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Abstract  
This research used modern machine learning ways to predict the stages of primary biliary cholangitis using data from the 

Mayo Clinic trial. The research aims to obtain high prediction accuracy while representing balanced evaluation metrics. 

Important techniques include automated hyperparameters optimization with Optuna and Recursive Feature Elimination to 

improve model performance. Pre-processing included handling missing values, encoding of categorical features, and 

addressing class imbalances using SMOTE. A total of twelve machine learning algorithms are evaluated with ensemble-based 

models such as CatBoost and Extra Trees producing much better results. Evaluation metrics take into account all model 

predictions, including accuracy, precision, recall, F1 score, and ROC-AUC for performing balanced and interpretative 

evaluations of performances critical for imbalanced datasets. This endeavor includes clinical and laboratory information 

illustrating the prospect of machine learning in advancing therapeutic diagnosis, emphasizing the rigor and robustness in 

evaluation laid groundwork for future research to encompass even more generalizable and robust diagnostic tools. 
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1- Introduction 

Primary Biliary Cholangitis (PBC), formerly known as 

primary biliary cirrhosis, is a chronic autoimmune liver 

disease. It is characterized by the gradual and progressive 

destruction of the liver's small bile ducts, leading to the 

accumulation of bile and other toxins within the liver, a 

condition known as cholestasis. Over time, this persistent 

damage can result in scarring, fibrosis, and ultimately 

cirrhosis. Cirrhosis is a late-stage liver disease that occurs 

when scar tissue replaces healthy liver tissue. The 

underlying pathologies that may cause this disease include 

viral hepatitis, chronic alcoholism, and NAFLD (non-

alcoholic fatty liver disease) (Konerman et al., 2019). 

Chronic alcohol consumption leads to advanced forms of 

liver damage, which eventually result in cirrhosis and 

subsequent liver failure (Topcu et al., 2024). In the primary 

stages, the disease is asymptomatic, and awareness is 

typically raised only in the advanced stages. Cirrhosis may 

lead to liver failure, liver cancer, and, ultimately, death 

(Tapper & Parikh, 2023). There is a strong need for the most 

accurate and least invasive methods to predict the 

progression of cirrhosis, given the critical importance of 

diagnosing and managing such diseases optimally. 

Although traditional methods, such as liver biopsy, provide 

accurate results, these procedures are invasive and may lead 

to complications (Wei et al., 2018). Chronic alcohol 

consumption is one of the main causes of this disease and, 

in the long term, can lead to advanced stages such as 

cirrhosis, ultimately culminating in complete liver failure 
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(Topcu et al., 2024). Previous studies have established that 

cirrhosis of the liver progresses through four stages. The 

first stage, Steatosis, is characterized by inflammation of 

either the liver or the bile ducts, and immediate treatment at 

this juncture can control the disease. The second stage, 

Fibrosis, involves the development of scar tissue that cuts 

off normal blood flow to the liver and impairs its function; 

however, medical treatment can halt the progression of the 

disease. In the third stage, Cirrhosis, healthy liver tissue is 

replaced by scar tissue, and swelling may occur in the 

spleen. Finally, the fourth stage, Liver Failure, is 

characterized by complete liver failure. At this stage, 

patients transition from normal health to a comatose state 

and require emergency treatment by medical professionals 

(Wei et al., 2018). 

The subtlety of its early symptoms permits the diagnosis 

of cirrhosis only at advanced stages; if mismanaged, the 

disease can inevitably culminate in liver failure or cancer. 

Recent studies have highlighted the significance of early 

detection and management. An SEAL screening algorithm 

study demonstrated a remarkable 59% higher rate of early 

cirrhosis detection compared to routine care, thereby 

advocating for the role of structured programs in identifying 

asymptomatic cases (Labenz et al., 2022). In addition, top-

down proteomics identified the proteoform signatures in 

plasma that correlate with the progression of cirrhosis, 

forming the template for a biomarker-driven risk 

stratification (Forte et al., 2024). Another paper emphasized 

the role of miRNA-gene regulatory axes in monitoring and 

diagnosing cirrhosis and hepatocellular carcinoma and 

proposed new diagnostic targets (Premnath & Shanthi, 

2024). Asymptomatic superior mesenteric vein thrombosis 

(SMVT), however, has not been proven to significantly 

impact cirrhosis outcomes, unlike the risks posed by portal 

thrombosis (PT) (Wang et al., 2022). These collective 

findings emphasize the crucial role of early, target-oriented 

interventions and the potentially significant role of 

additional biomarkers in preventing the progression of 

asymptomatic cirrhosis. Prior studies discussed the notable 

success of various machine-learning-based approaches like 

Random Forest, Gradient Boosting, Ensemble Learning, 

and others in increasing the accuracy with which the stages 

of disease progression are predicted. For example, the 

LivMarX model achieved an accuracy of up to 86% for 

predicting different stages of cirrhosis based on a 

combination of biomarkers and optimization techniques 

(Kamath et al., 2024). Other models suggested that 

longitudinal models outperformed other cross-sectional 

models in accurately detecting disease progression (Hanif 

et al., 2022). 

Millions live with cirrhosis worldwide, and it remains 

a leading cause of death every year. The effects on patients" 

quality of life following late diagnosis of cirrhosis can be 

dire and place a huge burden on the health sector. 

Furthermore, improper management of the disease may lead 

to serious complications, such as advanced liver failure, 

liver cancer, and other comorbidities (Hanif et al., 2022). 

New artificial intelligence and machine-aided processes 

enable much finer accuracy in determining the stage of the 

disease and are immensely beneficial in reducing 

complications, promoting early diagnosis, and improving 

patient management. The ability of this technology to offer 

a serious advancement in the management of cirrhosis is 

most felt in areas where modern imaging methods are 

seldom available (Topcu et al., 2024). This research aims to 

develop an efficient and accurate model for predicting early 

liver cirrhosis by employing advanced machine learning 

algorithms. It seeks to improve prediction accuracy by 

combining intelligent feature selection and model 

optimization approaches to create models that are not only 

highly efficient but also practical for implementation in real 

clinical settings. The major aim of the study is to devise a 

model for prediction of stage of PBC that is accurate, 

generalizable, and efficient using advanced techniques of 

machine learning. Some cutting-edge work presented 

therein involves, but is not restricted to, tuning of model 

hyperparameters via advanced optimization methods of 

Optuna, feature selection algorithms, such as RFECV to 

identify crucial disease progress variables. A further 

significant aspect in the study includes the use of rich and 

varied data composed of clinical and laboratory data drawn 

from credible sources. The evaluation of model 

performance metrics such as accuracy, precision, recall, F1-

score, and AUC is performed in a very detailed way so as 

to allow transparency in the evaluation of the quality of 

predictions. This paper is organized as follows: the first part 

introduces the research and its various objectives; the 

second part broaches the research background and pinpoints 

the weaknesses of previous studies; the third part describes 

the research methodology regarding the dataset, 

preprocessing techniques and machine learning algorithms 

used; the penultimate section conveys all the experimental 

results and critically evaluates the performance of various 

models; and finally, the last part deliberates and draws its 

conclusions in respect of the findings obtained, drawing 

comparisons with previous studies, scrutinizing the 

implications of the results, providing an overview of the 

contributions made, and suggesting future areas of research. 

In this study, such a constructive approach enhances the 

efforts toward improving the prediction of cirrhotic liver 

disease risk while further enhancing the development of AI 

in aiding diagnostic medicine. 

2- Theoretical Foundations and Research 

Background 

In very recent times, prognosis and evaluation of liver 

diseases have made remarkable advancements. Cirrhosis 

often deteriorates into liver failure, requiring transplants in 
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many cases, often due to chronic liver insult. Making an 

accurate diagnosis of the stage of liver cirrhosis and 

tracking the patients' progress remains among the greatest 

challenges of medicine. Addressing these difficulties 

straightaway impacts treatment strategies and the potency 

of medical involvement. In the past years, machine learning 

methods have emerged as a contemporary remedy for 

prognosticating the diverse phases of liver cirrhosis. These 

algorithms identify clinically pertinent traits that describe 

singular patient characteristics through exhaustive data 

examination. Table 1 briefly summarizes related research 

on predicting the stages of liver cirrhosis and contrasts 

assorted methods. This table comprises the titles of the 

reports, aims, datasets, machine learning algorithms, and 

key outcomes of each analysis. An inspection of this 

background reveals that machine learning designs such as 

Random Forest, Support Vector Machine, and amalgamated 

tactics, exploiting an assortment of datasets and sundry 

optimization techniques, have been successfully applied 

and have achieved meaningful accuracy in prognosticating 

the phases of liver cirrhosis. This data furnishes worthwhile 

insights into the strengths and shortcomings of preceding 

studies and helps pinpoint existing research gaps. 

 

 

  

Table 1. Research background 

Conclusion Dataset Model used Goals Article Title Authors 

The longitudinal boosted survival tree 
model achieved superior concordance 

(0/774) and AuROC in prediction 
compared to cross-sectional models, 

demonstrating higher reliability in long-
term forecasts. 

Veterans’ 
Health 

Administrati
on (72,683 
individuals) 

Cox models 
and boosted-
survival-tree 

model 

Predict cirrhosis 
progression in 
CHC patients 

Machine learning 
models to predict 

disease 
progression 

among veterans 
with hepatitis C 

virus 

Konerman 
et al. 

(2019) 

The Random Forest model achieved high 
accuracy (~98%), demonstrating superior 
performance in early cirrhosis prediction. 
Precision, recall, and F1-score were not 

explicitly reported. 

Open-access 
liver 

cirrhosis 
dataset 

Random 
Forest, 

Logistic 
Regression, 

AdaBoost, k-
Nearest 

Neighbors 
 

Early detection 
of liver cirrhosis 

Machine 
Learning-Based 

Analysis and 
Prediction of 

Liver Cirrhosis 

Topcu et 
al. (2024) 

The ensemble models improved 
prediction accuracy and generalizability, 
making significant advances in reliability 
and forecasting. While specific metrics 
such as accuracy, precision, and recall 

were not directly reported, overall 
improvements were observed. 

Multisource 
liver disease 

datasets 

Ensemble 
model 

integrating 
Gradient 
Boosting, 
Random 

Forest, and 
Decision 

Trees 

Enhance 
prediction of 

cirrhosis 
prognosis 

Improving 
Prognostic 

Prediction of 
Cirrhosis Using 
an Optimized 

Ensemble 
Machine Learning 

Approach 

Bhardwaj 
et al. 

(2024) 

Random Forest was among the models 
with the highest accuracy (~97%), 

achieved through feature engineering and 
cross-validation. Precision, recall, and 
F1-score for the Random Forest model 

are not specified. 

Dataset with 
418 records 

and 20 
attributes 

Support 
Vector 

Machine, 
Random 
Forest, 

Gradient 
Boosting 

Determine 
stages of liver 

cirrhosis 

Stage Prediction 
of Liver Cirrhosis 

Disease using 
Machine Learning 

K et al. 
(2024) 

LivMarX achieved over 86% accuracy 
after optimization, with an AUC of 0/95. 

The model demonstrated high cost-
effectiveness for accurately staging 
cirrhosis in the absence of imaging. 

Precision, recall, and F1-score were not 
reported. 

Comprehens
ive dataset 

of 424 
patients 

Random 
Forest 

(optimized 
with Genetic 
Algorithm 

and 
GridSearchC

V) 

Stage liver 
cirrhosis using 

biomarkers 

LivMarX: An 
Optimized Low-
Cost Predictive 
Model Using 

Biomarkers for 
Interpretable 

Liver Cirrhosis 
Stage 

Classification 

Kamath et 
al. (2024) 

The model achieved 93/55% accuracy on 
the training data and 78/62% on the test 

data, outperforming six comparable 
algorithms. 

Data from 
1,078 

patients 
referred to 
Imam Reza 

Hospital 

Support 
Vector 

Machine 
(SVM) with 

Radial Kernel 

Development of 
a machine 

learning model 
for diagnosing 

fatty liver using 
demographic 

information and 
hematology 

tests 

Predicting Liver 
Fibrosis Severity 
Using Machine 

Learning Models 

(Elmasine
jad and 

Golabpour
, 2024) 

The proposed model demonstrated high 
accuracy in predicting the stages of 

cirrhosis. 

Data from 
patients 

with 

Different 
machine 

Using machine 
learning 

methods to 

Cirrhosis Disease 
Prediction Using 

Machine Learning 

Jamadar et 
al. (2023) 
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physiologic
al 

characteristi
cs 

associated 
with 

cirrhosis 

learning 
algorithms 

predict liver 
cirrhosis 

Random Forest achieved an accuracy of 
~97%, demonstrating reliability and 

robustness in phase-wise predictions of 
liver cirrhosis. Precision, recall, and F1-

score were not reported. 

Liver 
Cirrhosis 

dataset (418 
records) 

Support 
Vector 

Machine, 
Decision 

Tree, Random 
Forest 

Predict liver 
cirrhosis stages 

Liver Cirrhosis 
Prediction Using 

Machine Learning 
Approaches 

Hanif and 
Khan 

(2022) 

The Artificial Neural Network (ANN) 
demonstrated the best performance with 
high accuracy, while the RF+MI feature 

selection method showed a slight 
improvement over the standard Random 

Forest (RF) model. 

Data from 
patients 

with liver 
cirrhosis 

Artificial 
Neural 

Network, 
Random 
Forest , 
Logistic 

Regression, 
Support 
Vector 

Machine , 
KNN, 

Decision Tree 
, Naive Bayes 

Predicting the 
stage of liver 
cirrhosis in 

patients using 
machine 
learning 

algorithms 

Liver Cirrhosis 
Stage Prediction 
Using Machine 

Learning: 
Multiclass 

Classification 

Sidana et 
al. (2022) 

 

 

The studies discussed in Table 1 delineate just some of the 

many advances in the use of machine learning algorithms in 

predicting the stages of liver cirrhosis. However, one of the 

main gaps identified there was the significant delay in 

consideration of imbalanced data sets and excessive focus 

on a single performance metric, such as accuracy, for model 

evaluation. The studies by Bhardwaj et ub. and Sidana et 

ub., while dealing with random forest or SVM, do not 

appease the challenge of imbalanced dataset(s), and they 

wholly rely on a single evaluation criterion, such as 

accuracy, thus not completely evaluating models one 

through other proper performance criteria such as Precision, 

Recall, and F1 Score. Such excessive focus on accuracy 

alone results in a very skewed perspective on their 

prediction capabilities, since such models often guarantee 

high-performance measures yet produce very poor results 

on overweighted classes. Another very important limitation 

discussed in Table 1 is their use of unoptimized models and 

poorly defined feature sets. For example, models like 

Random Forests and SVM have been applied, ill as the 

studies by Hanif and Khan, and Jamadar et al., did not apply 

state-of-the-art optimization techniques that would 

potentially improve model performance, structure feature 

selections, and reduce the framework of their studies, thus 

precluding meaningful generalization and accuracy of their 

interpretations. In the contrary, the current paper uses a 

rather spirited approach by using advanced machine 

learning algorithms guaranteeing accuracy in predictions 

and correcting the data imbalance, with the models being 

subjected to various acute evaluations by areas such as 

accuracy, precision, recall, F1 score, and ROC-AUC, which 

is possible to ascertain an appropriate and transparent 

evaluation of the models' performances addressing 

fundamental gaps in prior research and leading the 

investigation towards more reliable and generalized results.  

Moreover, a large number of studies will focus only on 

one model, with limited analysis of the effects of 

combinations of algorithms or full comparisons between the 

efficiency of techniques. The novel methodology presented 

in this paper serves as an ensemble framework to enrich 

predictive technology, apply advanced feature selection 

techniques, optimize model computational costs, and 

improve the implementation of models openly in the real 

world, all of which are overly venturous in previous studies, 

such as the LivMarX (Kamath et al., 2024). Finally, this 

research makes a significant contribution to advancing 

existing methods by focusing on early-stage liver cirrhosis 

prediction, presenting a comprehensive optimization 

framework, thoroughly analyzing model performance 

indicators, and utilizing diverse and extensive datasets. 

Through the articulation of emerging and current research 

gaps, as well as the modest input of novelties, this will 

provide a further route for an exhaustive yet accurate 

approach to be developed in this area.  

3- Research Method 

The goal of this study was to use machine learning 

algorithms to predict the stage of primary biliary cholangitis 

(PBC) in patients. The main objective is to use the machine 

learning model to accurately predict the stage of the disease 

using medical and laboratory data. The dataset used in this 

study was derived from a clinical investigation of PBC 

patients conducted at the Mayo Clinic and supplemented by 

a publicly available dataset released on the Kaggle platform, 

which included numerous original features. After data 

analysis and feature selection, key variables were identified 

using recursive feature elimination with cross-validation 

(Priyatno Widiyaningtyas, 2024). During the preprocessing 

stages, correlation analysis was performed, and the SMOTE 
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method was applied to address class imbalance. Additional 

steps included handling missing values, and encoding 

categorical features (Khan & Hoque, 2020). Twelve 

machine learning algorithms were evaluated for modeling 

purposes: Decision Tree, Random Forest, Extra Tree, 

Gradient Boosting, AdaBoost, XGBoost, LightGBM, 

Logistic Regression, Support Vector Machine (SVM), k-

Nearest Neighbors (KNN), Naive Bayes, and CatBoost. The 

Optuna optimization framework was used to fine-tune the 

hyperparameters of all models in such a way as to provide 

the best performance (Jeganathan et al., 2024). The 

performance of the models was assessed against four main 

metrics: accuracy, precision, recall, and F1-score (Fazel & 

Foing, 2024). In addition, the ROC curve and AUC values 

are used for more details regarding the model performance. 

All other steps of this study were done using the Python 

programming language with its corresponding libraries.  

3-1- Data Source 

The data set used in this study was extracted from the 

Cirrhosis Prediction Dataset, which is publicly available on 

the Kaggle platform. It includes information of patients 

with PBC, collected over ten years in a clinical study carried 

out at the Mayo Clinic. In this study, 420 patients diagnosed 

with PBC were identified as eligible to participate in a 

randomized, controlled trial of the drug D-penicillamine. Of 

these, 312 patients obtained consent to participate in the 

randomized clinical trial, their records had a minimal loss. 

There were also 112 other eligible patients who were not 

trial participants, who did allow for basic information and 

survival follow-ups to be recorded; 6 out of these 112 

patients were lost from follow-up soon after diagnosis, so 

data on 106 remained. Thus, the total number of patients 

entered in the dataset is 418 (Fedesoriano,2021).  

3-2- Dataset Features 

The data used in this study include comprehensive 

information from patients with PBC. The dataset initially 

comprised 20 features, which are presented in Table 2. 

Table 2. Variables Description 
Feature 
Name Description Type Values/Unit 

ID Unique identifier for 
each patient 

Categori
cal Numeric 

N_Days 

Number of days 
between registration 

and the earlier of 
death, transplantation, 
or study analysis time 

Numeric Days 

Status Status of the patient Categori
cal 

C (Censored), 
CL (Censored 

due to liver 
tx), D (Death) 

Drug Type of drug 
administered 

Categori
cal 

D-
penicillamine, 

Placebo 
Age Age of the patient Numeric Days 

Sex Gender of the patient Categori
cal 

M (Male), F 
(Female) 

Ascites Presence of ascites 
Categori

cal 
(Binary) 

N (No), Y 
(Yes) 

Hepatome
galy 

Presence of 
hepatomegaly 

Categori
cal 

(Binary) 

N (No), Y 
(Yes) 

Spiders Presence of spiders 
Categori

cal 
(Binary) 

N (No), Y 
(Yes) 

Edema Presence of edema Categori
cal N, S, Y 

Bilirubin Serum bilirubin Numeric mg/dl 
Cholester

ol Serum cholesterol Numeric mg/dl 

Albumin Serum albumin Numeric gm/dl 
Copper Urine copper Numeric µg/day 

Alk_Phos Alkaline phosphatase Numeric U/liter 

SGOT 
SGOT (serum 

glutamic-oxaloacetic 
transaminase) 

Numeric U/ml 

Triglyceri
des Serum triglycerides Numeric mg/dl 

Platelets Platelet count Numeric per cubic 
ml/1000 

Prothrom
bin Prothrombin time Numeric Seconds (s) 

Stage Histologic stage of the 
disease 

Categori
cal 

(Ordinal) 
1, 2, 3, 4 

 

In this study, the target variable was defined as Stage, 

representing a disease stage that ranges from 1 to 4. The aim 

is to model the Stage variable in relationship to the other 

features in the data set. The ID column was ruled out of the 

analysis simply because it works as a patient identifier and 

provides no substantial contribution to prediction.  

3-3- Data Cleaning 

The cohort included 424 patients with PBC data collected 

as part of a Mayo Clinic clinical trial. Of those, the final 

analysis was based on 312 samples. In the first step of 

cleaning the data, the ID column, which was judged not 

relevant to the target variable, was deleted as it would not 

contribute to prediction. In addition, missing values in 

features with limited incompleteness were substituted with 

the mean value for less impact on the modeling. Out of the 

424 data points, 112 pertained to patients who did not 

participate in the randomized tests and had incomplete 

information. Out of these, six samples were excluded 

shortly after data collection due to critical missing 

information. According to strict sampling standards, the 

information from the remaining 112 non-participating 

patients had to be rejected because of poor quality. This left 

312 samples that were complete and of good quality for 

analysis. Data cleaning allowed such preparation, 

producing better quality data for the predictions. 

3-4-  Correlation Analysis 

Correlation analysis was conducted to identify linear 

relationships between variables in the dataset. The primary 
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purpose of this analysis was to determine variables with a 

significant impact on the target variable and to eliminate 

those with redundant or weak associations with other 

variables. In this study, a correlation matrix, visualized 

using a heatmap, was employed to illustrate the 

relationships between variables. 

Figure 1. Correlation Heatmap 

 

From the correlation analysis, no variables exhibited high 

correlation with other variables (greater than 0/8 or less than 

-0/8). The highest positive correlation found is between the 

Copper and Bilirubin (about 0/46), indicating no removal of 

features for redundancy because of excessive correlation. 

Furthermore, it is found that the independent variable 

(Stage) correlates positively with Hepatomegaly (about 

0/47), thus this variable is important in predicting the stage 

of the disease. In this regard, all the features were retained 

for modeling since they provide independent and 

informative information. Such independence can be 

expected to add strength to model value.  

3-5- Feature Selection 

Therefore, feature selection becomes a big step for 

preprocessing data to enhance the performances of machine 

learning classifiers and reduce computational complexity. 

The dataset initially had many primary features, but some 

of them had bad correlations with the target variable or 

brought more noisy and redundant information. To extract 

important features, RFECV was used. RFECV is a very 

efficient recursive feature elimination mechanism 

(Thambawita et al., 2020) that starts by training the model 

with all features available, estimates the importance of each 

individual feature in terms of importance score such as 

those derived from feature importance or model coefficients, 

and then removes one feature at a time, retraining the model 

at each iteration. The process continues until all possible 

combinations of features have been tried. It implements 

cross-validation to find the best set of features. The other 

applications of cross-validation are to make the dataset as 

many segments as needed, then evaluate the model 

performances for each feature combination. Finally, 

RFECV was used to optimize feature selection based on 

model performance during cross-validation. In addition to 

evaluating model performance, this technique effectively 

eliminates irrelevant features, selecting the minimum 

number of features necessary to make accurate predictions. 

In this study, a total of 14 features were identified as the 

most informative from the initial set: N_days, status, drug, 

age, bilirubin, cholesterol, albumin, copper, alk_phos, sgot, 

triglycerides, platelets, and prothrombin. These selected 

features were found to significantly contribute to the 

prediction of disease stages. The removal of non-essential 

features reduced model complexity while improving model 

estimation accuracy and computational efficiency. Figure 2 

illustrates the significance of these features in this study. 

Figure 2. Feature Importance 

3-6- Data Normalization 

The MinMaxScaler is used to scale data for SVM 

(Support Vector Machine) and KNN (K-Nearest Neighbors) 

algorithms (Ali, 2022). This choice is made because these 

algorithms are generally sensitive to feature scaling. For 

SVM algorithms, to determine the separating hyperplane, 

the feature values are being used; whereas KNN uses 

feature values to compute distances amongst samples. Thus, 

features in varied scales could significantly affect the 

models' performance. The MinMaxScaler scales every 

feature to a fixed-range value, usually ranging between 0 

and 1, on an equivalent scale. The formula for 

MinMaxScaler is:  

    

x_scaled=(x-x_min)/(x_max-x_min )    (1) 

 

In this formula: 

xscaled is the normalized (scaled) feature value. 

x is the original value of the feature. 

xmin is the smallest value of the feature in the dataset. 

xmax is the largest value of the feature in the dataset. 

3-7- Data Balance 
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One of the major challenges outlined in this study was the 

distribution of samples into the different classes with 

unequal frequency. From the data distribution, it has been 

noted that there were only 16 samples at Stage I, while there 

were 97 samples at Stage II, 109 samples at Stage III, and 

more than to bring the order at the top. This imbalance 

causes the machine learning algorithms to converge toward 

the large classes, thus reducing any learning focused on the 

smaller classes, like stage I. This will probably have the 

effect that the model identifies the classes having more 

samples correctly, while disregarding or misclassifying the 

classes that have very few samples. 

 

 
Figure 3. Distribution of Stages 

 

The SMOTE method was used to increase the number of 

samples belonging to the minority class in the data set to 

remove imbalance namely synthetic minority over-

sampling technique. It constructs synthetic instances and 

follows the following steps: 

1. A random sample from the minority class is chosen as 

a reference sample. 

2. Using the KNN algorithm (usually with K = 5) several 

nearest neighbors from the same minority class, are 

identified. 

3.SMOTE generates new synthetic examples in feature 

space. This is achieved by selecting at random one of 

the nearest neighbors and by creating a new sample at a 

point in-between the reference sample and the chosen 

neighbor. 

The formula used to compute the interpolation 

between the two samples is expressed as: 

 

X_new=X_sample+gap×(X_neighbor-X_sample)  (2) 

 

Here, Xsample stands for the reference sample, 

Xneighbor for one of the nearest neighbors, and Gap for 

some random number in the range (0, 1). The dataset in this 

research was divided into two parts: training 70% of the 

data and using 30% for the encoding models' performance 

evaluation.  

3-8- Machine Learning Algorithms 

For predicting the stage of PBC in this study twelve 

different machine learning algorithms were used. These 

algorithms were used to identify the best-performing model 

that would predict the disease stages with the highest 

accuracy. The hyperparameters of each algorithm were 

optimized using the Optuna tool. Optuna is a dynamically 

designed hyperparameter optimization tool to automatically 

find the best values for model parameters (Akiba et al., 

2019). Like others, efficiently finds the best hyperparameter 

configurations with advanced search techniques like Tree-

structured Parzen Estimator (TPE) and Random Search. By 

running several tests and comparing how models perform, 

this tool minimizes the time to gain optimality. The table 

below provides the list of 12 machine learning algorithms, 

operational mechanisms, and the optimized values achieved 

using Optuna: 

 

Table 3. Machine learning algorithms used and optimized hyperparameter values 

Algorithm Method Optimal hyperparameters 

Decision Tree 

The algorithm applies successive splitting of the data into either two or 
more subsets. At every stage, one feature which works best for data 

splitting is selected according to certain criteria, some of which are Gini 
Index and Entropy(Mienye & Jere, 2024) . 

max_depth=32, 
min_samples_split=8 

Random 
Forest 

This algorithm, using a combination of multiple decision trees to reduce 
data variance, trains each tree on a random subset of the data and obtains 

its final output by following the majority voting rule in the case of 
classification, or averaging in the case of regression (Schonlau & Zou, 

2020) . 

n_estimators=331, 
max_depth=8 

Extra Trees 
It operates similarly to Random Forest but uses random values instead of 

optimal values for node splitting. This approach reduces variance and 
results in faster model training (Geurts et al., 2006) . 

n_estimators=373, 
max_depth=14 

Gradient 
Boosting 

To build weak models (decision trees) one after the other, correcting the 
mistakes done by the previous model. The aim is to gradually minimize 

model errors and boost performance with each step (Biau & Cadre, 
2017) . 

n_estimators=191, 
learning_rate=0/02662 
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AdaBoost 
This algorithm iteratively trains weak models (small decision trees) and 
assigns greater weight to misclassified samples at each step to create a 

stronger final model (Ding et al., 2022) . 

n_estimators=162, 
learning_rate=0/54684 

XGBoost 

An optimized version of Gradient Boosting that reconciles the conflicts 
between solving the execution speed and the execution accuracy by 

analyzing operations in parallel and using more efficient algorithms. This 
optimization method can address large amounts of information and 

diversity (Bentéjac et al., 2020) . 

n_estimators=162, 
learning_rate=0/54684 

LightGBM 

An optimized Boosting algorithm that grows leaves instead of levels. 
This method is suitable for large-scale, high-dimensional data and 

provides faster performance compared to other Boosting algorithms (Ke 
et al., 2017) . 

n_estimators=329, 
num_leaves=210, 

learning_rate=0/1247 

CatBoost 

A fast and efficient Boosting algorithm optimized for categorical data, 
which automatically encodes categorical values. This method requires 
fewer parameter adjustments compared to other Boosting algorithms 

(Dorogush et al., 2018) 

iterations=435, depth=9, 
learning_rate=0/2872 

Logistic 
Regression 

A method for data classification using a linear model computes the 
probability of the data belonging to different classes using the logistic 

(sigmoid) function. It is well suited to low-dimensional datasets 
(Starbuck, 2023) . 

C=0/1228 

Support 
Vector 

Machine 

This algorithm finds an optimal hyperplane to separate classes in the 
feature space. Using the RBF kernel, it maps data to a higher-

dimensional space, enabling nonlinear separation (Shmilovici, 2023). 

C=459/87, gamma=0/0573, 
kernel='rbf' 

K-Nearest 
Neighbors 

The prediction takes into account the distance of the other instances from 
the input data. The majority class among the k nearest neighbors is 

considered for predicting the class of the novel sample (Halder et al., 
2024) . 

n_neighbors=3 

Naive Bayes 
A probabilistic model based on Bayes' theorem. This algorithm assumes 

complete independence between features and is well-suited for low-
dimensional and categorical data (Pajila et al., 2023) . 

Lacks suitable 
hyperparameters for 

optimization. 

 

To evaluate the performance of machine learning models 

in this study, five key metrics were used: accuracy, 

precision, recall, F1-score, and the area under the receiver 

operating characteristic curve (ROC-AUC). These metrics 

are defined based on the concepts of True Positive (TP) and 

True Negative (TN) for correct predictions, and False 

Positive (FP) and False Negative (FN) for incorrect 

predictions. 

Table 4. Evaluation indicators for machine learning models 

index definition Formula 

Accurac
y 

The ratio of correct 
predictions (both positive 
and negative) to the total 

number of samples. 

(TP+TN)/(TP+FP+FN+

TN) 

Precision 

The ratio of correctly 
predicted instances for a 

class to all instances 
predicted as that class. 

TP/(TP+FP) 

Recall 

The ratio of correctly 
predicted instances for a 

class to all actual 
instances of that class. 

TP/(TP+FN) 

F1 Score 

The harmonic mean of 
Precision and Recall, 

balancing the trade-off 
between the two metrics. 

(2×Precision×Recall)/(P

recision+Recall) 

 

The ROC-AUC metric measures the performance of a 

classification model at all threshold levels and illustrates 

how well the model is at distinguishing between classes; 

thus, it shows how well the model can predict the different 

stages of the disease. The ROC curve is created by plotting 

the value of false positive rate (FPR) vs true positive rate 

(TPR) for different thresholds and area under this curve is 

known as the AUC. AUC can be understood as the higher 

the better: The closer the AUC value is to 1, the better. In 

order to test the generalizability of the model and verify that 

it performed successfully regardless of the dataset with 5-

Fold Cross-Validation was performed. In this method, the 

data set is split into five equal parts. At each iteration, one 

of its sections is considered as test data, while the other four 

sections are used as training data. This is done five times to 

guarantee that each batch is tested once. Finally, the overall 

performance of the model is reported as the mean values of 

all the evaluation metrics across all iterations. 

4- Results 

In this section, the results of the machine learning models 

are presented and analyzed. The Python programming 

language was utilized for this study, and all models were 

executed on a system equipped with an Intel Core i7-

13700H processor, 16GB of RAM, and Python version 3/12. 
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The following outlines the performance results of the 

models. 

Table 5. Comparison of results 

Model Accuracy Precision Recall F1 
Score 

CatBoost 0/7708 0/7688 0/7708 0/7519 

Extra Trees 0/7569 0/7636 0/7569 0/7400 

LightGBM 0/7292 0/7182 0/7292 0/7126 

Random 
Forest 0/7222 0/7146 0/7222 0/7085 

Gradient 
Boosting 0/7153 0/7057 0/7153 0/7017 

XGBoost 0/7083 0/6973 0/7083 0/6993 

Support 
Vector 

Machine 
0/7014 0/6895 0/7014 0/6847 

K-Nearest 
Neighbors 0/6667 0/6569 0/6667 0/6531 

Decision 
Tree 0/6319 0/6222 0/6319 0/6252 

AdaBoost 0/5972 0/5961 0/5972 0/5949 

Logistic 
Regression 0/5139 0/5131 0/5139 0/5094 

Naive 
Bayes 0/5347 0/5129 0/5347 0/5083 

 

Evaluation Results of the Machine Learning Models. 

From all the above models, the CatBoost model presented 

the best performance results with an accuracy equal to 

0.7708, precision equal to 0.7688, recall equal to 0.7708 and 

F1-score equal to 0/7519. These results show that CatBoost 

not only predicts accurately, but have a good mean for all 

metrics. This is because of its strong architecture for 

processing categorical data and its automatic 

hyperparameter tuning. Second only to CatBoost, the Extra 

Trees model achieved an accuracy score of 0/7569 and an 

F1-score of 0/7400. Through a series of randomized 

decision trees, this model provided a somewhat good 

performance and outperformed other models, such as 

LightGBM, Random Forest. Similarly, LightGBM also 

performed well but produced an accuracy of 0/7292 and an 

F1-score of 0/7126, highlighting its ability to process 

complex and high-dimensional data. Random Forest and 

Gradient Boosting ranked next, achieving accuracies of 

0/7222 and 0/7153, respectively. The two models 

presented balanced trade-off between all metrics but were 

not able to beat CatBoost and Extra Trees. The XGBoost 

model followed closely, with an accuracy of 0.7083 and an 

F1-score of 0.6993, highlighting the competitive nature of 

Boosting-based algorithms. On the other hand, SVM 

(accuracy = 0/7014) and KNN (accuracy = 0/6667) 

exhibited less accuracy in predicting disease stages and 

hence this concludes their lower efficiency in dealing with 

complex data processing compared to the Boosting models. 

Relative to simpler models like Decision Tree and 

AdaBoost, these models exhibited moderate performance. 

The Decision Tree performed with an accuracy of 0.6319. 

Standard decision trees are underfitting models, and their 

performance is less than ensemble trees (i.e. Random Forest, 

Extra Trees). The AdaBoost model also performed 

relatively weakly, with 0/5972 accuracy. Logistic 

Regression and Naive Bayes performed the worst, 

respectively. As a result of Logistic Regression (accuracy 

of 0/5139) and Naive Bayes (accuracy of 0/5347), we 

could claim that these simple models do not provide the 

ability to process and predict complex, multidimensional 

data effectively in this study. 

 

 
Figure 4. Performance of various machine learning models 

 

In the figure 4, we can see the comparison of various 

machine learning models by accuracy, precision, recall, and 

F1-score. Overall, ensemble learning based models like 

CatBoost, Extra Trees and LightGBM performed the best. 

The outcomes show that advanced models based on 

Boosting and ensemble approaches using decision trees 

excel in performing accurate prediction of disease phases 

whilst preserving an optimal equilibrium among evaluation 

metrics compared with alternative models. 

 

 
Figure 5. ROC curve 

 

Figure 5 shows ROC curves and AUC for PBC prediction. 

The performance of models in separating classes is 

visualized using the ROC curve, whereas the AUC is 

another robust measure of model performance. If we 

observe the graph, it is clear that Extra Trees model gave 

the highest AUC 0/92. The CatBoost and Random Forest 

both gave AUC 0/90. Gradient Boosting, LightGBM, and 

SVM also performed distinctively well, attaining AUC 

values ranging over 0/87 and 0/88. Conversely, simpler 

models like Decision Tree and Naive Bayes had lower 
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performance, with AUC of 0/74 and 0/79, respectively. 

From the results collectively, we see that ensemble-based 

models, specifically Extra Trees and CatBoost perform 

better than simple models in class separation. This shows 

that implementing complex algorithms in highly intricate 

medical problems, like predicting the progression of 

diseases, increases the performance of models significantly. 

5- Discussion and Conclusion 

Results from our study indicate that with the application 

of modern machine learning algorithms, like CatBoost and 

Extra Trees, it is possible to obtain accurate predictions of 

PBC stages. CatBoost was found to be the best of all models 

achieved, having produced an accuracy of 0/7708 and AUC 

of 0/90.)   Extra Trees also performed well in classifying 

complex datasets, reaching an AUC of 0/92. These 

findings underscore the significance of ensemble-based 

methods in achieving superior predictive accuracy 

compared to simpler models . This research represents 

significant advances in machine learning techniques as 

compared to previous studies. A notable limitation in earlier 

studies was the use of unoptimized models with poorly 

defined feature sets.  For example, while Hanif and Khan 

(2022) and Jamadar et al. (2023) employed algorithms such 

as Random Forest and SVM, they did not utilize advanced 

optimization techniques to enhance model performance or 

implement robust feature selection methods.This poor 

optimization restricted the generalizability and accuracy of 

their results. As a result, the present study led to stable 

prediction performance across all metrics by using an 

automated hyperparameter optimization method (Optuna) 

and an advanced feature selection method (Recursive 

Feature Elimination with Cross-Validation). Another key 

difference in prior studies is their inadequate consideration 

of imbalanced datasets. When models are evaluated in such 

manner, it may lead to misleading results because the model 

can easily predict the majority class while performing 

poorly on minority classes. For example, Bhardwaj et al. 

(2024) and Sidana et al. (2022), which did not evaluate 

models properly and did not point out that a better 

evaluation is characterized by the reporting of important 

imbalanced evaluation metrics such as precision, recall, F1-

score, etc. This contrast with this study, which used 

standard performance metrics to give transparent and 

comprehensive evaluation of model quality. SMOTE 

process was applied to supporter model to solve imbalance 

class, while RFECV was used to find out 14 essential 

features to both reduce model complexity and improve 

quality. These developments make this study unique 

compared to previous studies that did not properly resolve 

dataset imbalance or attempted basic feature selection 

methodology. Here, we showcase the possibilities of 

advanced machine learning models and structured 

optimization techniques in predicting medical health 

outcomes. Ensemble methods like CatBoost and Extra 

Trees are better suited for these medical datasets with high-

dimension characteristics due to their superior 

performances compared to simple methods Logistic 

Regression and Naive Bayes. Such findings provide a 

direction for future research using larger and diverse data 

sets having imaging data to create models more accurate 

with clinical relevance. 

Based on the findings of this review, several 

recommendations are made to enhance and direct future 

research. The first improvement could be using more and 

diverse data to provide machine learning models capable of 

getting generalized. The combination of data from multiple 

clinical sources with covariate data available in existing 

datasets could provide more robust results. Secondly, it is 

proposed that some of the more sophisticated preprocessing 

methods such as feature engineering and nonlinear 

transformations might reveal hidden patterns in the data that 

could improve the model's performance. In future works, 

DNN (Deep Neural Networks) or LSTM (Long-Short Term 

Memory) could potentially replace GBDTs with a better 

prediction performance for the disease stages. More 

sophisticated ensemble techniques (hybrid Voting and 

Stacking) are additionally likely to enhance the prediction 

capabilities due to the synergy of the respective standalone 

models. On the clinical side, a more detailed analysis of the 

importance and sensitivity of the model features must 

facilitate the identification of pertinent biomarkers 

associated with the prediction of disease stage; each of the 

findings will assist clinical applications. Finally, validating 

the above machine learning models against clinical data 

from hospitals and clinics would make various algorithms 

appropriate for use as well as more reliable. Initiating these 

efforts may lead to the development of more accurate and 

reliable models of timely diagnostics and improved care of 

patients. 
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