). ST Journal of Information Systems and Telecommunication http://jist.acecr.org
Vol.13, No.3, July-September 2025, 177-188 ISSN 2322-1437 / EISSN:2345-2773

Resolving Class Imbalance in Medical Classification: Technique
Comparison and Performance Evaluation

Abdallah Maiti'", Mohamed Hanini', Abdallah Abarda2

!.Laboratory of Computing, Networks, Mobility and Modelling (IR2ZM) FST, Hassan First University of Settat, Morocco
2 Laboratory LM2CE, Faculty of Economic Sciences and Management, Hassan First University of Settat, Morocco

Received: 16 Mar 2025/ Revised: 07 Aug 2025/ Accepted: 06 Sept 2025

Abstract

The problem of unbalanced data is a common one in medical diagnostics. This problem can reduce the accuracy of
classification models and affect the validity of results. The aim of our paper is to compare several techniques for correcting
class imbalances in medical datasets and to evaluate the impact of these techniques on machine learning performance.

In our paper, we used an imbalanced dataset to train a convolutional neural network (CNN) model. We then tested correction
techniques such as sampling and cost-sensitive learning. Finally, we used recall, precision, accuracy and F1 score to evaluate
the model's performance.

The results show that the use of correction techniques led to a significant improvement in the performance of the classification
model. The cost-sensitive learning technique gave the best results, particularly for the detection of minority classes. This
method increased the weight of classification errors associated with minority classes, thus improving the detection of critical
cases. The results of this study underline the importance of dealing with imbalances in the data to improve the performance
of classification models in the medical field. The use of methods such as cost-sensitive learning not only improves model
performance, but also enables more reliable decisions to be made, which is essential for ensuring more accurate diagnoses
and better quality of care.

Keywords: Data Imbalance; Techniques for Resolving Data Class Imbalance; Oversampling; Cost-Sensitive learning,
Convolutional Neural Networks; Classification; Model Performance; Medical Diagnostics.

balanced distribution of data, a condition that is rarely met
in real-world applications. Therefore, various methods have

1- Introduction been developed to mitigate biases caused by imbalance.
Different  techniques such as  oversampling,
The text must be in English. Authors whose English The undersampling, cost-sensitive learning, and ensemble
problem of imbalanced data represents a big challenge in methods have shown promise in improving minority class
machine learning, particularly in critical fields such as detection while maintaining overall model performance [4]
healthcare, finance, cybersecurity and other. It occurs when solve this problem. Imbalance can take different forms
certain classes in a data-set are underrepresented relative to depending on the data type. In binary classification, a single
others, causing predictive models to disproportionately minority class often poses a problem, as seen in rare disease
favor the majority classes. In domains such as fraud diagnosis or fraud detection, where models tend to favor the
detection, where fraudulent transactions represent only a majority class. Approaches such as SMOTE address this
small proportion of the data, models often struggle to problem by generating synthetic examples for
identify ~these minority instances, favoring normal underrepresented categories [5]. In multi-class scenarios,
transactions instead [1], [2]. Similarly, rare diseases in imbalance arises when multiple classes are unequally
medical ~ diagnosis or infrequent cyberattacks in represented, as seen in multi-stage disease diagnosis. In
cybersecurity are often misclassified due to their limited such cases, advanced techniques such as One-vs-One (OvO)
representation in training datasets [3]. Addressing this and One-vs-Rest (OvR), as well as ensemble methods, are
imbalance is essential to improve prediction accuracy and needed to ensure balanced performance across classes [4].
ensure fairness across all classes. Classical ML algorithms, Beyond accuracy, traditional evaluation metrics often
such as logistic regression and decision trees assume a fail to capture a model’s ability to identify minority classes.

DX Abdallah maiti
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Metrics like precision, recall, and Fl-score are more
appropriate for binary imbalances, while G-mean and Mat-
thews correlation coefficient (MCC) provide a more
balanced evaluation for multi-class problems [6]. These
metrics are crucial for evaluating mitigation strategies and
ensuring fair representation of all classes.

Despite the progress made, significant challenges persist
in combating class imbalance. Low performance on
minority classes, inadequacy of conventional metrics, and
difficulties in generalizing to unseen data are among the
main obstacles. The choice of the most effective method
depends on the specific context, including the severity of
the imbalance and the area of application. In complex
scenarios, hybrid approaches that combine data-level and
algorithmic methods are often required [7].

Recent empirical investigations have underscored the
efficacy of hybrid methodologies that integrate
oversampling techniques, such as Synthetic Minority Over-
sampling Technique (SMOTE), deep neural networks, and
reinforcement learning to more proficiently address
imbalance within intricate datasets. These adaptive
methodologies are structured to correspond with the data's
inherent architecture, thereby enhancing performance while
concurrently mitigating the risk of overfitting [8].
Furthermore, the intensifying focus on algorithmic equity,
especially within critical sectors like healthcare,
necessitates the rectification of biases stemming from
underrepresented classes, as such biases may precipitate
significant diagnostic inaccuracies [8].

In the domain of natural language processing,
contemporary scholarship regarding the Central Kurdish
language has demonstrated that the qualitative balancing of
corpora is imperative for guaranteeing the dependability of
morphosyntactic frameworks, particularly in contexts
characterized by limited resources [9].

These theoretical frameworks have significantly guided
the methodological framework of the current investigation.
The proposed architecture is predicated on a convolutional
neural network (CNN), augmented by rebalancing
methodologies such as Synthetic Minority Over-sampling
Technique (SMOTE), classification paradigms including
One-vs-One (OvO) and One-vs-Rest (OvR), alongside cost-
sensitive learning and the ensemble-based Bagging
methodology. This comprehensive framework aims to
enhance the identification of minority classes while
maintaining consistent overall efficacy.

In addition to extant research, this investigation enriches
the academic discourse by amalgamating all four
methodologies within a cohesive framework explicitly
tailored for medical imaging applications. It delineates a
multiclass classification protocol that tackles the
infrequency of clinical cases, the hierarchical organization
of disease stages, and the imperatives of algorithmic equity.
This contribution is particularly notable in its deployment
for the automated identification of diabetic retinopathy

utilizing retinal imagery, where advanced stages of the
condition are frequently underrepresented and challenging
to discern.

The overall aim of this research is to develop a robust
classification system capable of accurately identifying rare
stages of diabetic retinopathy (DR). More specifically, the
study seeks to determine the most effective techniques for
correcting class imbalance in medical imaging; to evaluate
the impact of these techniques wusing appropriate
performance metrics such as recall and Fl-score; and to
offer practical recommendations for high-stakes domains
where misclassification can significantly affect decision-
making. The article is structured as follows: Section 2,
“Materials and Methods,” describes the dataset, the CNN
architecture, and the imbalance-handling strategies
implemented; Section 3, “Results,” presents the model’s
performance under various conditions; Section 4,
“Discussion,” interprets the findings and considers
methodological trade-offs; and finally, Section 5,
“Conclusion,” summarizes the main contributions and
proposes future research directions.

2- Materials and Methods

In our article, we investigate various techniques to address
class imbalance in multi-class classification tasks. Our goal
is to classify retinal images according to the severity stages
of diabetic retinopathy (DR), a serious eye disease resulting
from prolonged hyperglycemia. The dataset used is from the
Kaggle platform and consists of five classes, ranging from
“No DR” (absence of disease) to “Proliferative DR”
(advanced and severe form of the disease). Unlike other
studies that apply imbalance correction techniques without
sufficient justification, we propose a systematic approach
tailored to imbalanced and unstructured data, particularly
images. Our aim is to scientifically identify the most
effective techniques to overcome this challenge and
evaluate their impact on the performance of classification
models. To achieve this, we used a convolutional neural
network (CNN)-based model, known for its ability to
automatically extract complex features from images. We
evaluate several class rebalancing techniques, including
undersampling, oversampling, One-vs-Rest (OvR) and
One-vs-One (OvO) approaches, cost-sensitive learning, and
ensemble bagging (Fig.1). Models are trained and evaluated
on balanced datasets using these techniques. The evaluation
phase relies on standard metrics such as accuracy, precision,
recall, and F1 score, which are derived from the confusion
matrix. This comprehensive approach enables a precise
analysis of the influence of the applied imbalance resolution
techniques on the performance of the CNN-based model
and provides insights into effectively addressing
imbalances in image classification tasks.
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Application of methods to solve the data imbalance problem.
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Fig. 1. Architecture of the proposed diagnostic system

2-1-Dataset Description

The dataset used in our paper and obtained from the Kaggle
platform [29], consists of a total of 92702 retinal images
distributed across five classes, each representing a stage of diabetic
retinopathy (DR). The dataset (Table 1) exhibits a significant class
imbalance, with the majority class, "No DR," comprising
approximately 77.8% of the total samples. In contrast, the more
severe stages, such as "Severe DR" and "Proliferative DR," are
severely underrepresented, together accounting for less than 5.1%
of the dataset.

Table 1. Distribution of Retinal Images Across Diabetic Retinopathy Classes

Class Description Samples Percentage

Class 0 No DR 72102 77.8%
Class 1 Mild DR 8772 9.5%
Class 2 Moderate DR 7135 7.7%
Class 3 Severe DR 2328 2.5%
Class 4 Proliferative DR 2365 2.5%

Total 92702 100%

Conv 3

This imbalance poses challenges for model training, as
predictive models tend to favor the majority class, leading to
poor detection rates for minority classes. Addressing this
issue is critical to improving diagnostic accuracy,
particularly for the advanced stages of DR. Techniques such
as oversampling, undersampling, and algorithmic
adjustments are essential to mitigate this problem and ensure
balanced and robust model performance.

2-2-Model Architecture

To solve the problem of multi-class classification of
diabetic retinopathy, we have developed a model based on
a convolutional neural network (CNN). This type of model
is particularly effective for image analysis, thanks to its
ability to automatically extract complex features while
reducing the need for manual data pre-processing (Fig. 2).
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Fig. 2. Architecture of our CNN-based classification model
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The architectural framework of the model is predicated
upon a convolutional neural network (CNN) organized
into three primary phases: feature extraction,
dimensionality reduction, and classification. It consists of
three convolutional layers designed to extract
fundamental features from images, succeeded by pooling
layers that facilitate dimensionality reduction and bolster
the robustness of the model. Ultimately, two fully
connected layers conclude the multi-class classification
process. Methodologies such as dropout regularization, in
conjunction with non-linear activation functions (ReLU
and Softmax), augment the model's efficacy and
generalizability in the identification of diabetic
retinopathy.

2.2.1. Three Convolutional layers

The proposed model employs a triad of convolutional
layers to derive critical features from retinal imagery. The
initial layer utilizes 32 filters, succeeded by 64 filters in the
subsequent layer and 128 filters in the final layer. Each filter
executes a convolution operation utilizing a 3x3 kernel,
thereby facilitating the identification of distinct patterns,
including anomalies or textures that are characteristic of
retinopathy.

2.2.2. Pooling layers (2x2)

After each convolutional layer, pooling layers with a 2x2
size kernel are applied to reduce the dimensionality of the
data. This process limits over-fitting while reducing
computational costs. The max-pooling method is used,
selecting the maximum value in each analyzed region. This
ensures that the most dominant and significant features of
the images, essential for classification, are retained, while
simplifying the representations learned by the model.

2.2.3. Two Fully Connected layers

The model comprises two fully-connected layers that
ensure the finalization of the classification. The first layer,
made up of 256 neurons, combines the features extracted
from the convolutional and pooling layers. It uses a ReLU
(Rectified Linear Unit) activation function, well known for
its ability to introduce non-linearity, essential for modeling
complex relationships between features. This function also
prevents the effect of gradient saturation, which promotes
efficient convergence during training.
The output layer comprises 5 neurons, corresponding to
the five severity classes of diabetic retinopathy. A
Softmax activation function is applied to transform the
outputs of this layer into normalized probabilities,
allowing direct interpretation of predictions as
probabilities belonging to each class. This configuration
is particularly well-suited to multi-class classification,
guaranteeing well-calibrated output and a sum of
probabilities equal to 1.

2.2.4. Regulation

A dropout mechanism (with a rate of 0.5) is implemented
subsequent to the fully connected layers in order to mitigate
the probability of overfitting by sporadically deactivating
certain neurons throughout the training process. This
methodology entails the random inactivation of 50% of the
neurons at each iteration during training, thereby
diminishing the model's excessive dependence on particular
neurons.
This architecture integrates efficient convolutional layers
for the automatic extraction of pertinent features
alongside dense layers designated for classification. Such
a framework is exceptionally well-suited for medical
image analysis endeavors, owing to its capacity to capture
intricate details while simultaneously minimizing the
necessity for manual pre-processing.

2-3-Techniques for Correcting Data Imbalances

Addressing data imbalance is crucial for improving the
performance of machine learning models. The different
approaches to tackle this issue can be represented in three
categories: data-driven approaches, algorithmic
approaches, and specific approaches designed for multi-
class problems.

2.3.1. Data-Based Methods

Data-based approaches involve the direct manipulation of
datasets to balance the distribution of classes before model
training.

a-Sub-Sampling

The technique of subsampling, unlike oversampling,
involves reducing the number of samples from majority
classes to balance their proportion relative to minority
classes (Fig. 3). This technique is typically implemented by
randomly removing examples from the dominant class [10].
Subsampling has several advantages, including model
simplification by reducing the total volume of data, which
also lowers computational costs. However, this technique
has several notable drawbacks. Removing samples from
majority classes can lead to the loss of crucial information
[11]. Furthermore, the random selection of samples to be
removed may not accurately reflect the actual distribution
of the data, potentially affecting model performance,
especially when the data is heavily unbalanced [12].

b-Oversampling

Oversampling methodologies pertain to the deliberate
augmentation of sample quantities from minority classes to
rectify their inadequate representation in imbalanced
datasets (Fig 3). Among the preeminent methodologies, the
Synthetic Minority Oversampling Technique (SMOTE) is
particularly noteworthy for its capability to produce
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synthetic instances through linear interpolation of existing
samples within the minority class [6],[7]. This approach
enhances the representation of underrepresented classes
while concurrently maintaining the diversity and structural
integrity of the dataset.

The practice of oversampling confers several advantages.
It mitigates the model's bias towards majority classes and
enhances its generalization capabilities. These benefits
culminate in an improved recognition of underrepresented
classes, particularly in scenarios where imbalances may
precipitate erroneous predictions [13]. Furthermore, by
infusing greater variability into minority classes,
methodologies such as SMOTE enable machine learning
algorithms to more effectively discern the unique
characteristics of rare instances. Nonetheless, oversampling

Undersampling

Removing samples
from majority class

Original dataset

is not devoid of limitations. The artificial augmentation of
samples may heighten the risk of overfitting, especially
when synthetic instances exhibit insufficient diversity or
replicate patterns that do not accurately reflect authentic
data [14]. In addition, this escalation in data volume may
incur elevated computational costs, particularly with
extensive datasets, due to the supplementary resources
necessitated for the generation and processing of synthetic
instances [15]. Recent studies suggest improvements to
SMOTE, such as K-Means SMOTE or Borderline-SMOTE,
which specifically target critical regions near decision
boundaries to maximize the efficiency of oversampling
[16]. These variants aim to reduce drawbacks while fully
exploiting the potential of minority classes in unbalanced
contexts.

Oversampling

Adding samples
to minority class

—

Original dataset

Fig. 3. Representative diagram of the two techniques: subsampling and oversampling

2.3.2. Algorithmic Approaches

Algorithmic approaches directly modify learning
algorithms to deal with data imbalance, without modifying
the distribution of classes in the ensemble.

a- Cost-Sensitive learning

This methodology modifies the loss function of machine
learning algorithms by allocating enhanced significance to
minority classes. This approach is predicated on
augmenting the weight of errors pertinent to these classes,
in accordance with their under-representation (Fig. 4). In a
dataset wherein a class constitutes 10% of the samples,
misclassification errors for that class may be amplified by a
factor that corresponds to the degree of imbalance, thus
escalating the associated penalty [17].
This methodology proves to be particularly efficacious in
critical domains, such as the detection of rare diseases, the
prevention of financial fraud, or the prediction of failures in
intricate systems. It substantially contributes to the
reduction of classification errors in under-represented
classes, while simultaneously preserving the equilibrium of
overall model performance [18]. In addition, by integrating
these weights into algorithms, cost-sensitive learning
augments model sensitivity and precision for imbalanced
datasets.

Nonetheless, the efficacy of this methodology is profoundly
contingent upon the meticulous calibration of the weights
allocated to various classes. Insufficient calibration may
result in an inverse imbalance, thereby impairing
performance on majority classes or diminishing the overall
effectiveness of the model [19]. Therefore, methodologies
such as adaptive weight optimization or the employment of
specific metrics, including the ROC curve or F-measure, are
frequently advocated to guarantee balanced performance.

Feature selection

Model induction

\
With instance dmm  Cost Matrix !
L weighting | '

1
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Fig. 4. Operating principle of the cost-sensitive learning
method

b- Ensemble Methods
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Ensemble techniques, such as Bagging and Boosting,

combine the predictions of multiple models to enhance
overall performance and reduce bias toward majority
classes (Fig. 5). Bagging (Bootstrap Aggregating) uses
random sampling with replacement to train several
independent models, whose predictions are then
aggregated, improving model robustness and stability [20].
Boosting, on the other hand, progressively corrects the
errors of successive models by assigning higher weights to
misclassified examples, thereby increasing overall
accuracy, particularly on minority classes [21]. These
techniques are particularly effective for datasets with a high
degree of imbalance, as they address the weaknesses of
individual models by improving the recognition of under-
represented classes. By introducing diversity into data
subsets and combining the strengths of several models, they
also promote better generalization. Furthermore, recent
variants, such as AdaBoost-SAMME or Gradient Boosting
with SMOTE, have demonstrated their effectiveness in
handling complex imbalances by adjusting weights for
minority classes [23].
Nevertheless, the execution of these methodologies may
prove to be intricate and computationally intensive,
particularly in the context of boosting. The latter
necessitates meticulous calibration of hyperparameters,
including but not limited to learning rate and quantity of
estimators, to mitigate the risk of overfitting and to
guarantee optimal efficacy [24]. In spite of these obstacles,
their capacity to enhance performance in scenarios
characterized by imbalanced data renders them
indispensable instruments in domains such as finance,
healthcare, and predictive analytics.

____________________

0

__________________

Fig. 5. Operating principle of the Bagging ensemble method

2.3.3. Specific Techniques for Multi-Class Problems

In multi-class problems, where multiple categories are
present, data imbalance poses additional challenges.
Classical approaches can be adapted, but specific
approaches such as One-vs-Rest (OvR) and One-vs-One
(OvO) (Fig. 6) are often used.

a- One-vs-Rest (OVR)

OVR also known as One-vs-All, decomposes a multi-class
problem into several binary classification problems. For
each class, a binary classifier is trained, treating this class
as positive and grouping all other classes as negative. For
instance, in a five-class problem, OvR requires the creation
of five binary models, each optimized to distinguish a
specific class [25],[26]. Notable advantages of this
technique include its simplicity of implementation and its
ability to provide independent evaluations for each class.
These features make it particularly suited to contexts where
granular predictions are essential, such as in image
recognition or recommender systems [25],[26].
Additionally, the OVR technique is compatible with a wide
range of learning algorithms, such as support vector
machines (SVMs) and logistic regression, making it a
versatile option.

However, this technique has important limitations. It can
become biased when classes grouped as negative are highly
imbalanced, which can impair model performance on
minority classes [27]. Furthermore, OvR does not account
for the complex relationships and  possible
interdependencies between different classes, limiting its
ability to capture global patterns or subtle correlations in the
data [28].

Recent work proposes extensions to mitigate these
limitations, such as integrating adaptive weights to balance
negative classes or using hybrid techniques that combine
OvR with dimensionality reduction methods like linear
discriminant analysis. These improvements aim to enhance
the robustness and accuracy of this technique in unbalanced
multi-class classification contexts.

b- One-vs-One (OvO)

The OvO technique treats each pair of classes separately,
creating a binary classifier for each combination of two
classes. For example, for a problem with five classes, the
OvO results in ten binary classifiers, one for each pair of
classes [25],[26].

This approach is particularly useful for data with complex
class relationships, as each classifier focuses on only two
classes at a time. This reduces the impact of majority
classes, as each binary classifier works on data balanced
between the two classes concerned. However, the
computational complexity is high. The number of classifiers
to be trained increases quadratically with the number of
classes, which can lead to considerable computational costs
and implementation difficulties in contexts with a large
number of categories [27].

Data imbalance correction methods offer a variety of
solutions tailored to specific application needs. Data-driven
techniques, such as oversampling and undersampling,
directly modify the class distribution, while algorithmic
approaches, such as cost-sensitive learning and ensemble
methods, adjust the algorithms to compensate for biases
[28]. In multi-class problems, specific techniques such as
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OvR and OvO are used to handle the additional complexity
associated with multiple classes. The choice of the optimal
method depends on the context of use, the nature of the data

4

and technical constraints. It is often advisable to combine
several approaches to maximize model performance while
minimizing imbalance bias [25],[26].

Unbalanced dataset

Multi-Classs
1 1 1
Class 1Vs Class 2 | Class 1 Vs Class 3 Class n-1 Vs Class n

Fig. 6. Representation of the “One-vs-Rest”(OvR) and “One-vs-One”(OvO) techniques

3- The Results

Unbalanced multi-class classification is a major challenge,
due to the complexity of interactions between classes and the
difficulty of assessing model performance. Unlike binary
classification, this context requires advanced approaches to
effectively manage imbalance while improving prediction
accuracy.

In our research, we apply and evaluate various data
rebalancing  techniques, such as oversampling,
undersampling, one-to-one and one-to-all approaches,
ensemble methods such as Bagging, and cost-sensitive
learning. The aim is to identify the best method for boost
the performance of artificial intelligence models in this
complex context.

3-1-Subsampling

Sub-sampling is a methodological approach aimed at
equilibrating the distribution of classes by diminishing the
magnitude of the majority class, which is accomplished
through the stochastic elimination of samples from this class
to render it congruent with the quantity of the minority class.
In the present investigation, each class was systematically
curtailed to 2328 samples, in alignment with the size of the
minority class. While this methodology serves to mitigate
the bias in favor of the majority class, it engenders a
considerable loss of information, which may adversely
influence the overall efficacy of the model, as delineated in
Table 2.

The implementation in Python employs the resample
function from the sklearn.utils library to perform
subsampling on the majority class, thereby modifying its size
to correspond with that of the minority class. Subsequent to

the subsampling procedure, the equilibrated dataset is
preserved in the variables X resampled and y resampled,
rendering it suitable for utilization in model training. The
outcomes of this methodology are illustrated in Table 2.

Table 2. Overall performance obtained using the sub-
sampling technique

Metric Global values
Accuracy 82.64 %
Precision 88.94 %

Recall 82.15 %
F1-Score 80.51 %

3-2-Oversampling

To improve the representation of minority classes in
unbalanced datasets, the SMOTE (Synthetic Minority
Oversampling Technique) technique was used. SMOTE
generates synthetic samples for under-represented classes by
creating intermediate points between existing instances of
the same class [30],[22]. This rebalances the distribution of
classes and mitigates biases linked to data imbalance when
training machine learning models.

In Python, SMOTE is implemented using the SMOTE class
in the imbalanced-learn library (imblearn).

The resulting oversampling led to a significant
improvement in overall performance, although there remains
a risk of model overfitting due to the generation of synthetic
samples. The performance results obtained after applying
SMOTE are presented in Table 3.

Table 3. Overall performance obtained using the oversampling
technique
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Metric Global values
Accuracy 87.09 %
Precision 84.36 %
Recall 81.78 %
F1-Score 83.05 %

The F1-Score of 83.05%, which combines two parameters:
precision and recall into a single metric, provides a more
comprehensive evaluation in handling imbalanced data.
Although the accuracy is relatively high at 87.09%, it is not
the most reliable metric for this type of task due to the
potential influence of class imbalance. The moderate recall
and F1-Score suggest that, while oversampling improved
class distribution, the model may exhibit overfitting, limiting
its ability to generalize effectively to unseen data.

3-3-Cost-Sensitive learning

Cost-sensitive learning is an effective technique for
managing class imbalance without directly modifying the
data distribution. It assigns weights proportional to the
inverse of class frequency, thus giving greater importance to
minority classes during training. In this study, weights were
calculated as in Table 4.

Table 4. Weight of diabetic retinopathy classes

Class Weight
Class 0 1
Class 1 (72 102/8 772) = 8.22
Class 2 (72 102/7 135) = 10.10
Class 3 (72 102/2 328) =~ 31.00
Class 4 (72 102/2 365) =~ 30.49
The weights were integrated into the
SparseCategoricalCrossentropy loss function of

TensorFlow/Keras through the class weight parameter,
thereby facilitating the equilibrium of performance between
predominant and subordinate classes. This methodology
dynamically modifies the error magnitude associated with
under-represented classes, obviating the necessity for direct
alterations to the training dataset, and empowers the model

to more effectively manage class imbalances during the
training process.

In this specific implementation, the class weight
parameter is employed to modulate the significance of each
class, thereby compensating for imbalances while preserving
the integrity of the data itself. Metrics such as Accuracy,
Precision, Recall, and F1-Score were computed on the test
dataset to appraise the model's efficacy. Upon the
completion of training the CNN-based model, its
performance was evaluated utilizing the test data (refer to
Table 5). The findings illustrate that this methodology
proficiently reconciles overall accuracy and performance
across all classes, including minority classifications, thereby
mitigating the adverse effects of data imbalance on
predictive quality. The model accomplished an Overall
Accuracy of 91.09%, indicative of its capacity to render
precise predictions across all classifications. The F1-Score,
a composite metric amalgamating precision and recall,
attained 92.79% for the "No DR" classification,
underscoring the model's dependability in identifying this
category. Below is a comprehensive delineation of the
performance metrics for each class:

No DR: The model exhibited outstanding performance in
this category, attaining a Precision of 91.14%, a Recall of
94.49%, and an F1-Score of 92.79%, which exemplifies its
robust capability to accurately recognize instances devoid of
diabetic retinopathy. Mild DR: This classification similarly
exhibited elevated performance, achieving a Precision of
93.27%, a Recall of 91.95%, and an F1-Score of 92.60%,
signifying a well-balanced aptitude for detecting mild cases.
Moderate DR: With a Precision of 91.95%, a Recall of
93.24%, and an F1-Score of 92.59%, the model effectively
identified moderate cases with negligible errors. Severe DR:
The performance of the model was somewhat diminished for
this classification, achieving a Precision of 88.26%, a Recall
of 82.86%, and an F1-Score of 85.47%, which reflects
certain challenges in differentiating severe cases.
Proliferative DR: This minority classification attained a
Precision of 85.88%, a Recall of 83.72%, and an F1-Score of
84.78%, demonstrating the model's capacity to address even
the most formidable cases, albeit with some constraints.

Table 5. Performance obtained by applying Cost Sensitive Learning

Metric Overall Accuracy Precision Recall F1-Score

No RD 91.14 % 94.49 % 92.79 %
light RD 9327 % 91.95% 92.60 %
Moderate RD 91.09 % 91.95% 93.24 % 92.59 %
Severe RD 88.26 % 82.86 % 85.47 %
Proliferative RD 85.88 % 83.72 % 84.78 %

3-4-Ensemble technique: Bagging
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Bagging (Bootstrap Aggregating) was implemented in
Python to handle unbalanced data sets. Four balanced
subsets were created by bootstrap sampling, each subset
comprising 2,328 representative samples of all classes,
including minority classes, using scikit-learn's resample
function. These subsets were used to independently train a
CNN model, developed with TensorFlow using a defined
architecture, an ‘adam’ optimizer, a
'categorical_crossentropy' loss function, and 'accuracy'
metrics.

The predictions of the four models were aggregated by
majority voting, implemented via scipy's mode function.
The results obtained are presented in Table 6.

Table 6. Overall performance of the Bagging technique

Metric Global values
Accuracy 83.21 %
Precision 83.49 %
Recall 83.21 %
F1-Score 83.28 %

3-5-OvR and OvO Techniques

OvR and OvO techniques are widely used strategies for
handling multi-class classification problems, particularly
when addressing class imbalance. In this study, these
techniques were implemented in Python.

The overall performance of these two techniques is
summarized in Table 7.

Table 7. Overall performance achieved using OvR and
OvO techniques

Technique | Accuracy | Precision | Recall Fl-
Score
84.06 80.35 83.53 81.91
OvR % % % %
79.68 81.65 84.19 82.90
OvO % % % %

The results show that the OvR technique achieves an
accuracy of 84.06%, while OvO performs better in terms
of precision and F1-Score, albeit with slightly lower
accuracy. These two techniques are complementary, and
the choice of approach will depend on the specific
objectives of the model, notably between precision and
recall.

4- Discussion

Table 8. presents the performance of the CNN
classification model, trained on the “DR” (Diabetic
Retinopathy) dataset balanced by different techniques. This
table compares the results obtained with different class
imbalance correction techniques, assessing their impact on
four main metrics: Accuracy, Precision, Recall and FI1-
Score.

This comparison highlights the strengths and limitations
of each technique, as well as their influence on overall
model performance.

The comparative results of the different imbalance
correction techniques are shown in Table 8. above. The
metrics used (Accuracy, Precision, Recall and F1-Score)
make it possible to evaluate the effectiveness of each
technique on overall model performance.

a- Cost-Sensitive Learning Technique

The cost-sensitive learning methodology modifies the
weightings assigned to each class in accordance with their
prevalence, thereby effectively mitigating biases resulting
from class imbalance. Among the methodologies assessed,
cost-sensitive learning demonstrates the most favorable
overall efficacy, yielding an accuracy of 91.09%, a
precision of 90.10%, a recall of 89.25%, and an F1-score of
89.65%. This approach is particularly adept at addressing
the disparate costs associated with misclassification,
enabling the model to more accurately identify minority
classes while preserving elevated overall precision. The
exemplary outcomes of cost-sensitive learning illustrate its
capacity to reconcile precision and recall, rendering this
technique an outstanding selection for datasets
characterized by imbalance. While the performance metrics
are commendable, it is crucial to acknowledge that the
dynamic recalibration of weights may incur significant
computational costs, particularly when engaging with
extensive datasets. Our findings regarding cost-sensitive
learning align with those reported in contemporary
scholarly literature, which has evidenced that this strategy
stands out as one of the most efficacious for imbalanced
multi-class classification challenges, as evidenced by the
research conducted by Khan et al. [31]. A more recent
investigation by Araf et al. [32] posits that this technique
necessitates meticulous parameter optimization to
circumvent computational burdens while sustaining high
precision. This highlights the imperative for practitioners to
diligently evaluate the trade-offs between computational
expenses and performance enhancements.

b- Oversampling Technique

Oversampling, particularly using the SMOTE method,
generates synthetic samples for minority classes, improving
their representation during training. SMOTE achieved an
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accuracy of 87.09%, precision of 84.36%, recall of 81.78%,
and an F1-score of 83.05%. While this method is powerful,
it carries the risk of overfitting if the synthetic data does not
accurately reflect the complexity of real samples.

It is important to note that the risk of overfitting can be a
major issue with this approach. According to Vargas et al.
[33], the generated samples may introduce unrealistic
variations into the data, which could harm the model's
ability to generalize. This trade-off between improving
the representation of minority classes and the risk of
overfitting must be carefully evaluated.

c- Bagging Technique

Bagging (Bootstrap Aggregating) significantly bolsters
the reliability of predictions through the amalgamation of
numerous models that have been trained on meticulously
balanced subsets of the dataset. This methodology attained
an accuracy rate of 87.49%, a precision level of 84.91%, a
recall metric of 81.72%, and an F1-score of 83.28%. While
it exhibits a marginal advantage over oversampling with
respect to accuracy, the computational resources required
for training multiple models may pose a limitation in
environments constrained by resources. Despite the
robustness of this technique, the substantial computational
demands must be meticulously evaluated. As posited by
Liang & Zhang [34], the process of training various models
on data subsets necessitates effective resource management,
which can serve as an impediment in computationally
limited scenarios. Consequently, the balance between
precision and computational expense must be critically
assessed in professional practice.

d- Subsampling Technique
Under-sampling entails the reduction of the population of
the majority class to correspond with the population size of

the minority classes. This methodology yielded an accuracy
rate of 82.64%, a precision rate of 88.94%, a recall rate of
82.15%, and an Fl-score of 85.41%. Although this
methodology facilitates the equilibrium between precision
and recall, it is plagued by a considerable diminution of
information, which may adversely influence the model's
capacity to generalize.
The information attrition linked to under-sampling can
detrimentally affect the generalization capabilities of the
model, as articulated by Soleimani & Mirshahzadeh [35].
In real-world implementations, this strategy may prove to
be suboptimal when substantial amounts of information
are essential for the accurate prediction of infrequent
occurrences, as is the case with diabetic retinopathy.

e- OvO and OvR Methods:

The One-vs-One (OvO) and One-vs-Rest (OvR)
methodologies partition the multi-class classification
challenge into binary subproblems. The efficacy of the OvO
method is marginally inferior to that of alternative
methodologies, attaining an accuracy of 79.68%, a
precision of 81.65%, a recall of 84.19%, and an F1-score of
82.90%. Conversely, the OvR methodology achieves an
accuracy of 84.06%, yet it remains suboptimal in
performance relative to strategies such as cost-sensitive
learning and oversampling. Our findings regarding OvR
and OvO are in alignment with those documented in
contemporary research, including the work of Chakraborty
& Dey [36], which indicates that while these methodologies
may be effective in certain contexts, they are generally less
efficacious than approaches like cost-sensitive learning
(CSL) and Synthetic Minority Over-sampling Technique
(SMOTE) due to the inherent trade-offs in accuracy and
computational efficiency.

Table 8. Model performance on the balanced DR dataset using different imbalance correction techniques

Correction techniques Accuracy Precision Recall F1-Score
Subsampling 82.64 % 88.94 % 82.15 % 85.41 %
Oversampling 87.09 % 84.36 % 81.78 % 83.05 %

Cost-sensitive learning 91,09% 90,10% 89,25% 89,65%
Bagging technique 87.49 % 84.91 % 81.72 % 83.28 %
One-vs-One (OvO) 79.68 % 81.65 % 84.19 % 82.90 %
One-vs-Rest (OVR) 84.06 % 80.35 % 83.53 % 81.91 %
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5- Conclusion

The categorization of images depicting diabetic
retinopathy poses a considerable challenge attributable to
class imbalance, a widespread concern within medical
applications. This manuscript conducts a comparative
analysis of diverse methodologies aimed at mitigating this
imbalance while simultaneously enhancing the efficacy of
Convolutional Neural Network (CNN) models. The
findings unequivocally indicate that the selection of
correction methodologies exerts a substantial influence on
model efficacy, thereby underscoring the necessity for the
adoption of strategies that are specifically tailored to the
contextual characteristics of the data and the distinct aims
of the application.

Among the methodologies scrutinized, cost-sensitive
learning emerges as the preeminent strategy. Its adaptive
modulation of class weights facilitates a balanced
evaluation of classification inaccuracies, culminating in
enhanced performance across critical metrics (Accuracy,
Precision, Recall, and F1-Score). This approach not only
assures superior generalization but also yields a more
precise identification of minority classes. Techniques such
as oversampling and bagging also exhibited favorable
outcomes, particularly in augmenting the representation of
minority classes, while concurrently sustaining competitive
overall performance. Nonetheless, both methodologies may
engender a compromise between computational expense
and precision, particularly in expansive applications.
Conversely, subsampling and the One-vs-One/One-vs-Rest
(OvO/OvR) techniques, although beneficial, are
encumbered by intrinsic limitations, such as potential
information loss or heightened complexity, rendering them
less appropriate for intricate, imbalanced datasets such as
those associated with diabetic retinopathy.

These observations accentuate the imperative for a
comprehensive evaluation of the strengths and weaknesses
inherent to each technique, with particular emphasis on the
trade-offs between computational expenditure and
accuracy. The outcomes further highlight the significance
of implementing solutions specifically adapted to the
particular constraints of the data and the objectives of the
application. Future investigations should prioritize the
innovation of novel methodologies that effectively manage
complex, imbalanced datasets. Additionally, the
exploration of hybrid models that amalgamate existing
techniques should be pursued to capitalize on the
synergistic strengths of each strategy. This integrative
methodology would contribute to the optimization of
performance by addressing the deficiencies associated with
individual techniques, thereby enhancing model capabilities
in regard to both accuracy and generalization.

DX Abdallah maiti
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Such a strategy would not only elevate the overall
performance of models but also more effectively address
the critical requirements of applications, particularly in
domains such as medicine, where the robustness, fairness,
and reliability of models are of paramount importance.
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