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Abstract  
The problem of unbalanced data is a common one in medical diagnostics. This problem can reduce the accuracy of 

classification models and affect the validity of results. The aim of our paper is to compare several techniques for correcting 

class imbalances in medical datasets and to evaluate the impact of these techniques on machine learning performance. 

In our paper, we used an imbalanced dataset to train a convolutional neural network (CNN) model. We then tested correction 

techniques such as sampling and cost-sensitive learning. Finally, we used recall, precision, accuracy and F1 score to evaluate 

the model's performance. 

The results show that the use of correction techniques led to a significant improvement in the performance of the classification 

model. The cost-sensitive learning technique gave the best results, particularly for the detection of minority classes. This 

method increased the weight of classification errors associated with minority classes, thus improving the detection of critical 

cases. The results of this study underline the importance of dealing with imbalances in the data to improve the performance 

of classification models in the medical field. The use of methods such as cost-sensitive learning not only improves model 

performance, but also enables more reliable decisions to be made, which is essential for ensuring more accurate diagnoses 

and better quality of care. 

 

Keywords: Data Imbalance; Techniques for Resolving Data Class Imbalance; Oversampling; Cost-Sensitive learning, 

Convolutional Neural Networks; Classification; Model Performance; Medical Diagnostics. 
 

1- Introduction 

The text must be in English. Authors whose English The 

problem of imbalanced data represents a big challenge in 

machine learning, particularly in critical fields such as 

healthcare, finance, cybersecurity and other. It occurs when 

certain classes in a data-set are underrepresented relative to 

others, causing predictive models to disproportionately 

favor the majority classes. In domains such as fraud 

detection, where fraudulent transactions represent only a 

small proportion of the data, models often struggle to 

identify these minority instances, favoring normal 

transactions instead [1], [2]. Similarly, rare diseases in 

medical diagnosis or infrequent cyberattacks in 

cybersecurity are often misclassified due to their limited 

representation in training datasets [3]. Addressing this 

imbalance is essential to improve prediction accuracy and 

ensure fairness across all classes. Classical ML algorithms, 

such as logistic regression and decision trees assume a 

balanced distribution of data, a condition that is rarely met 

in real-world applications. Therefore, various methods have 

been developed to mitigate biases caused by imbalance. 

Different techniques such as oversampling, 

undersampling, cost-sensitive learning, and ensemble 

methods have shown promise in improving minority class 

detection while maintaining overall model performance [4] 

solve this problem. Imbalance can take different forms 

depending on the data type. In binary classification, a single 

minority class often poses a problem, as seen in rare disease 

diagnosis or fraud detection, where models tend to favor the 

majority class. Approaches such as SMOTE address this 

problem by generating synthetic examples for 

underrepresented categories [5]. In multi-class scenarios, 

imbalance arises when multiple classes are unequally 

represented, as seen in multi-stage disease diagnosis. In 

such cases, advanced techniques such as One-vs-One (OvO) 

and One-vs-Rest (OvR), as well as ensemble methods, are 

needed to ensure balanced performance across classes [4]. 

Beyond accuracy, traditional evaluation metrics often 

fail to capture a model’s ability to identify minority classes. 
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Metrics like precision, recall, and F1-score are more 

appropriate for binary imbalances, while G-mean and Mat-

thews correlation coefficient (MCC) provide a more 

balanced evaluation for multi-class problems [6]. These 

metrics are crucial for evaluating mitigation strategies and 

ensuring fair representation of all classes. 

Despite the progress made, significant challenges persist 

in combating class imbalance. Low performance on 

minority classes, inadequacy of conventional metrics, and 

difficulties in generalizing to unseen data are among the 

main obstacles. The choice of the most effective method 

depends on the specific context, including the severity of 

the imbalance and the area of application. In complex 

scenarios, hybrid approaches that combine data-level and 

algorithmic methods are often required [7]. 

Recent empirical investigations have underscored the 

efficacy of hybrid methodologies that integrate 

oversampling techniques, such as Synthetic Minority Over-

sampling Technique (SMOTE), deep neural networks, and 

reinforcement learning to more proficiently address 

imbalance within intricate datasets. These adaptive 

methodologies are structured to correspond with the data's 

inherent architecture, thereby enhancing performance while 

concurrently mitigating the risk of overfitting [8]. 

Furthermore, the intensifying focus on algorithmic equity, 

especially within critical sectors like healthcare, 

necessitates the rectification of biases stemming from 

underrepresented classes, as such biases may precipitate 

significant diagnostic inaccuracies [8]. 

In the domain of natural language processing, 

contemporary scholarship regarding the Central Kurdish 

language has demonstrated that the qualitative balancing of 

corpora is imperative for guaranteeing the dependability of 

morphosyntactic frameworks, particularly in contexts 

characterized by limited resources [9]. 

These theoretical frameworks have significantly guided 

the methodological framework of the current investigation. 

The proposed architecture is predicated on a convolutional 

neural network (CNN), augmented by rebalancing 

methodologies such as Synthetic Minority Over-sampling 

Technique (SMOTE), classification paradigms including 

One-vs-One (OvO) and One-vs-Rest (OvR), alongside cost-

sensitive learning and the ensemble-based Bagging 

methodology. This comprehensive framework aims to 

enhance the identification of minority classes while 

maintaining consistent overall efficacy. 

In addition to extant research, this investigation enriches 

the academic discourse by amalgamating all four 

methodologies within a cohesive framework explicitly 

tailored for medical imaging applications. It delineates a 

multiclass classification protocol that tackles the 

infrequency of clinical cases, the hierarchical organization 

of disease stages, and the imperatives of algorithmic equity. 

This contribution is particularly notable in its deployment 

for the automated identification of diabetic retinopathy 

utilizing retinal imagery, where advanced stages of the 

condition are frequently underrepresented and challenging 

to discern. 

The overall aim of this research is to develop a robust 

classification system capable of accurately identifying rare 

stages of diabetic retinopathy (DR). More specifically, the 

study seeks to determine the most effective techniques for 

correcting class imbalance in medical imaging; to evaluate 

the impact of these techniques using appropriate 

performance metrics such as recall and F1-score; and to 

offer practical recommendations for high-stakes domains 

where misclassification can significantly affect decision-

making. The article is structured as follows: Section 2, 

“Materials and Methods,” describes the dataset, the CNN 

architecture, and the imbalance-handling strategies 

implemented; Section 3, “Results,” presents the model’s 

performance under various conditions; Section 4, 

“Discussion,” interprets the findings and considers 

methodological trade-offs; and finally, Section 5, 

“Conclusion,” summarizes the main contributions and 

proposes future research directions. 

2- Materials and Methods 

In our article, we investigate various techniques to address 

class imbalance in multi-class classification tasks. Our goal 

is to classify retinal images according to the severity stages 

of diabetic retinopathy (DR), a serious eye disease resulting 

from prolonged hyperglycemia. The dataset used is from the 

Kaggle platform and consists of five classes, ranging from 

“No DR” (absence of disease) to “Proliferative DR” 

(advanced and severe form of the disease). Unlike other 

studies that apply imbalance correction techniques without 

sufficient justification, we propose a systematic approach 

tailored to imbalanced and unstructured data, particularly 

images. Our aim is to scientifically identify the most 

effective techniques to overcome this challenge and 

evaluate their impact on the performance of classification 

models. To achieve this, we used a convolutional neural 

network (CNN)-based model, known for its ability to 

automatically extract complex features from images. We 

evaluate several class rebalancing techniques, including 

undersampling, oversampling, One-vs-Rest (OvR) and 

One-vs-One (OvO) approaches, cost-sensitive learning, and 

ensemble bagging (Fig.1). Models are trained and evaluated 

on balanced datasets using these techniques. The evaluation 

phase relies on standard metrics such as accuracy, precision, 

recall, and F1 score, which are derived from the confusion 

matrix. This comprehensive approach enables a precise 

analysis of the influence of the applied imbalance resolution 

techniques on the performance of the CNN-based model 

and provides insights into effectively addressing 

imbalances in image classification tasks. 
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Fig. 1. Architecture of the proposed diagnostic system 

2-1-Dataset Description 

The dataset used in our paper and obtained from the Kaggle 

platform [29], consists of a total of 92702 retinal images 

distributed across five classes, each representing a stage of diabetic 

retinopathy (DR). The dataset (Table 1) exhibits a significant class 

imbalance, with the majority class, "No DR," comprising 

approximately 77.8% of the total samples. In contrast, the more 

severe stages, such as "Severe DR" and "Proliferative DR," are 

severely underrepresented, together accounting for less than 5.1% 

of the dataset. 

 Table 1. Distribution of Retinal Images Across Diabetic Retinopathy Classes   

Class Description Samples Percentage 

Class 0 No DR 72102 77.8% 

Class 1 Mild DR 8772 9.5% 

Class 2 Moderate DR 7135 7.7% 

Class 3 Severe DR 2328 2.5% 

Class 4 Proliferative DR 2365 2.5% 

Total 92702 100% 

 

This imbalance poses challenges for model training, as 

predictive models tend to favor the majority class, leading to 

poor detection rates for minority classes. Addressing this 

issue is critical to improving diagnostic accuracy, 

particularly for the advanced stages of DR. Techniques such 

as oversampling, undersampling, and algorithmic 

adjustments are essential to mitigate this problem and ensure 

balanced and robust model performance. 

2-2-Model Architecture 

To solve the problem of multi-class classification of 

diabetic retinopathy, we have developed a model based on 

a convolutional neural network (CNN). This type of model 

is particularly effective for image analysis, thanks to its 

ability to automatically extract complex features while 

reducing the need for manual data pre-processing (Fig. 2). 

 

 

 
             Fig. 2.  Architecture of our CNN-based classification model  

  2- Mild DR 

1-No DR 

3- Moderate DR 

4- Severe DR 

5- Proliferative DR 

Image Classification 
Conv 1 

(32 filtres, 3x3) 

Conv 3 

(128 filtres, 3x3) 

Input 
(224x224x3) 

 

Fully-Connected 

(256 neurones) 
 

Fully-Connected 

5 neurons (No DR, Mild DR, Moderate DR, Severe DR, Severe 

DR, Proliferative DR) 

 

 

Feature Extraction Classification 

Conv 2 

(64 filtres, 3x3) 

Max_Pooling 

(2x2) 
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The architectural framework of the model is predicated 

upon a convolutional neural network (CNN) organized 

into three primary phases: feature extraction, 

dimensionality reduction, and classification. It consists of 

three convolutional layers designed to extract 

fundamental features from images, succeeded by pooling 

layers that facilitate dimensionality reduction and bolster 

the robustness of the model. Ultimately, two fully 

connected layers conclude the multi-class classification 

process. Methodologies such as dropout regularization, in 

conjunction with non-linear activation functions (ReLU 

and Softmax), augment the model's efficacy and 

generalizability in the identification of diabetic 

retinopathy. 

2.2.1. Three Convolutional layers 

The proposed model employs a triad of convolutional 

layers to derive critical features from retinal imagery. The 

initial layer utilizes 32 filters, succeeded by 64 filters in the 

subsequent layer and 128 filters in the final layer. Each filter 

executes a convolution operation utilizing a 3x3 kernel, 

thereby facilitating the identification of distinct patterns, 

including anomalies or textures that are characteristic of 

retinopathy. 

2.2.2. Pooling layers (2x2) 

After each convolutional layer, pooling layers with a 2x2 

size kernel are applied to reduce the dimensionality of the 

data. This process limits over-fitting while reducing 

computational costs. The max-pooling method is used, 

selecting the maximum value in each analyzed region. This 

ensures that the most dominant and significant features of 

the images, essential for classification, are retained, while 

simplifying the representations learned by the model. 

2.2.3. Two Fully Connected layers 

The model comprises two fully-connected layers that 

ensure the finalization of the classification. The first layer, 

made up of 256 neurons, combines the features extracted 

from the convolutional and pooling layers. It uses a ReLU 

(Rectified Linear Unit) activation function, well known for 

its ability to introduce non-linearity, essential for modeling 

complex relationships between features. This function also 

prevents the effect of gradient saturation, which promotes 

efficient convergence during training. 

The output layer comprises 5 neurons, corresponding to 

the five severity classes of diabetic retinopathy. A 

Softmax activation function is applied to transform the 

outputs of this layer into normalized probabilities, 

allowing direct interpretation of predictions as 

probabilities belonging to each class. This configuration 

is particularly well-suited to multi-class classification, 

guaranteeing well-calibrated output and a sum of 

probabilities equal to 1. 

2.2.4. Regulation 

A dropout mechanism (with a rate of 0.5) is implemented 

subsequent to the fully connected layers in order to mitigate 

the probability of overfitting by sporadically deactivating 

certain neurons throughout the training process. This 

methodology entails the random inactivation of 50% of the 

neurons at each iteration during training, thereby 

diminishing the model's excessive dependence on particular 

neurons. 

This architecture integrates efficient convolutional layers 

for the automatic extraction of pertinent features 

alongside dense layers designated for classification. Such 

a framework is exceptionally well-suited for medical 

image analysis endeavors, owing to its capacity to capture 

intricate details while simultaneously minimizing the 

necessity for manual pre-processing. 

2-3-Techniques for Correcting Data Imbalances 
Addressing data imbalance is crucial for improving the 

performance of machine learning models. The different 

approaches to tackle this issue can be represented in three 

categories: data-driven approaches, algorithmic 

approaches, and specific approaches designed for multi-

class problems. 

2.3.1. Data-Based Methods 

Data-based approaches involve the direct manipulation of 

datasets to balance the distribution of classes before model 

training. 

a-Sub-Sampling 
The technique of subsampling, unlike oversampling, 

involves reducing the number of samples from majority 

classes to balance their proportion relative to minority 

classes (Fig. 3). This technique is typically implemented by 

randomly removing examples from the dominant class [10]. 

Subsampling has several advantages, including model 

simplification by reducing the total volume of data, which 

also lowers computational costs. However, this technique 

has several notable drawbacks. Removing samples from 

majority classes can lead to the loss of crucial information 

[11]. Furthermore, the random selection of samples to be 

removed may not accurately reflect the actual distribution 

of the data, potentially affecting model performance, 

especially when the data is heavily unbalanced [12]. 

b-Oversampling 

Oversampling methodologies pertain to the deliberate 

augmentation of sample quantities from minority classes to 

rectify their inadequate representation in imbalanced 

datasets (Fig 3). Among the preeminent methodologies, the 

Synthetic Minority Oversampling Technique (SMOTE) is 

particularly noteworthy for its capability to produce 
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synthetic instances through linear interpolation of existing 

samples within the minority class [6],[7]. This approach 

enhances the representation of underrepresented classes 

while concurrently maintaining the diversity and structural 

integrity of the dataset. 

The practice of oversampling confers several advantages. 

It mitigates the model's bias towards majority classes and 

enhances its generalization capabilities. These benefits 

culminate in an improved recognition of underrepresented 

classes, particularly in scenarios where imbalances may 

precipitate erroneous predictions [13]. Furthermore, by 

infusing greater variability into minority classes, 

methodologies such as SMOTE enable machine learning 

algorithms to more effectively discern the unique 

characteristics of rare instances. Nonetheless, oversampling 

is not devoid of limitations. The artificial augmentation of 

samples may heighten the risk of overfitting, especially 

when synthetic instances exhibit insufficient diversity or 

replicate patterns that do not accurately reflect authentic 

data [14]. In addition, this escalation in data volume may 

incur elevated computational costs, particularly with 

extensive datasets, due to the supplementary resources 

necessitated for the generation and processing of synthetic 

instances [15]. Recent studies suggest improvements to 

SMOTE, such as K-Means SMOTE or Borderline-SMOTE, 

which specifically target critical regions near decision 

boundaries to maximize the efficiency of oversampling 

[16]. These variants aim to reduce drawbacks while fully 

exploiting the potential of minority classes in unbalanced 

contexts. 

 

 

2.3.2. Algorithmic Approaches 

Algorithmic approaches directly modify learning 

algorithms to deal with data imbalance, without modifying 

the distribution of classes in the ensemble. 

a- Cost-Sensitive learning 

This methodology modifies the loss function of machine 

learning algorithms by allocating enhanced significance to 

minority classes. This approach is predicated on 

augmenting the weight of errors pertinent to these classes, 

in accordance with their under-representation (Fig. 4). In a 

dataset wherein a class constitutes 10% of the samples, 

misclassification errors for that class may be amplified by a 

factor that corresponds to the degree of imbalance, thus 

escalating the associated penalty [17]. 

This methodology proves to be particularly efficacious in 

critical domains, such as the detection of rare diseases, the 

prevention of financial fraud, or the prediction of failures in 

intricate systems. It substantially contributes to the 

reduction of classification errors in under-represented 

classes, while simultaneously preserving the equilibrium of 

overall model performance [18]. In addition, by integrating 

these weights into algorithms, cost-sensitive learning 

augments model sensitivity and precision for imbalanced 

datasets. 

Nonetheless, the efficacy of this methodology is profoundly 

contingent upon the meticulous calibration of the weights 

allocated to various classes. Insufficient calibration may 

result in an inverse imbalance, thereby impairing 

performance on majority classes or diminishing the overall 

effectiveness of the model [19]. Therefore, methodologies 

such as adaptive weight optimization or the employment of 

specific metrics, including the ROC curve or F-measure, are 

frequently advocated to guarantee balanced performance. 

 
Fig. 4. Operating principle of the cost-sensitive learning 

method 

 

b- Ensemble Methods 
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Ensemble techniques, such as Bagging and Boosting, 

combine the predictions of multiple models to enhance 

overall performance and reduce bias toward majority 

classes (Fig. 5). Bagging (Bootstrap Aggregating) uses 

random sampling with replacement to train several 

independent models, whose predictions are then 

aggregated, improving model robustness and stability [20]. 

Boosting, on the other hand, progressively corrects the 

errors of successive models by assigning higher weights to 

misclassified examples, thereby increasing overall 

accuracy, particularly on minority classes [21]. These 

techniques are particularly effective for datasets with a high 

degree of imbalance, as they address the weaknesses of 

individual models by improving the recognition of under-

represented classes. By introducing diversity into data 

subsets and combining the strengths of several models, they 

also promote better generalization. Furthermore, recent 

variants, such as AdaBoost-SAMME or Gradient Boosting 

with SMOTE, have demonstrated their effectiveness in 

handling complex imbalances by adjusting weights for 

minority classes [23]. 

Nevertheless, the execution of these methodologies may 

prove to be intricate and computationally intensive, 

particularly in the context of boosting. The latter 

necessitates meticulous calibration of hyperparameters, 

including but not limited to learning rate and quantity of 

estimators, to mitigate the risk of overfitting and to 

guarantee optimal efficacy [24]. In spite of these obstacles, 

their capacity to enhance performance in scenarios 

characterized by imbalanced data renders them 

indispensable instruments in domains such as finance, 

healthcare, and predictive analytics. 

 
Fig. 5. Operating principle of the Bagging ensemble method 

2.3.3. Specific Techniques for Multi-Class Problems 

In multi-class problems, where multiple categories are 

present, data imbalance poses additional challenges. 

Classical approaches can be adapted, but specific 

approaches such as One-vs-Rest (OvR) and One-vs-One 

(OvO) (Fig. 6) are often used. 

a- One-vs-Rest (OvR) 

OvR also known as One-vs-All, decomposes a multi-class 

problem into several binary classification problems. For 

each class, a binary classifier is trained, treating this class 

as positive and grouping all other classes as negative. For 

instance, in a five-class problem, OvR requires the creation 

of five binary models, each optimized to distinguish a 

specific class [25],[26]. Notable advantages of this 

technique include its simplicity of implementation and its 

ability to provide independent evaluations for each class. 

These features make it particularly suited to contexts where 

granular predictions are essential, such as in image 

recognition or recommender systems [25],[26]. 

Additionally, the OvR technique is compatible with a wide 

range of learning algorithms, such as support vector 

machines (SVMs) and logistic regression, making it a 

versatile option. 

However, this technique has important limitations. It can 

become biased when classes grouped as negative are highly 

imbalanced, which can impair model performance on 

minority classes [27]. Furthermore, OvR does not account 

for the complex relationships and possible 

interdependencies between different classes, limiting its 

ability to capture global patterns or subtle correlations in the 

data [28]. 

Recent work proposes extensions to mitigate these 

limitations, such as integrating adaptive weights to balance 

negative classes or using hybrid techniques that combine 

OvR with dimensionality reduction methods like linear 

discriminant analysis. These improvements aim to enhance 

the robustness and accuracy of this technique in unbalanced 

multi-class classification contexts. 

b- One-vs-One (OvO) 

The OvO technique treats each pair of classes separately, 

creating a binary classifier for each combination of two 

classes. For example, for a problem with five classes, the 

OvO results in ten binary classifiers, one for each pair of 

classes [25],[26]. 

This approach is particularly useful for data with complex 

class relationships, as each classifier focuses on only two 

classes at a time. This reduces the impact of majority 

classes, as each binary classifier works on data balanced 

between the two classes concerned. However, the 

computational complexity is high. The number of classifiers 

to be trained increases quadratically with the number of 

classes, which can lead to considerable computational costs 

and implementation difficulties in contexts with a large 

number of categories [27]. 

Data imbalance correction methods offer a variety of 

solutions tailored to specific application needs. Data-driven 

techniques, such as oversampling and undersampling, 

directly modify the class distribution, while algorithmic 

approaches, such as cost-sensitive learning and ensemble 

methods, adjust the algorithms to compensate for biases 

[28]. In multi-class problems, specific techniques such as 
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OvR and OvO are used to handle the additional complexity 

associated with multiple classes. The choice of the optimal 

method depends on the context of use, the nature of the data 

and technical constraints. It is often advisable to combine 

several approaches to maximize model performance while 

minimizing imbalance bias [25],[26]. 

 

                   Fig. 6. Representation of the “One-vs-Rest”(OvR) and “One-vs-One”(OvO) techniques 

 

3- The Results 

Unbalanced multi-class classification is a major challenge, 

due to the complexity of interactions between classes and the 

difficulty of assessing model performance. Unlike binary 

classification, this context requires advanced approaches to 

effectively manage imbalance while improving prediction 

accuracy. 

In our research, we apply and evaluate various data 

rebalancing techniques, such as oversampling, 

undersampling, one-to-one and one-to-all approaches, 

ensemble methods such as Bagging, and cost-sensitive 

learning. The aim is to identify the best method for boost 

the performance of artificial intelligence models in this 

complex context. 

3-1-Subsampling 
Sub-sampling is a methodological approach aimed at 

equilibrating the distribution of classes by diminishing the 

magnitude of the majority class, which is accomplished 

through the stochastic elimination of samples from this class 

to render it congruent with the quantity of the minority class. 

In the present investigation, each class was systematically 

curtailed to 2328 samples, in alignment with the size of the 

minority class. While this methodology serves to mitigate 

the bias in favor of the majority class, it engenders a 

considerable loss of information, which may adversely 

influence the overall efficacy of the model, as delineated in 

Table 2. 

The implementation in Python employs the resample 

function from the sklearn.utils library to perform 

subsampling on the majority class, thereby modifying its size 

to correspond with that of the minority class. Subsequent to 

the subsampling procedure, the equilibrated dataset is 

preserved in the variables X_resampled and y_resampled, 

rendering it suitable for utilization in model training. The 

outcomes of this methodology are illustrated in Table 2. 

Table 2. Overall performance obtained using the sub-

sampling technique 

Metric Global values 

Accuracy 82.64 % 

Precision 88.94 % 

Recall 82.15 % 

F1-Score 80.51 % 

3-2-Oversampling  
To improve the representation of minority classes in 

unbalanced datasets, the SMOTE (Synthetic Minority 

Oversampling Technique) technique was used. SMOTE 

generates synthetic samples for under-represented classes by 

creating intermediate points between existing instances of 

the same class [30],[22]. This rebalances the distribution of 

classes and mitigates biases linked to data imbalance when 

training machine learning models. 

In Python, SMOTE is implemented using the SMOTE class 

in the imbalanced-learn library (imblearn). 

The resulting oversampling led to a significant 

improvement in overall performance, although there remains 

a risk of model overfitting due to the generation of synthetic 

samples. The performance results obtained after applying 

SMOTE are presented in Table 3. 

 

Table 3. Overall performance obtained using the oversampling 

technique 
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Metric Global values 

Accuracy 87.09 % 

Precision 84.36 % 

Recall 81.78 % 

F1-Score 83.05 % 

The F1-Score of 83.05%, which combines two parameters: 

precision and recall into a single metric, provides a more 

comprehensive evaluation in handling imbalanced data. 

Although the accuracy is relatively high at 87.09%, it is not 

the most reliable metric for this type of task due to the 

potential influence of class imbalance. The moderate recall 

and F1-Score suggest that, while oversampling improved 

class distribution, the model may exhibit overfitting, limiting 

its ability to generalize effectively to unseen data. 

3-3-Cost-Sensitive learning 
Cost-sensitive learning is an effective technique for 

managing class imbalance without directly modifying the 

data distribution. It assigns weights proportional to the 

inverse of class frequency, thus giving greater importance to 

minority classes during training. In this study, weights were 

calculated as in Table 4. 

Table 4. Weight of diabetic retinopathy classes 

Class  Weight 

Class 0 1 

Class 1 (72 102/8 772) ≈ 8.22 

Class 2 (72 102/7 135) ≈ 10.10 

Class 3 (72 102/2 328) ≈ 31.00 

Class 4 (72 102/2 365) ≈ 30.49 

The weights were integrated into the 

SparseCategoricalCrossentropy loss function of 

TensorFlow/Keras through the class_weight parameter, 

thereby facilitating the equilibrium of performance between 

predominant and subordinate classes. This methodology 

dynamically modifies the error magnitude associated with 

under-represented classes, obviating the necessity for direct 

alterations to the training dataset, and empowers the model 

to more effectively manage class imbalances during the 

training process. 

In this specific implementation, the class_weight 

parameter is employed to modulate the significance of each 

class, thereby compensating for imbalances while preserving 

the integrity of the data itself. Metrics such as Accuracy, 

Precision, Recall, and F1-Score were computed on the test 

dataset to appraise the model's efficacy. Upon the 

completion of training the CNN-based model, its 

performance was evaluated utilizing the test data (refer to 

Table 5). The findings illustrate that this methodology 

proficiently reconciles overall accuracy and performance 

across all classes, including minority classifications, thereby 

mitigating the adverse effects of data imbalance on 

predictive quality. The model accomplished an Overall 

Accuracy of 91.09%, indicative of its capacity to render 

precise predictions across all classifications. The F1-Score, 

a composite metric amalgamating precision and recall, 

attained 92.79% for the "No DR" classification, 

underscoring the model's dependability in identifying this 

category. Below is a comprehensive delineation of the 

performance metrics for each class: 

No DR: The model exhibited outstanding performance in 

this category, attaining a Precision of 91.14%, a Recall of 

94.49%, and an F1-Score of 92.79%, which exemplifies its 

robust capability to accurately recognize instances devoid of 

diabetic retinopathy. Mild DR: This classification similarly 

exhibited elevated performance, achieving a Precision of 

93.27%, a Recall of 91.95%, and an F1-Score of 92.60%, 

signifying a well-balanced aptitude for detecting mild cases. 

Moderate DR: With a Precision of 91.95%, a Recall of 

93.24%, and an F1-Score of 92.59%, the model effectively 

identified moderate cases with negligible errors. Severe DR: 

The performance of the model was somewhat diminished for 

this classification, achieving a Precision of 88.26%, a Recall 

of 82.86%, and an F1-Score of 85.47%, which reflects 

certain challenges in differentiating severe cases. 

Proliferative DR: This minority classification attained a 

Precision of 85.88%, a Recall of 83.72%, and an F1-Score of 

84.78%, demonstrating the model's capacity to address even 

the most formidable cases, albeit with some constraints. 

 

Table 5. Performance obtained by applying Cost Sensitive Learning 

Metric Overall Accuracy Precision Recall F1-Score 

No RD 

91.09 % 

91.14 % 94.49 % 92.79 % 

light RD 93.27 % 91.95 % 92.60 % 

Moderate RD 91.95 % 93.24 % 92.59 % 

Severe RD 88.26 % 82.86 % 85.47 % 

Proliferative RD 85.88 % 83.72 % 84.78 % 

 

 

3-4-Ensemble technique: Bagging 
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Bagging (Bootstrap Aggregating) was implemented in 

Python to handle unbalanced data sets. Four balanced 

subsets were created by bootstrap sampling, each subset 

comprising 2,328 representative samples of all classes, 

including minority classes, using scikit-learn's resample 

function. These subsets were used to independently train a 

CNN model, developed with TensorFlow using a defined 

architecture, an 'adam' optimizer, a 

'categorical_crossentropy' loss function, and 'accuracy' 

metrics. 
The predictions of the four models were aggregated by 

majority voting, implemented via scipy's mode function. 

The results obtained are presented in Table 6. 

Table 6. Overall performance of the Bagging technique 

Metric Global values 

Accuracy 83.21 % 

Precision 83.49 % 

Recall 83.21 % 

F1-Score 83.28 % 

3-5-OvR and OvO Techniques 

OvR and OvO techniques are widely used strategies for 

handling multi-class classification problems, particularly 

when addressing class imbalance. In this study, these 

techniques were implemented in Python.  

The overall performance of these two techniques is 

summarized in Table 7. 

Table 7. Overall performance achieved using OvR and 

OvO techniques 

Technique Accuracy Precision Recall 
F1-

Score 

OvR 
84.06 

% 

80.35 

% 

83.53 

% 

81.91 

% 

OvO 
79.68 

% 

81.65 

% 

84.19 

% 

82.90 

% 

The results show that the OvR technique achieves an 

accuracy of 84.06%, while OvO performs better in terms 

of precision and F1-Score, albeit with slightly lower 

accuracy. These two techniques are complementary, and 

the choice of approach will depend on the specific 

objectives of the model, notably between precision and 

recall. 

4- Discussion 

Table 8. presents the performance of the CNN 

classification model, trained on the “DR” (Diabetic 

Retinopathy) dataset balanced by different techniques. This 

table compares the results obtained with different class 

imbalance correction techniques, assessing their impact on 

four main metrics: Accuracy, Precision, Recall and F1-

Score. 

This comparison highlights the strengths and limitations 

of each technique, as well as their influence on overall 

model performance. 

The comparative results of the different imbalance 

correction techniques are shown in Table 8. above. The 

metrics used (Accuracy, Precision, Recall and F1-Score) 

make it possible to evaluate the effectiveness of each 

technique on overall model performance. 

a- Cost-Sensitive Learning Technique 

The cost-sensitive learning methodology modifies the 

weightings assigned to each class in accordance with their 

prevalence, thereby effectively mitigating biases resulting 

from class imbalance. Among the methodologies assessed, 

cost-sensitive learning demonstrates the most favorable 

overall efficacy, yielding an accuracy of 91.09%, a 

precision of 90.10%, a recall of 89.25%, and an F1-score of 

89.65%. This approach is particularly adept at addressing 

the disparate costs associated with misclassification, 

enabling the model to more accurately identify minority 

classes while preserving elevated overall precision. The 

exemplary outcomes of cost-sensitive learning illustrate its 

capacity to reconcile precision and recall, rendering this 

technique an outstanding selection for datasets 

characterized by imbalance. While the performance metrics 

are commendable, it is crucial to acknowledge that the 

dynamic recalibration of weights may incur significant 

computational costs, particularly when engaging with 

extensive datasets. Our findings regarding cost-sensitive 

learning align with those reported in contemporary 

scholarly literature, which has evidenced that this strategy 

stands out as one of the most efficacious for imbalanced 

multi-class classification challenges, as evidenced by the 

research conducted by Khan et al. [31]. A more recent 

investigation by Araf et al. [32] posits that this technique 

necessitates meticulous parameter optimization to 

circumvent computational burdens while sustaining high 

precision. This highlights the imperative for practitioners to 

diligently evaluate the trade-offs between computational 

expenses and performance enhancements.  

 

 

 

b- Oversampling Technique 

Oversampling, particularly using the SMOTE method, 

generates synthetic samples for minority classes, improving 

their representation during training. SMOTE achieved an 
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accuracy of 87.09%, precision of 84.36%, recall of 81.78%, 

and an F1-score of 83.05%. While this method is powerful, 

it carries the risk of overfitting if the synthetic data does not 

accurately reflect the complexity of real samples. 

It is important to note that the risk of overfitting can be a 

major issue with this approach. According to Vargas et al. 

[33], the generated samples may introduce unrealistic 

variations into the data, which could harm the model's 

ability to generalize. This trade-off between improving 

the representation of minority classes and the risk of 

overfitting must be carefully evaluated. 

c- Bagging Technique 

Bagging (Bootstrap Aggregating) significantly bolsters 

the reliability of predictions through the amalgamation of 

numerous models that have been trained on meticulously 

balanced subsets of the dataset. This methodology attained 

an accuracy rate of 87.49%, a precision level of 84.91%, a 

recall metric of 81.72%, and an F1-score of 83.28%. While 

it exhibits a marginal advantage over oversampling with 

respect to accuracy, the computational resources required 

for training multiple models may pose a limitation in 

environments constrained by resources. Despite the 

robustness of this technique, the substantial computational 

demands must be meticulously evaluated. As posited by 

Liang & Zhang [34], the process of training various models 

on data subsets necessitates effective resource management, 

which can serve as an impediment in computationally 

limited scenarios. Consequently, the balance between 

precision and computational expense must be critically 

assessed in professional practice. 

d- Subsampling Technique 
Under-sampling entails the reduction of the population of 

the majority class to correspond with the population size of 

the minority classes. This methodology yielded an accuracy 

rate of 82.64%, a precision rate of 88.94%, a recall rate of 

82.15%, and an F1-score of 85.41%. Although this 

methodology facilitates the equilibrium between precision 

and recall, it is plagued by a considerable diminution of 

information, which may adversely influence the model's 

capacity to generalize. 

The information attrition linked to under-sampling can 

detrimentally affect the generalization capabilities of the 

model, as articulated by Soleimani & Mirshahzadeh [35]. 

In real-world implementations, this strategy may prove to 

be suboptimal when substantial amounts of information 

are essential for the accurate prediction of infrequent 

occurrences, as is the case with diabetic retinopathy. 

e- OvO and OvR Methods: 

The One-vs-One (OvO) and One-vs-Rest (OvR) 

methodologies partition the multi-class classification 

challenge into binary subproblems. The efficacy of the OvO 

method is marginally inferior to that of alternative 

methodologies, attaining an accuracy of 79.68%, a 

precision of 81.65%, a recall of 84.19%, and an F1-score of 

82.90%. Conversely, the OvR methodology achieves an 

accuracy of 84.06%, yet it remains suboptimal in 

performance relative to strategies such as cost-sensitive 

learning and oversampling. Our findings regarding OvR 

and OvO are in alignment with those documented in 

contemporary research, including the work of Chakraborty 

& Dey [36], which indicates that while these methodologies 

may be effective in certain contexts, they are generally less 

efficacious than approaches like cost-sensitive learning 

(CSL) and Synthetic Minority Over-sampling Technique 

(SMOTE) due to the inherent trade-offs in accuracy and 

computational efficiency. 

Table 8. Model performance on the balanced DR dataset using different imbalance correction techniques 

Correction techniques Accuracy Precision Recall F1-Score 

Subsampling 82.64 % 88.94 % 82.15 % 85.41 % 

Oversampling   87.09 % 84.36 % 81.78 % 83.05 % 

Cost-sensitive learning 91,09% 90,10% 89,25% 89,65% 

Bagging technique 87.49 % 84.91 % 81.72 % 83.28 % 

One-vs-One (OvO) 79.68 % 81.65 % 84.19 % 82.90 % 

One-vs-Rest (OvR) 84.06 % 80.35 % 83.53 % 81.91 % 
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5- Conclusion 

The categorization of images depicting diabetic 

retinopathy poses a considerable challenge attributable to 

class imbalance, a widespread concern within medical 

applications. This manuscript conducts a comparative 

analysis of diverse methodologies aimed at mitigating this 

imbalance while simultaneously enhancing the efficacy of 

Convolutional Neural Network (CNN) models. The 

findings unequivocally indicate that the selection of 

correction methodologies exerts a substantial influence on 

model efficacy, thereby underscoring the necessity for the 

adoption of strategies that are specifically tailored to the 

contextual characteristics of the data and the distinct aims 

of the application. 

Among the methodologies scrutinized, cost-sensitive 

learning emerges as the preeminent strategy. Its adaptive 

modulation of class weights facilitates a balanced 

evaluation of classification inaccuracies, culminating in 

enhanced performance across critical metrics (Accuracy, 

Precision, Recall, and F1-Score). This approach not only 

assures superior generalization but also yields a more 

precise identification of minority classes. Techniques such 

as oversampling and bagging also exhibited favorable 

outcomes, particularly in augmenting the representation of 

minority classes, while concurrently sustaining competitive 

overall performance. Nonetheless, both methodologies may 

engender a compromise between computational expense 

and precision, particularly in expansive applications. 

Conversely, subsampling and the One-vs-One/One-vs-Rest 

(OvO/OvR) techniques, although beneficial, are 

encumbered by intrinsic limitations, such as potential 

information loss or heightened complexity, rendering them 

less appropriate for intricate, imbalanced datasets such as 

those associated with diabetic retinopathy. 

These observations accentuate the imperative for a 

comprehensive evaluation of the strengths and weaknesses 

inherent to each technique, with particular emphasis on the 

trade-offs between computational expenditure and 

accuracy. The outcomes further highlight the significance 

of implementing solutions specifically adapted to the 

particular constraints of the data and the objectives of the 

application. Future investigations should prioritize the 

innovation of novel methodologies that effectively manage 

complex, imbalanced datasets. Additionally, the 

exploration of hybrid models that amalgamate existing 

techniques should be pursued to capitalize on the 

synergistic strengths of each strategy. This integrative 

methodology would contribute to the optimization of 

performance by addressing the deficiencies associated with 

individual techniques, thereby enhancing model capabilities 

in regard to both accuracy and generalization. 

Such a strategy would not only elevate the overall 

performance of models but also more effectively address 

the critical requirements of applications, particularly in 

domains such as medicine, where the robustness, fairness, 

and reliability of models are of paramount importance. 
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