communication using dynamic clustering of VMs based on 

the network. An adaptive algorithm consolidated VMs to 

minimize communication costs, leading to reduced high-

latency jobs and improved traffic patterns across the 

network. The goal of these techniques is to strategically 

place and manage VMs to lower the overall communication 

costs in the data center network [36]. 

C- Minimizing Data transfer time 

Data transfer time is the duration for data to be transmitted 

between VMs over the network. It affects energy usage and 

application performance. Placing VMs closer and grouping 

them based on traffic patterns can minimize data transfer 

time. [82] proposed a novel VMP technique that 

simultaneously improves both VM locations and data rates. 

They developed heuristics that allocate VMs to PMs with 

better network bandwidth to reduce the latencies associated 

with data access. Through simulation experiments, they 

demonstrated how the proposed approach may lower VMs' 

data transmission delays. 

D- Improving network performance 

Improving network performance is the act of optimizing a 

computer network to enhance its speed, reliability, and 

efficiency. This involves improving the various 

components of the network, including switches, routers, 

cables, servers, and applications, to ensure that data is 

transmitted quickly, accurately, and consistently. The 

previously mentioned work in [59] was categorized under 

minimizing communication cost, but it focused also on 

minimizing resource wastage, which led to the optimization 

of the overall network performance. 

E- Emerging trends 

With the rise of such technologies as network virtualization 

and Software-Defined Networking (SDN), the way VM 

placement for energy efficiency will be significantly 

impacted. Network virtualization increases the flexibility of 

network resource allocation and management, such that 

even real-time adjustments according to changing traffic 

patterns become possible. On the other hand, SDN brings 

central control to a network, which makes routing much 

more efficient and leads to lower energy consumption. 

These technologies are still evolving, we can expect further 

improvements in energy efficiency and overall network 

performance in the placement of VMs [83]. 

5- Discussion 

This section discusses the important relationship between 

network topology, traffic patterns, and energy efficiency in 

network-aware VMP. We provide a novel perspective on 

how these aspects interact and affect the total energy 

consumption within the datacenter. 

5-1- Traffic type 

Different traffic types have varying requirements regarding 

reliability, latency, and network bandwidth. For example, 

real-time communication applications, including video 

conferencing and VoIP, require low latency and high 

reliability; in contrast, batch processing applications such as 

data analytics can tolerate high latency and low reliability. 

Those network traffic patterns found in datacenters can 

significantly affect energy consumption, SLAs, cloud 

provider revenue, as well as the overall cloud 

infrastructure's efficiency. 

In response to such challenges, there has been a 

development of network-aware VM placement algorithms 

to optimize network traffic and minimize resource 

utilization in CDCs. These algorithms distribute the 

network traffic evenly across the infrastructure to prevent 

congestion, resulting in energy savings. VMs often rely on 

the network for data-intensive applications and interactions 

with other VMs. These algorithms can prioritize high-

bandwidth VMs and place them nearby by optimizing the 

placement of VMs based on their communication patterns, 

reducing the overall network traffic between and within the 

data centers. This, in turn, minimizes the number of 

physical networking components required and leads to 

reduced power consumption. 
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5-2-  Network topology 

Network topology is a principal issue in virtual machine 

placement, which affects resource utilization and energy 

efficiency. Placing VMs wisely reduces the distance of data 

transfers, switches, and links involved in communication 

and leads to saving energy as well as increasing 

performance. Fat-tree topology manages the high-

bandwidth, low-latency traffic well within a pod or data 

center, while VL2 is good for traffic generated by VMs in 

cloud environments, including storage, migration, and 

inter-DC. BCube is suitable for data-intensive applications 

that demand high bandwidth and efficient data 

transmission. 

In this subsection, network topology influence on VM 

placement is discussed based on existing research that 

examines the impact on energy efficiency as well as overall 

system performance [84]. The placement of VMs close to 

each other is quite essential for resource utilization and 

energy efficiency. Strategic placement reduces the distance 

of data transfer, therefore reducing the number of switches 

and links, which means less energy consumption and 

improved performance in data centers. The three-tier 

architecture typically includes expensive and power-

intensive network devices at the corporate level, whereas 

DCell and BCube architecture consume similar energy for 

small-sized data centers. However, BCube consumes more 

energy for larger data centers. The Fat-Tree topology has 

reasonable power usage, while BCube is power-intensive 

due to its extensive use of switches. DCell utilizes 

commodity switches that consume less power. BCube's 

design with intermediate servers for routing can pose 

challenges to energy efficiency. 

According to experimental findings, the tree topology 

experiences congestion issues with similar VM traffic, 

while the Fat-Tree topology distributes traffic more evenly 

due to its multi-path connections. VL2 suffers from uneven 

traffic distribution due to a large gap in link utilization. The 

Tree topology has lower energy efficiency compared to 

VL2 and Fat-Tree, although topology awareness can 

optimize energy usage in the network. However, these 

conclusions are specific to each author's work, and more 

research is needed to establish correlations between data 

center size, server count, switches, and user demands. 

Cloud service providers should ensure appropriately sized 

environments to minimize costs. A hybrid or dynamic 

topology approach using SDN can optimize resource 

utilization, energy efficiency, and overall performance by 

adapting the network topology based on workload demands, 

such as favoring a fat-tree topology for high east-west 

traffic. 

5-3- Traffic and Communication patterns 

To minimize energy consumption in DCs, network-aware 

VM placement algorithms play a crucial role. These 

algorithms aim to allocate VMs with similar traffic patterns 

to the same physical servers or switches. This will reduce 

inter-server or inter-switch communication, therefore 

saving energy not only in the network infrastructure but also 

in the servers. Secondly, VMP optimization based on 

bandwidth and latency demands will prevent network 

congestion, thus assuring satisfactory performance and 

energy efficiency during communications.  

Energy consumption and network traffic in virtualized 

environments were analyzed in studies [58,59]. It was 

noticed that energy consumption might have a wide 

variation for different traffic allocation strategies and that 

the type of traffic may strongly influence the possible 

energy savings. Such results are important to consider in 

traffic-aware optimizations, but all such optimizations 

require detailed information from clients about the 

application network and communication requirements. This 

allows network-aware techniques for minimizing 

communication delays and/or improving overall application 

performance. 

The distribution of the components over various PMs 

provides a good opportunity for parallel processing in 

applications such as MapReduce. In case migration needs 

to be done, the ideal order of the intercommunicating virtual 

machines will help avoid core network traffic and energy 

consumption. Considering intercommunication between 

replicated virtual machines is also important to prevent 

bottlenecks and excessive energy usage. 

Recognition of the traffic pattern is especially important in 

dynamic cloud environments. Workload and 

communication requirements are dynamic; hence, the 

adaptability of VMP algorithms is required to achieve 

resource and energy efficiency. Such dynamical traffic 

management approaches like load balancing and traffic 

shaping would prevent congestion and optimize power 

consumption.  

The application-specific information will also reduce 

latency, inter-VM traffic, and improve application 

performance in placement algorithms. On the other hand, 

machine learning algorithms will use historical traffic data 

and predictive models to foresee traffic patterns, thus 

making proactive placement decisions that reduce energy 

consumption. Machine learning can also help in identifying 

and classifying traffic hotspots, which helps in applying 

targeted optimizations to mitigate power imbalances. 

6- Conclusion And Future Directions 
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This paper presents a new classification for VM placement 
techniques in CDCs that are both network-aware and 
energy-efficient. It examines various network factors, 
including network equipment, workload type, performance, 
scalability, efficiency, reliability, and availability, to 
understand how VM placement affects network 
performance. The research indicates that network-aware 
VM placement algorithms can boost performance by 
reducing latency between VMs and improving security 
through co-location. However, the initial deployment of 
these algorithms might incur higher costs, necessitating a 
careful evaluation of the trade-off between energy 
consumption and migration costs. 

This work also reviews research that identifies the most 

effective metrics for evaluating the performance of 

network-aware VM placement algorithms, focusing on 

energy efficiency, network performance, and resource 

utilization. Additionally, the study examines how network 

topology affects energy consumption in data centers and the 

trade-off between energy use and migration costs, providing 

valuable insights. These insights can help researchers 

develop and implement more effective network-aware VM 

placement algorithms that optimize energy consumption, 

improve network performance, and minimize migration 

costs. Based on the findings, future research directions for 

network-aware VM placement in CDCs can be suggested, 

including: 

• Developing energy-efficient algorithms that consider 
the network metrics identified in this study. This would 
involve creating strategies to optimize energy use while 
improving network performance, factoring in elements like 
datacenter layout and communication patterns. 

• Testing VM placement techniques on realistic 
testbeds. While simulations help assess the proposed VM 
placement methods, it is essential to validate these 
techniques on actual cloud testbeds with real-world network 
topologies. 

• Researching VM placement algorithms that enhance 
security and privacy in cloud environments. This could 
involve devising methods to group related VMs on the same 
server or rack while preventing the co-location of unrelated 
VMs. Such strategies would help mitigate the risk of security 
breaches and protect sensitive data in cloud settings. 

• Continuing to explore novel solutions for optimizing 
VM placement and migration that can boost energy 
efficiency and network performance in CDCs. This would 
include investigating innovative techniques and approaches 
that leverage emerging technologies like machine learning 
and artificial intelligence to improve network-aware VM 
placement. 

Future research in this area could investigate how elements 
like energy storage systems, renewable energy sources, and 
workload balancing impact network-aware VM placement. 
These potential directions provide a solid foundation for 

further exploration of energy-efficient network-aware VM 
placement, intending to create more effective strategies for 
optimizing energy consumption, improving network 
performance, enhancing security and privacy, and 
integrating artificial intelligence throughout the cloud 
computing environment. 
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