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Abstract

Cloud data centers (CDCs) have witnessed significant growth to meet the increasing demands of modern applications.
However, this expansion has raised concerns regarding the environmental impact, energy requirements, and electricity costs
associated with data centers. The network infrastructure, serving as the communication backbone of these data centers, plays
a crucial role in their scalability, performance, cost, and, most importantly, energy consumption. This review provides
meaningful perspectives and valuable insights into the state-of-the-art research regarding the problem of virtual machine
placement (VMP), focusing on the network-aware energy efficiency aspects of data centers. It provides an overview of VM
placement and presents a comprehensive survey of prominent VM placement algorithms from the existing literature.
Additionally, a thematic taxonomy of network-aware algorithms is introduced, highlighting the key energy consumption
metrics and presenting a new classification of VMP algorithms that considers datacenter network (DCN) topology, traffic
patterns, communication patterns, and energy reduction strategies. Besides addressing pertinent research questions in this
domain, this review summarizes the findings and suggests potential avenues for future research, guiding researchers in
designing and implementing more effective and efficient network-aware VM placement algorithms that optimize energy
consumption, improve network performance, and minimize migration costs.
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rack hops and reduce energy consumption. In this field,
most research focuses on optimizing resource utilization

1- Introduction and power consumption to address cost-related challenges.
Proper planning of the network architecture is very
Cloud computing is an internet-based technology that important as the number of VMs continues to rise and data
provides services without the need for physical centers and communication networks continue to expand.
infrastructure ownership. The cloud computing model is As cloud applications handle more data, inter-VM network
responsible for managing tens of data centers that manage bandwidth increases due to the high demand for bandwidth
computing applications and data storage. Cloud providers that heavily depends on network resources. This presents a
offer three service models: Infrastructure as a Service (IaaS), challenge for cloud environments to strike a balance
Platform as a Service (PaaS), and Software as a Service between energy efficiency and performance. Conserving
(SaaS), with deployment models including public, private, energy through reducing network equipment could lead to a
community, and hybrid [1]. Virtualization is the key factor violation of service level agreements (SLAs) and degrade
in cloud computing. It improves resource efficiency and performance [4].
reduces costs. The high energy consumption in data centers Why Network-Aware VM Placement Matters:
is a significant issue, especially with cooling equipment that Despite growing efforts to optimize server energy use, the
consumes 80% of available energy [2]. network infrastructure —comprising switches, routers, and
In the cloud environment, virtual machine (VM) traffic can links— remains a major yet often under-optimized
account for 50%-80% of total data center network traffic [3], contributor to overall energy consumption. What makes
motivating network-aware placement to minimize cross- network-aware VM placement particularly compelling is its
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dual impact: it not only reduces energy usage by limiting
inter-rack communication and enabling low-power network
states but also improves performance by lowering latency
and congestion. These benefits become increasingly
relevant as VM-to-VM communication dominates traffic
patterns in modern data centers. As such, placement
strategies must now evolve to consider network topology
and traffic locality as primary optimization dimensions, not
secondary concerns.

This paper explores several research questions related to

network-aware VM placement in cloud data centers (CDCs).

It begins by analyzing the key factors previously examined
in this domain, such as initial VM placement and potential
migrations, and their impact on network performance. The
study then identifies the most effective metrics for
evaluating the success of energy-efficient, network-aware
VM placement algorithms, considering both resource
utilization and network performance. Additionally, it
investigates how the network topology within a data center
affects overall power consumption and whether enhancing
network power efficiency can influence the costs associated
with VM migration.

This paper makes the following contributions to the field of
energy-efficient, network-aware VM placement in CDCs:

. Taxonomy of Methodologies
We propose a novel taxonomy that systematically classifies
existing network-aware VM placement approaches,
highlighting each approach’s underlying energy-efficiency
mechanisms.

. Categorization of Existing Work

We analyze and categorize state-of-the-art algorithms based
on key metrics —such as topology awareness, traffic
patterns, and consolidation techniques— and evaluate their
impact on overall energy consumption.

. Identification of Challenges
We pinpoint critical gaps in current research, most notably
the lack of integration between VM placement strategies and
dynamic network energy-saving techniques .

. Proposed Solutions

We suggest actionable solutions to address these challenges,
including cross-layer optimization frameworks and
topology-aware VM consolidation heuristics that co-locate
high-traffic VMs to minimize network usage.

° Future Research Directions

We outline open problems and emerging trends; such as Al-
driven placement and edge-cloud coordination; to guide
future work in this area.

° Practical Resource for Researchers

We provide a structured reference for practitioners, showing
how to balance network performance and power savings
when designing new VM placement algorithms.

The remainder of this paper is organized as follows. Section
2 reviews existing surveys on network-aware VM
placement. Section 3 presents an analysis of VM placement
(VMP) algorithms. Section 4 introduces our taxonomy of
network-aware, energy-efficient approaches. Section 5
discusses the limitations of today’s research. Finally,
Section 6 concludes with key takeaways and outlines
precise future research directions aimed at helping both
researchers and practitioners design VM placement
strategies that minimize power usage without
compromising network performance.

2- Landscape of Existing VMP Surveys
2-1- Overview of Prior Surveys Focus Areas

Several survey articles have previously explored VMP in
cloud computing, addressing critical challenges in areas
such as minimizing energy consumption, optimizing traffic
routing, and ensuring resource allocation efficiency. These
efforts span a wide range of algorithmic strategies,
including heuristic algorithms, meta-heuristic optimization,
dynamic  workload balancing, and energy-aware
scheduling. While individually rich in contributions, many
of these surveys tend to focus on isolated dimensions of the
VMP problem, often treating energy-efficiency and
network-awareness as  distinct  objectives  rather
interdependent system constraints.

Although prior surveys cover individual hardware
mechanisms—Dynamic Voltage and Frequency Scaling
(DVFS) and Adaptive Link Rate (ALR) —or network-
aware placement separately, no integrative framework
treats these energy-saving techniques and network-sensitive
parameters (traffic patterns, communication behavior,
Datacenter Network (DCN) topology) as co-dependent.

. DVFS dynamically lowers a processor’s supply
voltage and clock frequency during light workloads to
reduce power consumption.

. ALR reduces the data-link speed (or puts links into
low-power idle modes) on underutilized network ports,
saving significant switch and NIC energy but introducing
variable latency when ramping back to full rate.

This deficiency limits the applicability of existing
classifications in real-world CDCs where network usage
and energy dynamics are deeply intertwined. Therefore, this
review aims to bridge that gap by delivering a unified
analytical lens that evaluates VMP strategies at the
intersection of network topology, traffic behavior, and
energy  optimization—providing  researchers  and
practitioners with a holistic foundation for future
algorithmic developments.



212 Baydoun & Zekri, Towards Energy-efficient Cloud Computing: A Review of Network-Aware VM Placement Approaches

areas of emphasis and omission in relation to network-
awareness, energy-efficiency, and VM placement logic.

2-2- Features and Gaps

Table 1 presents a multi-dimensional mapping of prior
VMP surveys across several core features, highlighting

Table 1. Comparison of Existing Surveys on Network-Aware VM Placement Across Key Dimensions

Ref Year Placeme Traffic- DCN Inter-VM/ Comm. Energy- Hardware- Traffic- Thermal Perf. App
nt & Eng. Topology Pattern Saving Based Based Mgmt. Impact Focus
Migratio
n VM—Storage

[5] 2013 X N X X X v v X v X X

[6] 2014 X v v X v v v v v v X

[7] 2015 v N X X v X X v X v X

[8] 2014 X v v X v v v v v v X

[9] 2014 X v v X X v M v M X X
[10] 2015 N4 X X X X v v X v X v
[11] 2015 v X X X X v X X X X X
[12] 2016 v X X X X v X X X X X
[13] 2020 v X X X X v X X X X X
[14] 2020 N4 X X X X N X X X v X
[15] 2021 N4 X X X X v v X v X v
[16] 2023 v X X X X v X X X X X
[17] 2024 v X X X X N X X X v v
[18] 2024 v X X X X v X X X X X
Our 2025 v v v v v v v v v v v

Work

To further contextualize the strengths and omissions across
surveys, Table 2 summarizes the primary focus of each

reference and the most prominent gaps with respect to
network-awareness and energy optimization.

Table 2. Most Prominent Gaps Across Reviewed Surveys.

Ref  Year & Venue Primary Focus Most Prominent Gaps (in Network-Aware Context)
[5] 2013, Cluster Computing ALR and link-layer energy techniques No VM placement or topology-aware placement; lacks
traffic pattern integration
[6] 2014, ACM Computing Surveys High-level energy-efficiency (DVFS, link  Algorithmic VM placement details missing; no explicit
sleep) DCN topology analysis
[71 2015, FGCS Network-aware VM placement & No link-layer ALR/DVFS inclusion; limited thermal
migration considerations
[8] 2014, Computer Communications DCN architectures & energy-aware No VM consolidation or ALR integration; lacks detailed
routing performance vs. energy metrics
[9] 2014, FGCS Green DCN architectures taxonomy Hardware-level focus; lacks VM-level dynamics or
traffic/thermal overlays
[10] 2015, INCA Live VM  migration &  server Limited network awareness (focuses on migration
consolidation frameworks traffic); does not tie placement to topology or ALR
[11] 2015, IEEE CCGrid General VM placement taxonomy Does not explicitly cover network-energy techniques
(ALR) or topology variations
[12] 2016, INCA Algorithm catalog (ILP, heuristics, Lacks network-energy integration; does not address
metaheuristics) dynamic traffic patterns
[13] 2020, JSC Multi-objective VM placement Does not integrate ALR or DCN topology; limited
discussion of per-flow traffic metrics
[14] 2020, Kybernetes Classification of VMP mechanisms in  No explicit focus on link-layer energy or inter-VM traffic
cloud topology
[15] 2021, Computer Science Review Multi-level consolidation (VM, container, No focus on ALR or DCN topology; limited to
etc.) consolidation trends
[16] 2023, The Journal of Computational Review of 7 energy-efficient VM  General efficiency metrics; lacks deep integration of
Science and Engineering placement strategies DCN traffic patterns or communication metrics
[17] 2024, Frontiers in Computer Science ML-based VM scheduling techniques Does not classify topologies or link-level policies; lacks
VM clustering detail
[18] 2024, Telecommunication Systems Phased VMC lifecycle review (PM—VM  Does not integrate link-layer energy or topology; focuses

selection—placement)

on VM phases without network-energy objectives

2025, TBD (Our Work)

Unified network-aware VMP taxonomy

Fills all gaps by integrating ALR, topology, traffic
patterns, and energy/thermal considerations




=

SisT

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 210-231

http://jist.acecr.org

While Table 1T and Table 2 provide a
comparative overview of survey scopes, a deeper analysis
of each work reveals further insights into thematic priorities
and overlooked dimensions. As summarized in Table 2, the
majority of prior surveys fail to integrate link-layer energy
mechanisms, DCN topology constraints, and traffic-aware
placement into a unified classification framework. This
motivates the need for a closer, qualitative critique of each
referenced study—highlighting what each survey addresses
and, more importantly, how our work advances beyond
them with a network-aware energy-efficient focus.

2-3- Critical Analysis

This subsection presents an evaluation of each major survey
study on VMP published from 2013 through 2024, with a
focus on their contributions to energy-efficient and
network-aware strategies. For each referenced work ([5]-
[18]), we describe the main idea of the survey, identify its
strengths, and highlight gaps related to the intersection of
communication patterns, topology constraints, and power
efficiency. Such analysis has two goals: first, to document
the advancement of the domain in the past ten years, and
second, to show how most of these surveys fail to integrate
all these aspects into a single framework. This subsection
also serves to demonstrate how our proposed taxonomy
explicitly addresses these multi-layered challenges by
integrating network topology, traffic-awareness, and
energy-aware mechanisms under a unified VM placement
perspective. These observations establish the rationale for
our integrated taxonomy, as elaborated in the following
sections.

The survey [5] offer one of the foundational treatments of
green networking by categorizing ALR techniques -
dividing link-sleep policies (immediate vs. delayed wake)
and link-rate scaling schemes- and by evaluating the IEEE
802.3az standard’s potential to save nearly 0.9 TWh
annually in large US data centers. Their strength lies in
rigorously detailing how ALR can dynamically reduce link-
layer power, from NICs up to aggregation switches.
However, because their focus remains at the hardware and
firmware level, they do not address how VM placement or
migration strategies might leverage fluctuating link speeds
or ALR states to optimize overall data center energy. Our
survey fills this gap by explicitly integrating ALR
considerations into the network-aware VM placement
taxonomy, demonstrating how VM co-location based on
communication affinity can complement hardware-level
ALR to maximize energy savings.

The authors of [6] present a broad, multi-layer survey of
energy-efficiency techniques in large-scale distributed
systems, covering hardware-level approaches (DVFS,
power modeling), server-level optimizations (VM
consolidation, dynamic provisioning), and network-layer
tactics (ALR, link-sleep, topology reconfiguration). Their
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work’s strength is in demonstrating that up to 30-40% of a
data center’s energy can be consumed by its networking
infrastructure, thus motivating holistic solutions, but lacks
a taxonomy specific to VM placement. Our work fills this
void by extending network-layer concerns into VM
placement contexts, thereby illustrating how topology- and
traffic-aware placement strategies interact with server and
link energy dynamics.

The authors of [7] present a specialized taxonomy of
network-aware VM placement and migration algorithms,
classifying approaches based on problem formulation (ILP
vs. heuristics), traffic awareness (static vs. dynamic), and
objectives (minimizing inter-VM traffic, avoiding
congestion, balancing network load) . They survey methods
that co-locate high-traffic VM pairs -reducing inter-rack
hop counts by roughly 30%. Although they excel in
highlighting how inter-VM communication patterns drive
placement, they do not incorporate link-layer ALR or DVFS
as explicit dimensions in their classification, nor do they
quantify the impact of particular DCN topologies on overall
energy consumption. Our survey extends their work by
embedding these network-aware placement algorithms
within a broader framework, explicitly incorporating DCN
structure, traffic distribution patterns, and link utilization
characteristics into placement decision-making.

Authors in [8] provides a focused survey on architectures
and energy efficiency in data center networks. It covers
DCN topologies (FatTree, VL2) and green techniques like
link adaptation and component shutdown. However, it lacks
granularity in VM-level policies. Our review complements
this by showing how such architectural designs can be better
utilized when paired with VM placement that respects
traffic distribution and energy states, offering specific
placement criteria that leverage topology-induced
communication cost differences.

The authors in [9] conducted a comprehensive survey on
Green Data Center Networks (DCNs), focusing on energy-
efficient architectures (electrical, optical, hybrid), traffic
management, and performance monitoring. While their
work extensively covers network-level energy optimization
techniques like ALR and topology-aware resource
consolidation, it does not systematically integrate VM
placement strategies with network energy efficiency. This
separation weakens the applicability of their insights for
practical scheduling decisions. This work integrates their
hardware-level insights into VM placement taxonomy,
connecting traffic profiles and server locality to DCN
energy states.

The authors of [10] deliver a deep examination of live VM
migration and server consolidation frameworks,
categorizing bandwidth-optimization techniques (block-
level and file-level deduplication, delta compression,
dynamic rate limiting), storage-checkpoint approaches, and
consolidation triggers (CPU/memory thresholds vs.
predictive models). Their strength is in quantifying
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migration downtime, total transfer time, and migration
energy overhead across dozens of tools (e.g., Xen pre-copy,
KVM post-copy, RDMA-accelerated). They also survey
DVFS-enabled consolidation policies that reduce CPU
power during migration windows. However, they do not
incorporate  network-awareness beyond minimizing
migration traffic; specifically, they do not explore how VM
selection and placement decisions could optimize for inter-
VM communication patterns. In contrast, our survey
extends their consolidation framework by explicitly
modeling migration and placement objectives that minimize
both compute and network power.

The work in [11] propose a five-axis taxonomy for VM
placement —spanning optimization objectives (power,
performance, network, reliability), workload models (batch,
enterprise, web, HPC), constraints (QoS, SLA, affinity),
problem formulations (ILP, CP, heuristics, metaheuristics),
and placement modes (static vs. dynamic). They provided
researchers with an early, systematic way to navigate the
VM placement literature. Nonetheless, their taxonomy does
not explicitly integrate network-layer energy techniques
such as ALR or discuss how specific DCN topologies shape
algorithmic design. Our work builds on their multi-
dimensional approach by DCN topology —thus mapping
each placement algorithm onto a richer, network-aware
energy context, and explicitly correlating traffic patterns
with link-power-saving opportunities.

Survey [12] compile an extensive algorithm-centric
overview of VM placement techniques, grouping them into
exact ILP/MIP formulations, multi-objective nonlinear
programming, bin-packing heuristics (e.g., First-Fit
Decreasing, Best-Fit Decreasing), coalition- and graph-
theory methods (e.g., Hungarian algorithm), and
evolutionary metaheuristics (GA, PSO, ACO, SA, BBO) .
They evaluate each category in terms of scalability, solution
quality, and runtime, concluding that metaheuristics
predominate for large data centers. However, their survey
omits any discussion of network-aware energy techniques
or DCN topology. In our work, we situate each algorithm
class within a unified, network-aware framework that
specifies how each network metric studied influence
performance and energy outcomes, thereby providing
practical guidance on selecting placement strategies based
on the communication structure of the workload.

In their study [13], the authors deliver a comprehensive
multi-objective taxonomy for IaaS VM placement,
distinguishing between single-objective (power only) and
multi-objective (power and network, power and QoS)
methods, and between operation modes (offline vs. online),
while also noting emerging challenges such as AI/ML-
based placement and edge-cloud integration. However, they
do not unify ALR or DCN topology into their taxonomy.
Our survey builds upon their multi-objective perspective by
adding a  network-energy dimension, including

communication-aware cost functions and DCN-aware co-
location policies.

The survey [14] provides a comprehensive overview of
VMP mechanisms in cloud environments by systematically
categorizing approaches into static and schemes. Their
strength lies in rigorously detailing the mapping algorithms,
selection criteria, and resource-utilization impacts across 40
carefully filtered studies. However, because their focus
remains at the process level (static vs. dynamic) and general
algorithmic families, they do not analyze how network-
aware strategies, thermal considerations, or renewable-
energy profiles influence VMP decisions. Our survey fills
this gap by explicitly integrating these concerns, by
enabling sustainability-oriented VM allocation guided by
real-world infrastructure constraints.

The work described in [15] resent a comprehensive survey
of data center consolidation in cloud computing systems,
with a significant portion dedicated to VM-level
consolidation techniques —examining threshold-based host
selection, VM selection heuristics, and consolidation-
driven energy models for CPU and memory utilization.
Their strength lies in synthesizing a wide range of VM
consolidation algorithms—ranging from simple first-fit and
best-fit heuristics to more advanced ILP and metaheuristic
formulations—and in highlighting how VM consolidation
can reduce the number of active hosts and, consequently,
overall energy consumption. However, although they touch
on VM migration overhead, they do not incorporate
network energy considerations nor analyze how specific
data center topologies influence consolidation decisions.
Our survey extends their VM-level focus by embedding
each consolidation algorithm within a network-aware
framework, explicitly showing how inter-VM traffic
patterns interact with placement heuristics to maximize
combined compute and network energy savings, resulting
in more holistic and topology-sensitive consolidation
strategies.

The authors of [16] present a concise survey of seven
energy-efficient VM-placement algorithms in cloud data
centers, covering load-balancing heuristics, metaheuristic
methods, queuing-based models, simulation-driven
approaches, static placement schemes, hybrid strategies,
and predictive control techniques. Their work’s strength lies
in clearly summarizing each algorithm’s core mechanism
and practical applicability, but it lacks a systematic
taxonomy and quantitative comparison—particularly
omitting network-layer energy management. Our survey
fills this void by introducing a comprehensive, multi-
dimensional taxonomy and detailed comparison tables that
explicitly integrate network- and thermal-aware dimensions
into VM placement strategies, bridging infrastructure
constraints with algorithm design.

The authors of [17] conduct a systematic literature review
(SLR) of VM-scheduling studies, categorizing them into
three principal methodologies —traditional, heuristic, and
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meta-heuristic— and rigorously charting their problem
formulations, performance metrics, and simulation
environments. Their strength lies in applying a clear SLR
protocol to distill trends and challenges across a broad
corpus. However, because their taxonomy is organized
solely around algorithmic families and general scheduling
parameters, it omits network-aware energy management
considerations. Our survey fills this void by introducing
dedicated network- and thermal-awareness in the VM-
placement classification, highlighting the impact of link-
power state models and topology-aware routing in
placement evaluation.

Authors of [18] offer a systematic overview of VM
Consolidation (VMC) by describing the three fundamental
phases -(1) Physical Machine (PM) detection, (2) VM
selection, and (3) VM placement- and classifying works
according to their problem formulation (ILP, heuristic,
metaheuristic), constraint sets (SLA, affinity, resource
capacities), and objective functions (power minimization,
network traffic reduction, cost, SLA violation) . Their major
contribution is the clear, phase-by-phase breakdown of
VMC, which helps researchers identify algorithmic gaps in
each subproblem. Still, although they recognize
“minimizing network traffic” as one possible objective,
they do not assess the role of DCN topology. In contrast,
our survey embeds topology-aware metrics directly into the
VMP decision model—Ilinking traffic routing patterns,
bandwidth bottlenecks, and link power profiles with
placement granularity.

2-4- Motivation Toward a
Aware VMP Taxonomy

Network-Energy-

Building on the limitations identified, we now motivate the
need for a more unified taxonomy that explicitly links
energy and network metrics in VM placement.

This paper addresses these gaps by:

. Providing an integrated taxonomy covering both
network and energy optimization.

. Categorizing and analyzing methods across heuristic,
meta-heuristic, ML, and hybrid strategies.

. Highlighting topological and communication-aware
metrics used in real deployments.

. Incorporating recent advancements (2022-2025)
including RL-based, and graph-theory-informed VMP
strategies.

In summary, the existing body of survey work demonstrates
valuable insights into VM placement challenges, yet lacks
a unified treatment that integrates network topology,
communication behavior, and energy efficiency within a
cohesive evaluation framework. These gaps underscore the
importance of establishing a systematic classification of
VMP strategies, not only to contextualize existing methods

but also to lay the groundwork for deeper, network-aware
taxonomic analysis.

In the following section, we present a general classification
of VM placement approaches, categorizing them by
strategic objectives, optimization techniques, infrastructure
considerations, and workload profiles — all of which form
the foundation for the specialized taxonomy introduced in
Section 4.

Early research prioritized server-side optimization because
DCNs were heavily overprovisioned and per-flow traffic
metrics were not readily exposed to hypervisors. Moreover,
combining server and network objectives created complex
multi-objective problems, and only with the advent of SDN-
based telemetry [7] did network-aware placement become
both feasible and attractive.

2-5- Bibliometric Overview

To assess the scholarly rigor of our survey corpus, we first
defined precise selection criteria—keywords related to
virtual machine placement, inclusion of peer-reviewed
articles from reputable publishers, and exclusion of non-
technical reports or non-English sources. We then executed
systematic searches across Scopus and Web of Science
using Boolean combinations of “virtual machine
placement,” “cloud data center,” and “energy efficiency,”
restricting results to publications between 2009 and 2025.
After  de-duplication and  application of our
inclusion/exclusion rules, 80 references remained for
analysis. Table 3 summarizes the distribution of these works
by their SCImago Journal Rank quartile and lists the
corresponding reference numbers. Table 4 shows the
temporal breakdown of the references into 2009-2018,
2019-2021, and > 2022 periods. Together, these tables
provide a clear picture of both the scholarly rigor and the
evolution of the field over time.

Table 3. Distribution of survey references by SCImago journal rank
quartile.
References

Quartile Count

Ql 21 [6], [8], [91, [10], [12], [22], [26], [33], [37],
[38], [44], [49], [52], [54], [60], [62], [69],
[721, [73], [78], [85]
Q2 17 [5], [13], [15], [17], [21], [24], [30], [31],
[39], [40], [45], [50], [63], [66], [76], [79],
[83]
Q3 8 [14], [18], [35], [36], [47], [57], [70], [74]
Q4 5 [2], [23], [34], [53]. [80]
N/A 34 [11, [31, [41, [7], [11], [16], [19], [20], [25],
[27], [28], [29], [32], [41], [42], [43], [46],
[48], [51], [55], [56], [58], [59], [61], [64],
[65], [67], [68], [71], [75], [77], [81], [82],
[84]
All Quartiles are taken from the latest SClmago data
(2024).
Conference proceedings, book chapters, standards,

preprints, and other non-journal venues are marked N/A.
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Table 4. Distribution of survey references by publication period (2009—
2018,2019-2021, >2022).

Date Count  Reference Numbers

Range

2009— 38 (1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

2018 [12], [25], [27], [32], [42], [53], [54], [55],
[56], [58], [59], [60], [62], [64], [65], [66],
[67], [68], [70], [71], [72], [73], [74], [75],
[77], 1781, [80]

2019- 21 [13], [14], [15], [26], [29], [31], [34], [36],

2021 [37], [40], [41], [43], [46], [47], [49], [50],
[51], [57], [69], [76], [85]

2022 and 26 [16], [17], [18], [19], [20], [21], [22], [23],

after [24], [28], [30], [33], [35], [38], [39], [44],
[45], [48], [52], [61], [63], [79], [81], [82],
[83], [84]

3- VM Placement Classification

This section reviews VM-level placement techniques in
laaS clouds. While container orchestration (e.g.
Kubernetes, Docker Swarm) and serverless paradigms are
reshaping resource management, they lie outside our VM-
centric focus. For multi-level consolidation spanning VMs
and containers, we refer readers to [15].

VM Placement
Classification

T
[ I I 1

Objectives and Optimization Infrastructure Workload
Constraints Models Characteristics
— Energy +— Mathematical | Cloud Type |~ Arrival Rate
Efficiency
QoS/SLA
- HH H H P t— Workload Ty
Compliance euristics roximity lorkload Type
Cost Hardware-
— — Metaheuristics | — Based Energy |— Data Sources
Optimization .
Mechanisms
Machine Thermal-Aware
‘—Load Balancing| |— Le’arni; L— Placement
aming Strategies
L~ Graph Theory

Fig. 1. VM Placement Classification

To establish a foundation for network-aware taxonomic
refinement, we first present a generalized classification of
VMP strategies. This section categorizes the existing
approaches through four essential questions as shown in
Fig.1—Why place?(Objectives), How to place?(Methods),
Where to place?(Constraints), and What is being
placed?(Workload)—each representing a pillar of modern
VMP design. It is important to note that many studies do not
fit in a single category. Instead, authors often formulate
their placement strategies using a combination of
objectives, methods, and constraints, leading to intentional
overlap across these classification boundaries. This

multidimensional design reflects the complex, real-world
trade-offs that cloud service providers must manage.

3-1- Placement Objectives & Constraints (Why
Place?)

A- Energy Efficiency

Energy efficiency is a foundational objective in VM
placement, targeting both server-side and network-side
power reductions. At the server level, strategies such as
consolidation and intelligent VM distribution aim to reduce
the number of active physical PMs. On the network side,
minimizing inter-VM communication distance—by placing
frequently interacting VMs closer within the topology—
reduces switch and link utilization.

The Energy Efficient VM Placement (EE-VMP) model
proposed in [19] demonstrated remarkable improvements,
reducing power consumption by up to 56.89% and the
number of active servers by 37%, while enhancing resource
utilization by over 64%. These results underscore the
potential of topology-aware consolidation combined with
server optimization. However, the algorithm depends on
accurate traffic matrices, which are rarely available in real
time.

Similarly, an Active Energy-Efficient Placement method
[20] achieved average energy reductions of 21.2%
compared to the First Fit baseline. This highlights the
efficacy of lightweight heuristic decision-making when
real-time adaptability is needed, particularly in large-scale
public clouds. However, its simplicity ignores inter-VM
traffic  patterns, potentially increasing cross-rack
communication. Thus, Active Placement is attractive for
compute-heavy, low-communication workloads but falls
short when inter-VM latency and bandwidth must also be
managed.

For dynamic workloads, the MOEA/D-based placement
method proposed by [21] provides a more nuanced multi-
objective balance. It simultaneously minimizes energy
usage and overload risks, ensuring QoS compliance while
maintaining performance efficiency under load. This
approach is especially valuable in heterogeneous cloud
environments with fluctuating demand, although it comes
at the cost of higher computational complexity. That said, it
adds significant computational cost. Choosing MOEA/D is
advisable when offline tuning is acceptable and runtime
overhead is secondary to multi-objective precision;
otherwise, one should reject it in favor of faster
approximation methods.

In [22], authors propose an algorithm designed to jointly
minimize the energy consumption of both servers and
network devices. The algorithm incorporates traffic
awareness by co-locating highly interactive VMs and
selecting physical paths with minimal energy costs. Their
results demonstrated 11.4% reduction in total energy
consumption, up to 22.3% reduction in network power
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usage, and significant improvement in VM-to-VM
communication efficiency. This method shows how
intelligent mapping of traffic-heavy VMs to proximity-
aware PMs can lower the utilization of aggregation and core
switches, reducing link activation and routing overhead, yet
the solution assumes that accurate traffic matrices are
available prior to placement—a condition not always
feasible in real-time cloud workloads.

B- QoS/SLA Compliance

Guaranteeing Quality of Service (QoS) and minimizing
Service Level Agreement (SLA) violations are crucial
objectives in VM placement. Overlooking these
considerations can result in degraded user experience,
financial penalties, and reduced provider reputation—
especially in multi-tenant cloud infrastructures operating
under tight availability thresholds.

The work in [23] introduced a utilization-aware VM
placement policy that anticipates workload demands and
avoids host overloading. By forecasting CPU trends and
limiting consolidation aggressiveness, the method
minimizes SLA violation time per active host while
maintaining consolidation efficiency. However, reliance on
CPU-only forecasting neglects network congestion effects
during live migrations, potentially shifting bottlenecks to
oversubscribed links. Moreover, the threshold-based
decision logic may misfire under sudden workload spikes,
degrading performance.

In [24], the authors proposed an Energy and QoS-aware VM
placement algorithm (EQVMP) tailored for IaaS cloud
environments. Their work integrates host energy modeling
with service availability constraints, using a hybrid
scheduling policy to minimize SLA violations.
Experimental results show that EQVMP achieves lower
energy consumption compared to baseline algorithms like
RR and FF, while improving response time and reducing
SLA violations, particularly under high-demand scenarios.
Nevertheless, EQVMP’s energy model abstracts away fine-
grained network costs, and its rule-based availability checks
introduce additional scheduling latency.

In a broader context, In [25], authors developed a multi-
domain SLA management model incorporating a Generic
SLA Manager (GSLAM) linked with OpenStack. Their
approach models SLA violations and penalties across the
laaS, PaaS, and SaaS layers. The AV/AVL algorithms they
introduce maintain availability above 99.99% and reduce
penalty propagation across domains by controlling live
migration overhead and optimizing host selection. While
this multi-layer perspective improves service-level
economics, the framework’s orchestration complexity and
cross-layer coordination overhead pose significant
scalability challenges.

C- Cost Optimization

Cost-efficient VM placement remains a critical challenge in
cloud infrastructures, especially in geographically
distributed data centers where energy prices, carbon taxes,
and renewable availability vary significantly. The work in
[26] proposed a renewable- and carbon-aware VM
allocation model that minimizes electricity costs and CO:
emissions by dynamically placing VMs across data centers
based on green energy availability, carbon intensity, and
electricity prices. Their system integrates DVFS techniques
and dynamic workload balancing, optimizing both cooling
and server power usage. This work implicitly touches on
network-related cost considerations by analyzing the carbon
footprint and latency constraints tied to inter-data center
VM placement and container communication, making it
relevant to network-aware resource allocation. However,
the method presumes reliable, low-latency energy pricing
and renewable forecasts, which may not be universally
available; it also overlooks performance impacts of inter-
sitt VM migrations, risking degraded QoS for latency-
sensitive workloads.

Similarly, in [27] authors designed a power and cost-aware
placement strategy using a fuzzy decision model that
simultaneously considers power consumption, electricity
costs, and resource utilization. Their strategy yields
measurable cost benefits under stable network conditions
but omits dynamic bandwidth pricing and incurs significant
overhead from fuzzy parameter tuning.

D- Load Balancing

Effective load balancing in virtual machine placement
ensures even distribution of tasks across physical resources,
which reduces processing delays, prevents host
overloading, and maintains optimal system throughput.
Load imbalance can lead to resource contention, degraded
performance, or energy inefficiencies, particularly in high-
density cloud environments.

In [28], a hybrid metaheuristic approach combining Ant
Colony Optimization (ACO), Particle Swarm Optimization
(PS0O), and Artificial Bee Colony (ABC) is introduced to
improve load distribution. This tri-hybrid method leverages
the strengths of each algorithm: ACO's path-finding
accuracy, PSO's global exploration, and ABC's exploitation
of good solutions. The algorithm dynamically reallocates
workloads among VMs based on current utilization,
minimizing makespan and improving response time.
Simulation using CloudAnalyst showed that the hybrid
strategy significantly reduced average response time and
execution time, outperforming classical load balancing
algorithms like DLMA and IDLBA. Despite these gains, the
combined algorithm entails high computational complexity,
complex parameter calibration, and limited scalability
under dynamic workloads.
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Authors of [29] proposed the Min-Max Exclusive VM
Placement (MMEVMP) strategy designed for scientific
data environments, where workloads are data-intensive and
disk I/O becomes a performance bottleneck. Unlike
conventional CPU-centric methods, MMEVMP considers
both disk bandwidth and CPU utilization to minimize SLA
violations and reduce system operating costs. The algorithm
dynamically avoids hosts likely to face disk saturation by
analyzing historical usage patterns and applying adaptive
time-based thresholds. Their experiments using a
lightweight CloudSim version showed that MMEVMP
achieved lower SLA violation rates while keeping energy
consumption within acceptable bounds. However, the
approach depends on accurate historical 1/0O profiling and
neglects real-time network traffic patterns, potentially
shifting bottlenecks to the network layer.

3-2- Optimization Models (How to place?)

Optimization approaches to VMP can be categorized into
distinct yet overlapping models, each with advantages tied
to performance, scalability, and adaptability to multi-
objective goals. These include mathematical models,
heuristic methods, metaheuristics, and learning-based
approaches.

A- Mathematical Optimization

The work [30] presents a Multi-Objective Integer Linear
Programming (MOILP) model for optimal VM placement,
addressing resource utilization in CDCs. Although MOILP
offers a rigorous mathematical framework for balancing
conflicting objectives, its computational complexity grows
exponentially with problem size. When applied to scenarios
involving thousands of VMs and PMs, this leads to long
solution times and excessive resource demands—rendering
MOILP impractical for real-time or highly dynamic cloud
environments. Even with enhancements like Tabu Search
acceleration, solver runtimes extend beyond acceptable
limits for dynamic cloud environments.

This paper [31] introduces mixed-integer programming
(MIP) models for virtual machine placement that embed
disk anti-colocation constraints—ensuring no physical disk
hosts more than one virtual disk from the same VM—to
optimize resource allocation in datacenters. MIP
formulation may involve trillions of variables and/or
constraints for large datacenter and therefore can’t solve
VMP optimally within acceptable time.

Optimization-based VM placement approaches offer
mathematically rigorous formulations that guarantee
optimality under well-defined constraints. These methods
are especially suitable for precision-critical environments
where deterministic outcomes are essential. Their ability to
handle multiple objectives simultaneously (e.g., minimizing

energy while balancing load and respecting hardware
constraints) is a significant strength not easily replicated by
heuristics or learning-based methods.

However, the computational cost of solving such models
grows exponentially with problem size, making them
impractical for large-scale cloud infrastructures [32].
Incorporating network-related constraints—such as inter-
VM bandwidth demands, link capacities, or communication
topologies—further increases the complexity. Even when
advanced solvers or acceleration techniques are used, real-
time placement decisions remain out of reach for anything
beyond small- to medium-scale scenarios.

These approaches are also highly sensitive to changes in
input parameters or constraints. A minor modification in
workload demand or infrastructure policy may require full
model regeneration and resolution, limiting their
responsiveness to dynamic or elastic cloud environments.
Furthermore, despite their theoretical strength in modeling
energy consumption or network utilization, embedding
such metrics into optimization formulations significantly
delays solver convergence.

In terms of scalability, scenarios with fewer than 500 VMs
are well-suited to these methods. On the other hand, large-
scale, dynamic, or latency-sensitive platforms—such as
public clouds or edge computing environments—are poorly
matched due to the models' inability to respond within strict
time constraints.

This type of optimization is best suited for offline placement
in private clouds with stable demand, small-scale
deployments where optimality justifies runtime, and
regulated environments requiring strict constraint handling
(e.g., security or compliance-based placement). But they
perform worse with rapidly scaling public clouds, edge
scenarios with latency bounds, and dynamic workloads
requiring frequent re-optimization.

B- Heuristics

Heuristic methods are variants of bin-packing and greedy
placement. They offer rapid, scalable approximations for
the VM placement problem. Use simple, rule-based
strategies (e.g. First-Fit, Best-Fit Decreasing [33])). These
algorithms sort VMs by one or more dimensions (such as
CPU demand or traffic volume) and assign each VM to the
“best” host in linear or near-linear time.

GMPR [34] is a greedy placement algorithm that first ranks
PMs by power efficiency to minimize the number of active
hosts, then sequentially reduces resource imbalance and
slack. In simulations on synthetic workloads and Amazon
EC2 traces, GMPR achieves average savings of 1.91% in
energy consumption and 16.18% in resource wastage versus
state-of-the-art methods yet overlooks bandwidth costs.
Hybrid Best-Fit (HBF) [35] extends the classic Best-Fit
heuristic by running three VM-ordering schemes (original,
ascending size, descending size) and selecting the allocation
with the lowest total energy. HBF consistently outperforms
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both Best-Fit and Best-Fit Decreasing with minimal
additional computation, but without addressing network
proximity.

Heuristic-based VM placement approaches are widely used
for their speed, simplicity, and scalability, making them
particularly  effective in  large-scale  datacenter
environments where rapid decisions are essential.
Techniques such as First-Fit and Best-Fit Decreasing
achieve linear or near-linear time complexity (O(n log n)),
enabling quick allocation of VMs with minimal
computational overhead. Rule-based strategies, like sorting
VMs based on CPU demand or traffic volume, are easy to
implement and impose very little runtime cost. These
methods are especially well-suited for static or predictable
workloads.

However, the main limitation of heuristic approaches lies in
their tendency to optimize single dimension while
neglecting critical factors like network traffic. As a result,
they often perform poorly in multi-objective optimization
scenarios that require balancing energy consumption,
latency, and SLA compliance. Their static nature also
makes them not suitable for dynamic or unpredictable
environments, where workload patterns change rapidly and
real-time re-optimization is essential. While their
computational efficiency remains a major strength, this
speed frequently comes at the cost of placement accuracy
compared to more adaptive metaheuristic or learning-based
methods.

In terms of scalability, heuristics perform well, handling
high volumes of VM requests. They are ideal for
environments where quick and frequent placement
decisions are needed without deep optimization logic.
However, their suitability for energy- and network-aware
placement remains limited. Although variants like HBF
reduce host-level energy consumption, they do not model
dynamic power states or account for network bandwidth
costs, resulting in potentially inefficient traffic patterns.
Overall, heuristics are best reserved for static or predictable
workloads —such as batch processing— or for initial
placement stages before applying more adaptive
optimization techniques. They are less appropriate for
network-intensive applications, dynamic edge
environments, or scenarios demanding multi-objective
trade-offs.

C- Metaheuristics

Metaheuristic  approaches, such as Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO),
Genetic Algorithms (GA), Grey Wolf Optimization
(GWO), and their hybrids; tackle VM placement as a multi-
objective  optimization problem, balancing energy
consumption, resource utilization, and SLA guarantees.

For example, [36] propose a hybrid ACO-GWO that
weaves in traffic-awareness to co-locate  high-

communication VMs, yielding up to 19.41% power savings
and 10.72% bandwidth-utilization improvements over
baseline algorithms.

[37] classify and critique a broad spectrum of nature-
inspired metaheuristics—SA, PSO, GA, ACO, BBO, and
hybrids—highlighting their strengths in
exploration/exploitation balance but noting their general
omission of communication costs.

The work [38] presents a hybrid GA—best-fit scheme that
minimizes active PMs and resource wastage, characterizing
VMs by CPU, RAM, and bandwidth.

Recently, the work [39] proposed the NCRA-DP-ACO
algorithm, a network-, cost-, and renewable-aware ACO
framework for energy-efficient VM placement across
geographically distributed datacenters. Unlike previous
metaheuristic solutions, this work introduces a dynamic
Power Usage Effectiveness (PUE) model, real-time solar
energy profiling, and carbon-aware cost modeling. By
integrating environmental and economic factors into the
multi-objective placement strategy, the algorithm achieved
up to 18% energy savings and a 48% reduction in live
migrations compared to baseline heuristics and
metaheuristics.  This  approach  demonstrates that
incorporating sustainability-aware factors can significantly
enhance placement decisions in large-scale cloud
environments, addressing a critical gap often neglected in
earlier VM placement studies.

Metaheuristics offer excellent pathways to near-optimal
placement of VMs in multi-objective environment. They
are capable of compromising among energy efficiency,
SLA, and resource consolidation while covering a large
solution space.

However, their performance heavily depends on proper
parameter tuning, and poor configurations lead to
suboptimal convergence. Moreover, most metaheuristics
neglect traffic patterns or topology, and therefore require
additional improvements for traffic- and communication-
aware optimizations. Enhanced variants can improve
network efficiency but require additional computational
overhead.

Since these algorithms are iterative and population-based
searches over multiple generations (denoted as t), they
exhibit higher O complexity —O(n?*xt), where n is the
problem size and t is the number of iterations. This reflects
a quadratic growth in computational cost with problem size,
meaning convergence time increases significantly as the
number of VMs scales. Nevertheless, these approaches
remain effective for medium to large problem sizes.

These approaches are best suited for offline or semi-
dynamic VM placement scenarios where computation time
is not a concern. They excel in multi-objective optimization
—balancing energy efficiency, performance, and cost—and
are effective in sustainable cloud environments that require
periodic reallocation. However, they are less ideal for low-
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latency edge computing due to slower convergence rates,
and they tend to underperform in highly dynamic or
unpredictable workloads where rapid re-optimization is
essential. For small-scale deployments, simpler heuristic
methods are often more practical.

D- Machine Learning

Emerging Al-driven VM placement frameworks leverage
predictive and adaptive techniques to anticipate demand,
group workloads, and continuously learn optimal
allocations. Workload Forecasting Models employ
learning-based algorithms to predict future load patterns
and proactively select hosts that balance energy
consumption and SLA adherence.

Classification & Clustering approaches identify high-traffic
VM pairs or hosts at risk of overload and refine placement
heuristics; Finally, Reinforcement Learning optimizes VM
placement by learning from interactions with the
environment (servers, network, and workloads).
Workload Forecasting Models: The work [40] introduces
a dynamic, learning-based scheme that continuously
predicts per-VM resource-usage thresholds to drive
proactive allocation and live migration decisions. The
approach adapts to fluctuating loads by generating runtime
data and training a hybrid model (combining swarm-
inspired search with an ML classifier), thus improving SLA
compliance, reducing migrations, and cutting energy
compared to standalone bio-inspired or ML methods.
Classification & Clustering: Random Forests or K-means
identify which VM pairs generate the most traffic, or which
hosts are likely to become overloaded, refining heuristic
weightings. LECC [41] — a multi-objective VM (and data)
placement framework for geo-distributed clouds that jointly
minimizes carbon emission cost, energy consumption, and
WAN communication cost— embeds an intelligent ML
module that is trained on historical energy, latency, and
carbon-cost data to dynamically adjust its multi-objective
weightings (carbon emission, energy, WAN cost) at
runtime. Extensive simulations on synthetic and real
(PlanetLab and EC2) traces demonstrate LECC’s ability to
reduce server energy and cut response latency compared to
baseline methods.

Reinforcement Learning (RL): The work [42] proposes a
fuzzy-based State-Action-Reward-State-Action (SARSA)
reinforcement learning algorithm for optimal VM
placement in CDCs, effectively reallocating VMs to
minimize energy consumption and resource wastage while
ensuring compliance with SLA and QoS demands during
fluctuating workloads.

ML-based VM placement algorithms adapt better than
static heuristics under workload variation and fast-changing
user demands.

Yet, there do exist serious disadvantages. These algorithms
need huge amounts of training data of almost perfect

quality, and their predictive power degrades if they are not
promptly retrained or adapted. Many approaches in ML
tend to disregard network traffic behavior or the underlying
topology, limiting their applicability in optimizing network
energy consumption or communication latency. These
models add a further computational overhead and
convergence delays: For instance, clustering methods scale
at O(n®), while deep-learning techniques demand
tremendous GPU/CPU resources [43].

Lastly, scalability becomes an issue: whereas the bigger
data can continue to scale the ML model, on the other side,
training and inference times increase with the size of the
problem. Some solutions —distributed or federated
learning— can help but introduce synchronization and
convergence delays.

Network- and energy-aware suitability, and also
optimization, are still primary concerns of most of these
ML-based solutions. Advanced architectures like GNNs
can integrate network topology into their learning
workflow, but these models are computationally costly and
thus seldom used. Without explicitly modeling bandwidth
consumption or link-layer power states, ML-based
placements may underperform when communication and
geo-distribution dominate the environment [44].

ML-based VM placement algorithms are more suited to
dynamic and large-scale cloud environments with regular
patterns of workload and good availability of historical data
[45]. However, their applicability is limited in real time or
latency-sensitive deployments, where response has to be
immediate. They also fail in environments where the
workloads are unpredictable or rapidly changing.

E- Graph Approaches

Graph-theoretic VM placement models represent PMs/
VMs as graph nodes, with edges encoding constraints like
inter-VM traffic or power costs. By applying community-
detection or graph-partitioning algorithms, they co-locate
highly communicative VMs —minimizing network hops and
energy consumption.

The algorithm in [46] uses a graph-coloring algorithm that
models VMs as graph vertices and inter-VM traffic volumes
as weighted edges, then iteratively “colors” (assigns) and
merges vertices to minimize both network overhead and
server power use. Their method batches VM migrations to
keep high-traffic groups co-located and decommission
underutilized hosts. Extensive simulations across
hierarchical datacenter topologies demonstrate that GCA
halves link saturation and outperforms single-migration
schemes by up to 65% in network-overhead reduction.
Authors in [47] propose a two-phase, graph-theoretic VM
placement strategy tailored for data-intensive cloud
applications. They first model the datacenter as a complete
weighted graph —vertices are hosts, edges carry a
networking-cost metric combining link saturation and hop
count. In Phase 1, a fuzzy inference system ranks racks by
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free resources and intra-rack traffic, and a linear program
selects the smallest set of “close” racks with low uplink
load. In Phase 2, the Traffic-Distance-Balanced (TDB)
greedy algorithm uses the graph’s weighted adjacency
matrix to iteratively pick hosts minimizing total inter-host
networking cost. This approach unifies capacity and
communication in a single graph framework, ensuring high
host utilization while keeping over 80% of traffic rack-local
and halving link saturation compared to flat heuristics.
Despite clear advantages in topology-aware grouping,
graph methods incur O(n®) complexity and often require
full-network snapshots, impractical for frequent re-
optimizations.

Despite their strength in encoding traffic and topology
awareness, these methods come with high computational
costs. Algorithms for community detection, graph
partitioning, and coloring frequently exhibit O(n®)
complexity, which becomes a bottleneck in large or fast-
evolving systems [46].

Another limitation lies in their reliance on static or
snapshot-based views of the network state. To remain
effective, graph-based models require up-to-date global
topology and traffic matrices —information that is difficult
to capture or maintain in real time without imposing
significant monitoring and re-computation overhead.
Additionally, integrating these specialized algorithms into
existing cloud controllers or schedulers remains a challenge
due to their architectural differences.

From an energy and network efficiency perspective, graph-
theoretic strategies outperform heuristic or ML-based
approaches in minimizing communication overhead and
active link utilization. However, this often comes at the
expense of higher host-level energy consumption when
traffic-based clustering leads to VM consolidation on less
3-3- Infrastructure Considerations
place?)

(where to

Cloud architecture plays a pivotal role in VM placement
decisions. It encompasses the set of interconnected
components and deployment models that define how
compute, storage, and network services are delivered. A
network-aware placement algorithm must adapt to the
physical and logical characteristics of the underlying
architecture.

A- Cloud Infrastructure type

Centralized Cloud: infrastructure consolidates all resources
in a single data center, offering uniform latency and
centralized cooling, power, and network control. Here,
placement strategies emphasize intra-rack traffic
minimization, server consolidation, and ALR to reduce
switch and server energy. Because of the homogeneous
environment, algorithms benefit from predictable latencies

energy-efficient machines. While the network energy
savings are clear, careful balance is required to avoid
increasing overall compute energy due to suboptimal host
selection. These algorithms are suitable for communication-
intensive workloads with predictable traffic patterns (e.g.,
Hadoop), and hierarchical (or structured) data centers where
intra-rack traffic locality is critical. However they perform
poor with: real-time architectures with rapidly shifting
traffic flows, edge and fog computing scenarios with strict
latency constraints, and hyperscale public clouds (>10,000
VMs) where O(n*) complexity is unjustified [48].

Summary and Comparative Insights

While each VM placement strategy category—
mathematical optimization, heuristics, metaheuristics,
machine learning, and graph theory—has distinct merits,
they also exhibit significant trade-offs in terms of
computational complexity, scalability, and suitability for
energy- and network-aware objectives. Mathematical
optimization-based methods provide provable optimality
for small-scale problems but are intractable for real-time or
large deployments. Heuristic methods are fast and scalable
but fail to consider complex objectives or traffic metrics.
Metaheuristics deliver near-optimal results and support
multi-objective  optimization, yet often suffer from
parameter sensitivity and long runtimes. ML approaches
bring adaptability and prediction to dynamic environments
but are data-hungry and rarely embed network topology or
energy metrics explicitly. Graph-theoretic models excel at
topology-aware co-location but incur high computational
costs and require complete snapshot data. As summarized
in Table 5, selecting an appropriate placement strategy
requires balancing complexity, performance goals, and
environmental context, especially when aiming to reduce
both host and network energy consumption.

and uniform PUE values, supporting static or light dynamic
heuristics [49]. However, placement strategies risk creating
network congestion at the rack level if VM affinities are
misestimated and lack resilience against localized failures
or flash crowd events. Centralized placements suit
applications with consistent workload distributions but
should be augmented with fault-tolerance and burst-
handling extensions for production deployments.

Distributed Cloud: infrastructures span  multiple,
geographically dispersed sites or edge facilities. Placement
algorithms in this context must account for WAN latency,
variable carbon intensity, renewable energy availability,
and differing PUE scores across locations. For instance,
placement might favor a solar-powered region despite
slightly higher latency. Network-aware algorithms in
distributed contexts must balance performance against
operational costs and inter-site bandwidth constraints [27].
While distributed placement can optimize global cost and
sustainability, it introduces complexity in synchronizing
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state across sites, handling network failures, and meeting
latency-sensitive SLAS.

B- Cloud Proximity Models

Cloud Proximity Models distinguish between edge and core
clouds based on their user-nearness and resource richness.

Edge Clouds: Deployed close to users for latency-sensitive
workloads like gaming or AR/VR; placement here must
prioritize minimal hop counts and rapid elasticity but
suffers from limited capacity and heterogeneous
infrastructure. TRACTOR [50], Traffic-aware and Power-
efficient Placement in Edge-Cloud Data Centers (ECDCs),
an Artificial Bee Colony-based multi-objective VM
placement scheme that minimizes network traffic and
power consumption in ECDCs. Evaluations on VL2 and
three-tier topologies demonstrate a 3.5% reduction in server
energy and up to 30% cut in network power usage without
degrading QoS. However, TRACTOR presumes accurate
pre- and post-placement traffic matrices and requires
simulation-based calibration, limiting its adaptability to
heterogeneous, real-world edge deployments.

Core Clouds: located in centralized, resource-rich facilities,
are suited for compute-heavy, batch-oriented tasks that do
not have stringent latency demands. Placement algorithms
in these environments optimize resource density and power
utilization while managing rack-level heat and congestion.
In a centralized high-density core clouds, [51] framework
employs a Greedy Randomized VMP (GRVMP) algorithm
that fuses heuristic sorting with stochastic perturbations to
escape local optima, achieving up to 12% energy reduction
and 8% resource utilization gains compared to deterministic
baselines. GRVMP addresses dynamic VM arrivals;
however, its randomized nature can lead to variability in
outcomes and overlooks network topology unless network-
aware metrics are integrated.

C- Hardware-Based Energy Mechanisms

Datacenter hardware often embeds energy-saving features
at component and network levels. Placement algorithms
that are aware of these mechanisms can reduce overall
power draw by tailoring VM assignments to exploit them.

We categorize three primary hardware-based strategies
below:

. ALR:

ALR dynamically scales the data-link speed of network
interfaces (e.g., from 1 Gbps to 100 Mbps) based on
instantaneous utilization. When traffic is low, links down-
shift to a lower rate—saving up to 40 % of PHY-layer
power—then ramp up again under load. Some VM
placement schemes explicitly cluster bursty or low-
throughput VMs under the same Top-of-Rack switch to
maximize low-speed intervals and link-power savings [52].

° DVEFS:

Modern CPUs and NICs support DVFS, which lowers
voltage and clock frequency when workload demands
permit. Experimental studies report up to 30 % server-level
energy reduction with minimal performance loss under
controlled load variations [53]. Energy-aware schedulers
simulate or predict CPU utilization to trigger DVFS states—
placing latency-insensitive VMs on hosts where cores can be
down-clocked, while reserving full-speed nodes for critical
workloads [54].

. Switch and Rack Power-Down:
Many top-of-rack (ToR) switches and rack PDUs can enter
sleep modes or shut down unused ports when idle. Research
prototypes have shown up to 50 % energy savings in
underutilized racks by consolidating traffic and powering
down dormant switches [55]. Topology-aware schemes fold
traffic into active racks during off-peak periods, allowing
idle switches or PDUs to sleep or power off; the migration
cost is balanced against the long-term energy gains [56].

Placement algorithms treat ALR, DVFS, and switch/rack
power-down not as standalone placement steps but as
hardware-aware objectives or constraints that guide where
and when to place or migrate VMs. In other words, these
features aren’t separate “phases” of VM placement; rather,
placement algorithms incorporate knowledge of link-rate
scaling, voltage/frequency capabilities, or switch on/off
thresholds to shape consolidation decisions.

Integrating these hardware-based mechanisms into
placement and migration heuristics unlocks significant
energy savings that complement software techniques.

D- Thermal-Aware Placement Strategies

Integrating thermal dynamics into VM placement helps
prevent hotspots and reduces cooling energy consumption
by considering rack- and node-level temperature
distributions during allocation and migration decisions [57].
Multi-objective formulations jointly optimize computing
energy and cooling load, enabling VM placement
algorithms to trade off consolidation benefits against the
risk of creating thermal hotspots [58].

3-4- Workload Characteristics (What is being
placed)

A- Arrival rate

Static: Static workloads such as batch jobs in scientific
computing, benefit from heavy-weight optimizations like
ILP, yielding near-optimal resource packing when demands
are known in advance [59][60]. The term "static allocation"
usually refers to the initial VM placement which is the
allocation of VMs to PMs is done during deployment and
remains fixed throughout the VMs' lifecycle. The goal is to
optimize allocation based on resource requirements and



Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 223

constraints. However, the assumption of stable load profiles
renders it brittle when workloads fluctuate unpredictably.

Dynamic: Dynamic scenarios characterized by real-time
VM arrivals in auto-scaling web services or event-driven
microservices. Dynamic VM placement includes placing
new VMs and migrating existing ones, considering future
live migrations, and needs more resources than static
solutions.

In this context, reactive placement adapts the initial
allocation of resources based on the current state of the
system, while proactive placement predicts future
conditions and adjusts allocations before problems occur.

. Reactive Placement: Migration or reallocation is
triggered by observed thresholds, such as CPU/memory
utilization exceeding a limit, network congestion detected on
a link, or thermal hot spots. Reactive methods respond to
current system state ([61][62]) but often react too late to
avoid SLA violations or suboptimal energy states.

. Proactive Placement: Predictive models anticipate
future workloads or traffic spikes and migrate VMs
preemptively. While more complex, requiring accurate
demand prediction, proactive approaches can better prevent
overloads and exploit low-utilization windows for
consolidation [20], [21]).

B- Workload Type (Application-Centric)

We present the main application categories in the literature
used to guide placement heuristics.

Bag of Tasks: Independent parallel tasks requiring minimal
inter-communication. Placement focuses on maximizing
throughput and minimizing makespan by grouping tasks
(VMs) on minimal PMs [41].

CPU-Intensive Workloads: Require sustained processor
capacity and thermal stability. Placement must dedicate
cores to each VM and move workloads off busy hosts to
prevent contention and overheating [64].

Data-Intensive Workloads: Require high I/O and low-
latency access to shared storage. Placement must reduce
traffic to storage nodes (SNs) and minimize bottlenecks
[65].

Latency-Sensitive Applications: Include gaming, financial
systems, or telemedicine, where delays severely degrade
user experience. These demand edge-aware, low-hop-count
VM placement [66].

C- Workload Data Sources for Algorithm Evaluation

The following are the ways researchers evaluate their work
against other algorithms. However, researchers may
combine two or more types of workload data.

. Benchmark Datasets: Standardized collections of
VM workload traces detailing CPU, memory, I/O and

network usage, collected via monitoring tools, application
profilers or user logs. They enable controlled, repeatable
comparisons of placement algorithms by quantifying
impacts on network utilization, availability and cost.

. Synthetic data: Synthetic data is generated using
mathematical models and statistical techniques that simulate
the behavior of real-world applications and infrastructure
components. It allows researchers to control the workload
and resource utilization characteristics of the cloud
infrastructure and to compare different algorithms under the
same conditions. Researchers evaluated their work using
synthetic scenarios with several performance metrics [67].

. Real Traces: Real traces are collected from real cloud
computing environments (Amazon EC2, PlanetLab, and
Google Cluster) to evaluate VM placement algorithms
under realistic conditions. In [51], Amazon EC2 data was
used to optimize power consumption. In [68], PlanetLab
network traces were utilized to assess algorithm
performance. Both methods provide insights into workload
behaviors and resource utilization for algorithm evaluation.

These classifications create a multidimensional lens to
evaluate VM placement strategies and pave the way for
our specialized network-aware taxonomy in Section 4.

4- Taxonomy of Network-aware VM
Placement Approaches

This section synthesizes the contextual shifts and motivates
the need for a new taxonomy—one that maps VM
placement methods not only to their algorithmic families
(heuristic, ML-based) but also to the underlying network
dynamics they aim to optimize. As shown in Fig.2, our
taxonomy therefore introduces a cross-layer perspective
that bridges DCN topology, traffic characteristics,
communication patterns, and energy reduction strategies,
reflecting how emerging solutions should be evaluated in
modern cloud environments. Additionally, a sub-taxonomy
at the bottom of Fig.2 classifies network-aware VMP
algorithms according to their energy consumption
strategies.

In a typical cloud computing environment, VMs are
interconnected with physical hosts through a network,
generating substantial network traffic from the applications
they run. Consequently, the placement of VMs on physical
hosts significantly impacts network performance, which in
turn affects overall application performance. Given that the
network is a major consumer of energy, minimizing
network traffic and optimizing topology can lead to
substantial energy savings.

Therefore, it is critical to consider network-related factors
throughout placing and migrating VMs. This means that the
VMP algorithm should not only consider the usual metrics
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and resource requirements of VMs and PMs but also
incorporate network considerations. The algorithm can
make more informed decisions regarding VM placement
and consolidation by incorporating network conditions,
topology, and traffic patterns.

Customers utilize VMs to conduct specific jobs that are
frequently parts of larger applications, such as tiers of multi-
tier applications. As these VMs start communicating with
each other, it can involve the transfer of significant amounts
of data, which might increase latency or response times to
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Fig.2 Network-aware VM placement taxonomy.

intolerable levels. In addition, the power consumption of the
hardware components involved, such as PMs, routers,
switches, and other networking equipment, can also be
affected by such communication patterns.

For the reasons listed above, it is ideal to have VMs that
communicate frequently placed on the same server, or at the
very least within the same DC. Additionally, VMs
belonging to the same application may have load
correlation, making it more likely that they may peak at the
same time; this must also be carefully considered when
allocating VM resources.

Network bandwidth can often become a bottleneck,
particularly in scenarios involving data mapping on SNs.
High network traffic between VMs and SNs can arise when
workloads require extensive data mapping. To prevent too

many high network loads, it is necessary to consider both
the placement of VMs on PMs and application data on SNs.
To facilitate this, we categorize network-aware VMP
algorithms into four groups based on their focus on network
considerations:

4-1- DCN Topology

DC topology involves organizing physical and logical
components in a network, including servers, network
devices, and SNs. It enables efficient connections with
multiple PMs, enhancing energy efficiency and reducing
reliability concerns. Various network topologies tackle
scalability and energy consumption differently and offer
insights for future VM placement research. Researchers can
examine the advantages, drawbacks, and enhancements of
these topologies to improve current VM placement
methods, as discussed in Section V.

A- Hierarchical three-tier

This architecture manages traffic using a structured
approach. The access layer connects servers to edge
switches, which then relay information to interconnected
aggregate switches. The core layer serves as the spine,
linking all aggregate switches and handling external
connections, providing a scalable and efficient solution for
internal data center communication.

. Fat-tree: A three-tier architecture utilizing bipartite
graphs with pods as the basic unit, where each pod contains
access and aggregation switches. This topology offers
efficient routing paths for reducing congestion and power
consumption [69].

. VL2: Like fat-tree, this three-tier topology connects
core and aggregation switches in a bipartite graph. Valiant
load balancing routes traffic by randomly selecting a core
switch, reducing congestion and power consumption. A
customized VMP technique further optimizes network
traffic. [67].

. Portland: This architecture comprises pods with
access and aggregation switches forming bipartite graphs,
connecting to all core switches. VM placement algorithms
prioritize proximity to enhance quality of service (QoS)[70].

B- Recursive

These topologies are constructed recursively, combining
smaller building blocks into larger network structures,
allowing for scalable and modular designs.

. DCell: a server-centric data center network design
with a hierarchical structure. Servers connect directly with
multiple NICs, organized into cells like cellO, celll, and cell2
[71].

. BCube: BCube is a multi-level data center network
architecture focused on servers, integrating them into the
network infrastructure. It is derived from hypercube
architecture, connecting hosts via switches based on port
availability for efficient packet forwarding [72].



Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025 225

C- Rack to Rack

Rack-to-rack networks prioritize communication between
server racks. Their design focuses on efficient data transfer
within and across racks.

. Scafida: a method inspired by scale-free networks to
create asymmetric data center topologies with high fault
tolerance and small diameters. It allows for flexible scaling
but faces challenges with link correlation as the network
grows [73].

. Jellyfish: Jellyfish network with random graph
topology offers cost-efficiency, 25% more server support,
scalability, and flexibility for high-capacity
interconnectivity [74].

4-2- Traffic Type

Traffic type categorization in cloud DCs (considered in
VMP) optimizes network performance and energy usage by
placing VMs with similar traffic types together, reducing
data transfers across the network and minimizing energy
consumption.

A- Cross-traffic

Cross-traffic is the data flow between VMs or applications
that may be located on different servers within the same
rack or across different racks. This type of traffic can impact
network performance and energy usage. Allocating VMs
and data on physically closer PMs can improve efficiency,
as explored in [75].

B- Inter-VM communication

North-south traffic involves data flow between virtual
machines (VMs) and the Internet, while inter-VM
communication refers to data exchange within the same
data center. The latter is often high-bandwidth and low-
latency, with different application requirements.

Studies are focusing on reducing network energy usage by
optimizing VM placement to minimize inter-rack traffic
and reduce delays, consequently cutting down on power
consumption and costs [76].

C- Traffic between VM and data

This traffic occurs when VMs access data stored on storage
devices. VMs send requests to these devices via the
network, and the data is transmitted back to the requesting
VM. Factors influencing traffic volume include data size,
access frequency, and the type of storage device used. In
distributed object storage systems, each storage node
manages a group of servers. When a server and its
corresponding storage node are within the same group, data
transfer is optimized, thereby reducing overall traffic flow
[77].

4-3- Traffic Patterns

Understanding traffic patterns in cloud networks is crucial
for optimizing performance by placing virtual machines in

strategic locations to improve network performance and
reduce energy consumption. Research indicates that
network status changes over time due to unpredictable
traffic characteristics, regardless of data center size or type.
Authors advocate for traffic-aware VM placement to
enhance network scalability by aligning traffic patterns with
communication distances. Empirical studies reveal
imbalanced communication patterns, link losses, and ON-
OFF traffic patterns with varying distributions,
emphasizing the need for optimized VM allocation and
routing in cloud networks [3] [78].

4-4- Communication Patterns

Communication patterns in VM placement refer to how
VMs interact with each other and with external networks. It
is a useful resource for perceiving the parallel application
communication behavior and is extracted from
communication trace, where machines form multiple
groups or tiers each of which serves a specific part needed
for the accomplishment of the overall task. Energy
consumption heavily depends on the communication
pattern [79].

A- Fixed

Fixed communication patterns between virtual machines
(VMs) exhibit predictable and consistent interactions that
remain unchanged during runtime. VM placement
strategies often aim to co-locate VMs with frequent

communication to minimize network latency and overhead
[76].

B- Dynamic

Dynamic communication patterns between VMs change
during runtime, in contrast to fixed patterns. This requires
adaptable VM placement solutions that monitor and adjust
VM locations based on evolving communication needs. The
technique introduced in [80] uses a decentralized migration
approach considering VM affinity. It dynamically adjusts
VM placement through a distributed bartering algorithm to
minimize communication overhead and adapt to changing
patterns, while maintaining low overhead.

4-5- Energy Reduction Achievement

The energy reduction classification in our taxonomy in
Fig.2 is centered around strategies and methodologies in
reducing energy consumption in network-aware VM
placement. This section highlights how researchers have
leveraged network awareness to achieve considerable
energy savings in CDCs. In this section, we review different
approaches  for  network  traffic =~ minimization,
communication cost minimization, data transfer time
reduction, and network performance improvement.
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A- Minimizing network traffic

One of the effective strategies is to optimize VM placement
with the co-location of VMs that communicate with each
other with high volume on the same physical hosts. In this
way, the distance that data needs to travel is minimal and
reduces traffic in the network. For example, the work in [50]
suggested a multi-objective VM placement algorithm using
a bee colony method, achieving 3.5% power reduction, 15%
less network traffic, and 30% lower network power.
Similarly, the work in [22] proposed an ant colony
optimization algorithm considering both energy usage and
network bandwidth, which effectively reduced traffic and
outperformed other heuristics.

B- Minimize communication cost

Network communication costs refer to expenses in terms of
bandwidth utilization, latency, and rate of data transfer. For
VM placement, reducing such costs minimizes resource
consumption and overall expenses. The work in [59]
introduced a "network consumption" metric to identify
optimal VM placements within a fat-tree architecture to
minimize network traffic. This approach led to a significant
reduction in overall network usage and power consumption,
decreasing resource wastage by up to 20%. Similarly, the
approach in [81] focused on enhancing VM-to-VM
communication using dynamic clustering of VMs based on
the network. An adaptive algorithm consolidated VMs to
minimize communication costs, leading to reduced high-
latency jobs and improved traffic patterns across the
network. The goal of these techniques is to strategically
place and manage VMs to lower the overall communication
costs in the data center network [36].

C- Minimizing Data transfer time

Data transfer time is the duration for data to be transmitted
between VMs over the network. It affects energy usage and
application performance. Placing VMs closer and grouping
them based on traffic patterns can minimize data transfer
time. [82] proposed a novel VMP technique that
simultaneously improves both VM locations and data rates.
They developed heuristics that allocate VMs to PMs with
better network bandwidth to reduce the latencies associated
with data access. Through simulation experiments, they
demonstrated how the proposed approach may lower VMs'
data transmission delays.

D- Improving network performance

Improving network performance is the act of optimizing a
computer network to enhance its speed, reliability, and
efficiency. This involves improving the various
components of the network, including switches, routers,
cables, servers, and applications, to ensure that data is
transmitted quickly, accurately, and consistently. The
previously mentioned work in [59] was categorized under

minimizing communication cost, but it focused also on
minimizing resource wastage, which led to the optimization
of the overall network performance.

E- Emerging trends

With the rise of such technologies as network virtualization
and Software-Defined Networking (SDN), the way VM
placement for energy efficiency will be significantly
impacted. Network virtualization increases the flexibility of
network resource allocation and management, such that
even real-time adjustments according to changing traffic
patterns become possible. On the other hand, SDN brings
central control to a network, which makes routing much
more efficient and leads to lower energy consumption.
These technologies are still evolving, we can expect further
improvements in energy efficiency and overall network
performance in the placement of VMs [83].

5- Discussion

This section discusses the important relationship between
network topology, traffic patterns, and energy efficiency in
network-aware VMP. We provide a novel perspective on
how these aspects interact and affect the total energy
consumption within the datacenter.

5-1- Traffic type

Different traffic types have varying requirements regarding
reliability, latency, and network bandwidth. For example,
real-time communication applications, including video
conferencing and VolP, require low latency and high
reliability; in contrast, batch processing applications such as
data analytics can tolerate high latency and low reliability.
Those network traffic patterns found in datacenters can
significantly affect energy consumption, SLAs, cloud
provider revenue, as well as the overall cloud
infrastructure's efficiency.

In response to such challenges, there has been a
development of network-aware VM placement algorithms
to optimize network traffic and minimize resource
utilization in CDCs. These algorithms distribute the
network traffic evenly across the infrastructure to prevent
congestion, resulting in energy savings. VMs often rely on
the network for data-intensive applications and interactions
with other VMs. These algorithms can prioritize high-
bandwidth VMs and place them nearby by optimizing the
placement of VMs based on their communication patterns,
reducing the overall network traffic between and within the
data centers. This, in turn, minimizes the number of
physical networking components required and leads to
reduced power consumption.
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5-2- Network topology

Network topology is a principal issue in virtual machine
placement, which affects resource utilization and energy
efficiency. Placing VMs wisely reduces the distance of data
transfers, switches, and links involved in communication
and leads to saving energy as well as increasing
performance. Fat-tree topology manages the high-
bandwidth, low-latency traffic well within a pod or data
center, while VL2 is good for traffic generated by VMs in
cloud environments, including storage, migration, and
inter-DC. BCube is suitable for data-intensive applications
that demand high bandwidth and efficient data
transmission.

In this subsection, network topology influence on VM
placement is discussed based on existing research that
examines the impact on energy efficiency as well as overall
system performance [84]. The placement of VMs close to
each other is quite essential for resource utilization and
energy efficiency. Strategic placement reduces the distance
of data transfer, therefore reducing the number of switches
and links, which means less energy consumption and
improved performance in data centers. The three-tier
architecture typically includes expensive and power-
intensive network devices at the corporate level, whereas
DCell and BCube architecture consume similar energy for
small-sized data centers. However, BCube consumes more
energy for larger data centers. The Fat-Tree topology has
reasonable power usage, while BCube is power-intensive
due to its extensive use of switches. DCell utilizes
commodity switches that consume less power. BCube's
design with intermediate servers for routing can pose
challenges to energy efficiency.

According to experimental findings, the tree topology
experiences congestion issues with similar VM traffic,
while the Fat-Tree topology distributes traffic more evenly
due to its multi-path connections. VL2 suffers from uneven
traffic distribution due to a large gap in link utilization. The
Tree topology has lower energy efficiency compared to
VL2 and Fat-Tree, although topology awareness can
optimize energy usage in the network. However, these
conclusions are specific to each author's work, and more
research is needed to establish correlations between data
center size, server count, switches, and user demands.
Cloud service providers should ensure appropriately sized
environments to minimize costs. A hybrid or dynamic
topology approach using SDN can optimize resource
utilization, energy efficiency, and overall performance by
adapting the network topology based on workload demands,
such as favoring a fat-tree topology for high east-west
traffic.

5-3- Traffic and Communication patterns

To minimize energy consumption in DCs, network-aware
VM placement algorithms play a crucial role. These
algorithms aim to allocate VMs with similar traffic patterns
to the same physical servers or switches. This will reduce
inter-server or inter-switch communication, therefore
saving energy not only in the network infrastructure but also
in the servers. Secondly, VMP optimization based on
bandwidth and latency demands will prevent network
congestion, thus assuring satisfactory performance and
energy efficiency during communications.

Energy consumption and network traffic in virtualized
environments were analyzed in studies [58,59]. It was
noticed that energy consumption might have a wide
variation for different traffic allocation strategies and that
the type of traffic may strongly influence the possible
energy savings. Such results are important to consider in
traffic-aware optimizations, but all such optimizations
require detailed information from clients about the
application network and communication requirements. This
allows network-aware techniques for minimizing
communication delays and/or improving overall application
performance.

The distribution of the components over various PMs
provides a good opportunity for parallel processing in
applications such as MapReduce. In case migration needs
to be done, the ideal order of the intercommunicating virtual
machines will help avoid core network traffic and energy
consumption. Considering intercommunication between
replicated virtual machines is also important to prevent
bottlenecks and excessive energy usage.

Recognition of the traffic pattern is especially important in
dynamic  cloud  environments. = Workload and
communication requirements are dynamic; hence, the
adaptability of VMP algorithms is required to achieve
resource and energy efficiency. Such dynamical traffic
management approaches like load balancing and traffic
shaping would prevent congestion and optimize power
consumption.

The application-specific information will also reduce
latency, inter-VM traffic, and improve application
performance in placement algorithms. On the other hand,
machine learning algorithms will use historical traffic data
and predictive models to foresee traffic patterns, thus
making proactive placement decisions that reduce energy
consumption. Machine learning can also help in identifying
and classifying traffic hotspots, which helps in applying
targeted optimizations to mitigate power imbalances.

6- Conclusion And Future Directions
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This paper presents a new classification for VM placement
techniques in CDCs that are both network-aware and
energy-efficient. It examines various network factors,
including network equipment, workload type, performance,
scalability, efficiency, reliability, and availability, to
understand how VM placement affects network
performance. The research indicates that network-aware
VM placement algorithms can boost performance by
reducing latency between VMs and improving security
through co-location. However, the initial deployment of
these algorithms might incur higher costs, necessitating a
careful evaluation of the trade-off between energy
consumption and migration costs.

This work also reviews research that identifies the most
effective metrics for evaluating the performance of
network-aware VM placement algorithms, focusing on
energy efficiency, network performance, and resource
utilization. Additionally, the study examines how network
topology affects energy consumption in data centers and the
trade-off between energy use and migration costs, providing
valuable insights. These insights can help researchers
develop and implement more effective network-aware VM
placement algorithms that optimize energy consumption,
improve network performance, and minimize migration
costs. Based on the findings, future research directions for
network-aware VM placement in CDCs can be suggested,
including:

. Developing energy-efficient algorithms that consider
the network metrics identified in this study. This would
involve creating strategies to optimize energy use while
improving network performance, factoring in elements like
datacenter layout and communication patterns.

. Testing VM placement techniques on realistic
testbeds. While simulations help assess the proposed VM
placement methods, it is essential to validate these
techniques on actual cloud testbeds with real-world network
topologies.

. Researching VM placement algorithms that enhance
security and privacy in cloud environments. This could
involve devising methods to group related VMs on the same
server or rack while preventing the co-location of unrelated
VMs. Such strategies would help mitigate the risk of security
breaches and protect sensitive data in cloud settings.

. Continuing to explore novel solutions for optimizing
VM placement and migration that can boost energy
efficiency and network performance in CDCs. This would
include investigating innovative techniques and approaches
that leverage emerging technologies like machine learning
and artificial intelligence to improve network-aware VM
placement.

Future research in this area could investigate how elements
like energy storage systems, renewable energy sources, and
workload balancing impact network-aware VM placement.
These potential directions provide a solid foundation for

further exploration of energy-efficient network-aware VM
placement, intending to create more effective strategies for
optimizing energy consumption, improving network
performance, enhancing security and privacy, and
integrating artificial intelligence throughout the cloud
computing environment.
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