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Abstract

This research used modern machine learning ways to predict the stages of primary biliary cholangitis using data from the
Mayo Clinic trial. The research aims to obtain high prediction accuracy while representing balanced evaluation metrics.
Important techniques include automated hyperparameters optimization with Optuna and Recursive Feature Elimination to
improve model performance. Pre-processing included handling missing values, encoding of categorical features, and
addressing class imbalances using SMOTE. A total of twelve machine learning algorithms are evaluated with ensemble-based
models such as CatBoost and Extra Trees producing much better results. Evaluation metrics take into account all model
predictions, including accuracy, precision, recall, F1 score, and ROC-AUC for performing balanced and interpretative
evaluations of performances critical for imbalanced datasets. This endeavor includes clinical and laboratory information
illustrating the prospect of machine learning in advancing therapeutic diagnosis, emphasizing the rigor and robustness in
evaluation laid groundwork for future research to encompass even more generalizable and robust diagnostic tools.

Keywords: Primary Biliary Cholangitis; Machine Learning; Recursive Feature Elimination; Optuna, Imbalanced Data.

Chronic alcohol consumption leads to advanced forms of
liver damage, which eventually result in cirrhosis and

1- Introduction

Primary Biliary Cholangitis (PBC), formerly known as
primary biliary cirrhosis, is a chronic autoimmune liver
disease. It is characterized by the gradual and progressive
destruction of the liver's small bile ducts, leading to the
accumulation of bile and other toxins within the liver, a
condition known as cholestasis. Over time, this persistent
damage can result in scarring, fibrosis, and ultimately
cirrhosis. Cirrhosis is a late-stage liver disease that occurs
when scar tissue replaces healthy liver tissue. The
underlying pathologies that may cause this disease include
viral hepatitis, chronic alcoholism, and NAFLD (non-
alcoholic fatty liver disease) (Konerman et al., 2019).

DX Shahram Agah
Agah.sh@iums.ac.ir

subsequent liver failure (Topcu et al., 2024). In the primary
stages, the disease is asymptomatic, and awareness is
typically raised only in the advanced stages. Cirrhosis may
lead to liver failure, liver cancer, and, ultimately, death
(Tapper & Parikh, 2023). There is a strong need for the most
accurate and least invasive methods to predict the
progression of cirrhosis, given the critical importance of
diagnosing and managing such diseases optimally.
Although traditional methods, such as liver biopsy, provide
accurate results, these procedures are invasive and may lead
to complications (Wei et al., 2018). Chronic alcohol
consumption is one of the main causes of this disease and,
in the long term, can lead to advanced stages such as
cirrhosis, ultimately culminating in complete liver failure
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(Topcu et al., 2024). Previous studies have established that
cirrhosis of the liver progresses through four stages. The
first stage, Steatosis, is characterized by inflammation of
either the liver or the bile ducts, and immediate treatment at
this juncture can control the disease. The second stage,
Fibrosis, involves the development of scar tissue that cuts
off normal blood flow to the liver and impairs its function;
however, medical treatment can halt the progression of the
disease. In the third stage, Cirrhosis, healthy liver tissue is
replaced by scar tissue, and swelling may occur in the
spleen. Finally, the fourth stage, Liver Failure, is
characterized by complete liver failure. At this stage,
patients transition from normal health to a comatose state
and require emergency treatment by medical professionals
(Wei et al., 2018).

The subtlety of its early symptoms permits the diagnosis
of cirrhosis only at advanced stages; if mismanaged, the
disease can inevitably culminate in liver failure or cancer.
Recent studies have highlighted the significance of early
detection and management. An SEAL screening algorithm
study demonstrated a remarkable 59% higher rate of early
cirrhosis detection compared to routine care, thereby
advocating for the role of structured programs in identifying
asymptomatic cases (Labenz et al., 2022). In addition, top-
down proteomics identified the proteoform signatures in
plasma that correlate with the progression of cirrhosis,
forming the template for a biomarker-driven risk
stratification (Forte et al., 2024). Another paper emphasized
the role of miRNA-gene regulatory axes in monitoring and
diagnosing cirrhosis and hepatocellular carcinoma and
proposed new diagnostic targets (Premnath & Shanthi,
2024). Asymptomatic superior mesenteric vein thrombosis
(SMVT), however, has not been proven to significantly
impact cirrhosis outcomes, unlike the risks posed by portal
thrombosis (PT) (Wang et al., 2022). These collective
findings emphasize the crucial role of early, target-oriented
interventions and the potentially significant role of
additional biomarkers in preventing the progression of
asymptomatic cirrhosis. Prior studies discussed the notable
success of various machine-learning-based approaches like
Random Forest, Gradient Boosting, Ensemble Learning,
and others in increasing the accuracy with which the stages
of disease progression are predicted. For example, the
LivMarX model achieved an accuracy of up to 86% for
predicting different stages of cirrhosis based on a
combination of biomarkers and optimization techniques
(Kamath et al.,, 2024). Other models suggested that
longitudinal models outperformed other cross-sectional
models in accurately detecting disease progression (Hanif
et al., 2022).

Millions live with cirrhosis worldwide, and it remains
a leading cause of death every year. The effects on patients”
quality of life following late diagnosis of cirrhosis can be
dire and place a huge burden on the health sector.
Furthermore, improper management of the disease may lead

to serious complications, such as advanced liver failure,
liver cancer, and other comorbidities (Hanif et al., 2022).
New artificial intelligence and machine-aided processes
enable much finer accuracy in determining the stage of the
disease and are immensely beneficial in reducing
complications, promoting early diagnosis, and improving
patient management. The ability of this technology to offer
a serious advancement in the management of cirrhosis is
most felt in areas where modern imaging methods are
seldom available (Topcu et al., 2024). This research aims to
develop an efficient and accurate model for predicting early
liver cirrhosis by employing advanced machine learning
algorithms. It seeks to improve prediction accuracy by
combining intelligent feature selection and model
optimization approaches to create models that are not only
highly efficient but also practical for implementation in real
clinical settings. The major aim of the study is to devise a
model for prediction of stage of PBC that is accurate,
generalizable, and efficient using advanced techniques of
machine learning. Some cutting-edge work presented
therein involves, but is not restricted to, tuning of model
hyperparameters via advanced optimization methods of
Optuna, feature selection algorithms, such as RFECV to
identify crucial disease progress variables. A further
significant aspect in the study includes the use of rich and
varied data composed of clinical and laboratory data drawn
from credible sources. The evaluation of model
performance metrics such as accuracy, precision, recall, F1-
score, and AUC is performed in a very detailed way so as
to allow transparency in the evaluation of the quality of
predictions. This paper is organized as follows: the first part
introduces the research and its various objectives; the
second part broaches the research background and pinpoints
the weaknesses of previous studies; the third part describes
the research methodology regarding the dataset,
preprocessing techniques and machine learning algorithms
used; the penultimate section conveys all the experimental
results and critically evaluates the performance of various
models; and finally, the last part deliberates and draws its
conclusions in respect of the findings obtained, drawing
comparisons with previous studies, scrutinizing the
implications of the results, providing an overview of the
contributions made, and suggesting future areas of research.
In this study, such a constructive approach enhances the
efforts toward improving the prediction of cirrhotic liver
disease risk while further enhancing the development of Al
in aiding diagnostic medicine.

2- Theoretical Foundations and Research
Background

In very recent times, prognosis and evaluation of liver
diseases have made remarkable advancements. Cirrhosis
often deteriorates into liver failure, requiring transplants in
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many cases, often due to chronic liver insult. Making an
accurate diagnosis of the stage of liver cirrhosis and
tracking the patients' progress remains among the greatest
challenges of medicine. Addressing these difficulties
straightaway impacts treatment strategies and the potency
of medical involvement. In the past years, machine learning
methods have emerged as a contemporary remedy for
prognosticating the diverse phases of liver cirrhosis. These
algorithms identify clinically pertinent traits that describe
singular patient characteristics through exhaustive data
examination. Table 1 briefly summarizes related research
on predicting the stages of liver cirrhosis and contrasts
assorted methods. This table comprises the titles of the
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reports, aims, datasets, machine learning algorithms, and
key outcomes of each analysis. An inspection of this
background reveals that machine learning designs such as
Random Forest, Support Vector Machine, and amalgamated
tactics, exploiting an assortment of datasets and sundry
optimization techniques, have been successfully applied
and have achieved meaningful accuracy in prognosticating
the phases of liver cirrhosis. This data furnishes worthwhile
insights into the strengths and shortcomings of preceding
studies and helps pinpoint existing research gaps.

Table 1. Research background

Authors Article Title Goals Model used Dataset Conclusion
Mgggi?%ei%&gt Veterans’ The longitudinal boosted survival tree
slop ‘o : Cox models model achieved superior concordance
Konerman disease Predict cirrhosis | 3'po0sted- Health (0/774) and AuROC in prediction
et al. Progression prglgressmn mn survival-tree Administrati compared to cross sect'otrl)al models
(2019) among veterans CHC patients urvival- on (72,683 parcd ross-secliona, me >
with hepatitis C model indivi dhals) demonstrating hlgttler reliability in long-
- term forecasts.
virus
Random
Machine Forest, The Random Forest model achieved high
: isti Open-access : g
Learning-Based . Logistic pen accuracy (~98%), demonstrating superior
;{ 0&%12% Analysis and OEfagl;}é rdg[?rc}s)osrils Regression, ci rlglgrs is performance in early cirrhosis predlrc):tion.
: Prediction of AdaBoost, k- dataset Precision, recall, and F1-score were not
Liver Cirrhosis ngiﬁzg%{g?)trs explicitly reported.
. Ensemble
Improving :
: model The ensemble models improved
PIr)églch%?osl?f)f Enhance integrating ) prediction accuracy and generalizability,
Bhardwaj Cirrhosis Usin rediction of Gradient Multisource | making significant advances in reliability
et al. an Optimize dg p cirthosis Boosting, liver disease and forecasting. While specific metrics
(2024) Ensembl o OOTIOSIS Random datasets such as accuracy, precision, and recall
Machine Learning prog Forest, and were not directly report%d, oveéall
Decision improvements were observed.
Approach Trees
Support
Stage Prediction Determine M\gi%ti?lre Dataset with Ri}%ﬁ?lr?hg(ﬁiegsﬁggg :&??ﬁ%fg%%%},e .
Ketal of Liver Cirrhosis stages of liver Random 418 records | achieved through feature engineering and
(2024) Disease using gi trhosis Forest and 20 cross-validation. Precision, recall, and
Machine Learning Gradient attributes F1-score for the Rando;P Fdorest model
Boosting are not specified.
LivMarX: An
e Random : .
QpumpedLov: B O DO 8oy (i
Kamath et Model Usin Stage liver with Genetic e gatas ot The model demonstrated high cost-
Biomarkers for cirrhosis using : effectiveness for accurately staging
al. (2024) . Algorithm of 424 : ‘o ' 2
Interpretable biomarkers and atients cirrhosis in the absence of imaging.
Lwers Cirrhosis GridSearchC p Precision, recall, and Fdl -score were not
tage Vv reported.
Classification )
Developr}lllgnt of
a machine
: Data from
(Elmasine Predicting Liver lfeoz}rréliggnrggicrilel S{%)(Rg? 1,078 The model achieved 93/55% accuracy on
jad and Fibrosis Severity fatt livger using Machine patients the training data and 78/62% on the test
olabpour Using Machine d Y hi g SVM) with referred to data, outperforming six comparable
2034 L Models | . demographic | (SVM) wit Imam R Igori
’ ) carning ModelS | information and | Radial Kernel mam 18eza algorithms.
hematology Hospital
tests
Cirrhosis Disease | Using machine : Data from The proposed model demonstrated high
J;lm(az%azrﬁt Prediction Using learning ]I)nlg%rﬁg patients accuracy in predicting the stages o
: Machine Learning methods to with cirrhosis.
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predict liver learning physiologic
cirrhosis algorithms al
characteristi
cs
associated
with
cirrhosis
Support Random F hieved £
: Liver Cirrhosis Vector Liver ancom orest achieved an accuracy o
Haﬁlllt;%nd Prediction Using Predict liver Machine, Cirrhosis r 03?178Qégseﬁonﬁ;rszt_l\%ireehff%ilétt}{o?gdof
Machine Learning | cirrhosis stages Decision dataset (418 : : 11 pase-wise p
(2022) Approaches Tree. Random records) liver cirrhosis. Precision, recall, and F1-
pp Forest score were not reported.
Artificial
Neural
o Network,
Liver Cirrhosis I:{Sdécgg 1\;[1615 %?)rrlg;m The Artificial Neural Network (ANN)
Sidana et Stage Prediction ci§rh osis in Logistic Data from demonstrated the best performance with
al. (2022) Using Machine atients usin Re r%ssi on patients high accuracy, while the RF+MI feature
: Learning: p machine g Sgu ort with liver selection method showed a slight
Multiclass learning Vgc% or cirrhosis improvement over the standard Random
Classification algorithms Machine , Forest (RF) model.
KNN,
Decision Tree
, Naive Bayes

The studies discussed in Table 1 delineate just some of the
many advances in the use of machine learning algorithms in
predicting the stages of liver cirrhosis. However, one of the
main gaps identified there was the significant delay in
consideration of imbalanced data sets and excessive focus
on a single performance metric, such as accuracy, for model
evaluation. The studies by Bhardwaj et ub. and Sidana et
ub., while dealing with random forest or SVM, do not
appease the challenge of imbalanced dataset(s), and they
wholly rely on a single evaluation criterion, such as
accuracy, thus not completely evaluating models one
through other proper performance criteria such as Precision,
Recall, and F1 Score. Such excessive focus on accuracy
alone results in a very skewed perspective on their
prediction capabilities, since such models often guarantee
high-performance measures yet produce very poor results
on overweighted classes. Another very important limitation
discussed in Table 1 is their use of unoptimized models and
poorly defined feature sets. For example, models like
Random Forests and SVM have been applied, ill as the
studies by Hanif and Khan, and Jamadar et al., did not apply
state-of-the-art optimization techniques that would
potentially improve model performance, structure feature
selections, and reduce the framework of their studies, thus
precluding meaningful generalization and accuracy of their
interpretations. In the contrary, the current paper uses a
rather spirited approach by using advanced machine
learning algorithms guaranteeing accuracy in predictions
and correcting the data imbalance, with the models being
subjected to various acute evaluations by areas such as
accuracy, precision, recall, F1 score, and ROC-AUC, which
is possible to ascertain an appropriate and transparent
evaluation of the models' performances addressing
fundamental gaps in prior research and leading the
investigation towards more reliable and generalized results.

Moreover, a large number of studies will focus only on
one model, with limited analysis of the effects of
combinations of algorithms or full comparisons between the
efficiency of techniques. The novel methodology presented
in this paper serves as an ensemble framework to enrich
predictive technology, apply advanced feature selection
techniques, optimize model computational costs, and
improve the implementation of models openly in the real
world, all of which are overly venturous in previous studies,
such as the LivMarX (Kamath et al., 2024). Finally, this
research makes a significant contribution to advancing
existing methods by focusing on early-stage liver cirrhosis
prediction, presenting a comprehensive optimization
framework, thoroughly analyzing model performance
indicators, and utilizing diverse and extensive datasets.
Through the articulation of emerging and current research
gaps, as well as the modest input of novelties, this will
provide a further route for an exhaustive yet accurate
approach to be developed in this area.

3- Research Method

The goal of this study was to use machine learning
algorithms to predict the stage of primary biliary cholangitis
(PBC) in patients. The main objective is to use the machine
learning model to accurately predict the stage of the disease
using medical and laboratory data. The dataset used in this
study was derived from a clinical investigation of PBC
patients conducted at the Mayo Clinic and supplemented by
apublicly available dataset released on the Kaggle platform,
which included numerous original features. After data
analysis and feature selection, key variables were identified
using recursive feature elimination with cross-validation
(Priyatno Widiyaningtyas, 2024). During the preprocessing
stages, correlation analysis was performed, and the SMOTE
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method was applied to address class imbalance. Additional
steps included handling missing values, and encoding
categorical features (Khan & Hoque, 2020). Twelve
machine learning algorithms were evaluated for modeling
purposes: Decision Tree, Random Forest, Extra Tree,
Gradient Boosting, AdaBoost, XGBoost, LightGBM,
Logistic Regression, Support Vector Machine (SVM), k-
Nearest Neighbors (KNN), Naive Bayes, and CatBoost. The
Optuna optimization framework was used to fine-tune the
hyperparameters of all models in such a way as to provide
the best performance (Jeganathan et al., 2024). The
performance of the models was assessed against four main
metrics: accuracy, precision, recall, and F1-score (Fazel &
Foing, 2024). In addition, the ROC curve and AUC values
are used for more details regarding the model performance.
All other steps of this study were done using the Python
programming language with its corresponding libraries.

3-1- Data Source

The data set used in this study was extracted from the
Cirrhosis Prediction Dataset, which is publicly available on
the Kaggle platform. It includes information of patients
with PBC, collected over ten years in a clinical study carried
out at the Mayo Clinic. In this study, 420 patients diagnosed
with PBC were identified as eligible to participate in a
randomized, controlled trial of the drug D-penicillamine. Of
these, 312 patients obtained consent to participate in the
randomized clinical trial, their records had a minimal loss.
There were also 112 other eligible patients who were not
trial participants, who did allow for basic information and
survival follow-ups to be recorded; 6 out of these 112
patients were lost from follow-up soon after diagnosis, so
data on 106 remained. Thus, the total number of patients
entered in the dataset is 418 (Fedesoriano,2021).

3-2- Dataset Features
The data used in this study include comprehensive
information from patients with PBC. The dataset initially

comprised 20 features, which are presented in Table 2.

Table 2. Variables Description

Sex Gender of the patient Catcea ori M(élg’[g;?g’) F
Categori
Ascites Presence of ascites ca N Yggj Y
(Binary)
Hepatome Presence of Catcea orl N §No), Y
galy hepatomegaly (Binary) Yes)
Categori
Spiders Presence of spiders ca N §$gs)j Y
(Binary)

Edema Presence of edema Catcea on N,S, Y
Bilirubin Serum bilirubin Numeric mg/dl
Cho(l)ester Serum cholesterol Numeric mg/dl
Albumin Serum albumin Numeric om/dl

Copper Urine copper Numeric ug/day
Alk Phos | Alkaline phosphatase | Numeric U/liter

SGOT (serum
SGOT glutamic-oxaloacetic | Numeric U/ml
] ] transaminase)
1Ir 1%16:};cer ! Serum triglycerides Numeric mg/dl
Platelets Platelet count Numeric %el{/%%bc
Progliléom Prothrombin time Numeric Seconds (s)
. - Categori
Stage Hlstolo%licses;aslge of the ca 1,2,3,4
(Ordinal)

Feature

Name Description Type Values/Unit
Unique identifier for | Categori .
ID each patient ca Numeric
Number of days
between registration
N_Days and the earlier of Numeric Days
death, transplantation,
or study analysis time
c 8 (ansored)(i
. t i L
Status Status of the patient a CZ ort dug tgnl?\?g
tx), D (Death)
. D-
Type of dru Categori - -
Drug i penicillamine,
administere ca Placebo
Age Age of the patient Numeric Days

In this study, the target variable was defined as Stage,
representing a disease stage that ranges from 1 to 4. The aim
is to model the Stage variable in relationship to the other
features in the data set. The ID column was ruled out of the
analysis simply because it works as a patient identifier and
provides no substantial contribution to prediction.

3-3- Data Cleaning

The cohort included 424 patients with PBC data collected
as part of a Mayo Clinic clinical trial. Of those, the final
analysis was based on 312 samples. In the first step of
cleaning the data, the ID column, which was judged not
relevant to the target variable, was deleted as it would not
contribute to prediction. In addition, missing values in
features with limited incompleteness were substituted with
the mean value for less impact on the modeling. Out of the
424 data points, 112 pertained to patients who did not
participate in the randomized tests and had incomplete
information. Out of these, six samples were excluded
shortly after data collection due to critical missing
information. According to strict sampling standards, the
information from the remaining 112 non-participating
patients had to be rejected because of poor quality. This left
312 samples that were complete and of good quality for
analysis. Data cleaning allowed such preparation,
producing better quality data for the predictions.

3-4- Correlation Analysis

Correlation analysis was conducted to identify linear
relationships between variables in the dataset. The primary
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purpose of this analysis was to determine variables with a
significant impact on the target variable and to eliminate
those with redundant or weak associations with other
variables. In this study, a correlation matrix, visualized
using a heatmap, was employed to illustrate the
relationships between variables.

Correlation Heatmap of All Features
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Figure 1. Correlation Heatmap

From the correlation analysis, no variables exhibited high
correlation with other variables (greater than 0/8 or less than
-0/8). The highest positive correlation found is between the
Copper and Bilirubin (about 0/46), indicating no removal of
features for redundancy because of excessive correlation.
Furthermore, it is found that the independent variable
(Stage) correlates positively with Hepatomegaly (about
0/47), thus this variable is important in predicting the stage
of the disease. In this regard, all the features were retained
for modeling since they provide independent and
informative information. Such independence can be
expected to add strength to model value.

3-5- Feature Selection

Therefore, feature selection becomes a big step for
preprocessing data to enhance the performances of machine
learning classifiers and reduce computational complexity.
The dataset initially had many primary features, but some
of them had bad correlations with the target variable or
brought more noisy and redundant information. To extract
important features, RFECV was used. RFECV is a very
efficient recursive feature elimination mechanism
(Thambawita et al., 2020) that starts by training the model
with all features available, estimates the importance of each
individual feature in terms of importance score such as
those derived from feature importance or model coefficients,
and then removes one feature at a time, retraining the model
at each iteration. The process continues until all possible
combinations of features have been tried. It implements
cross-validation to find the best set of features. The other
applications of cross-validation are to make the dataset as

many segments as needed, then evaluate the model
performances for each feature combination. Finally,
RFECV was used to optimize feature selection based on
model performance during cross-validation. In addition to
evaluating model performance, this technique effectively
eliminates irrelevant features, selecting the minimum
number of features necessary to make accurate predictions.
In this study, a total of 14 features were identified as the
most informative from the initial set: N_days, status, drug,
age, bilirubin, cholesterol, albumin, copper, alk phos, sgot,
triglycerides, platelets, and prothrombin. These selected
features were found to significantly contribute to the
prediction of disease stages. The removal of non-essential
features reduced model complexity while improving model
estimation accuracy and computational efficiency. Figure 2
illustrates the significance of these features in this study.

Feature Importance (Random Forest)

N_Days
Prothrombin
Platelets
Abumin
Al_Phos
Chalesterol
Copper

sGoT

Age
Trygliceriges
Biirubin
Hepatomegaly
status

orug

Spiders
Edema

Sex

Ascites

000 002 004 008 008 olo
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Figure 2. Feature Importance
3-6- Data Normalization

The MinMaxScaler is used to scale data for SVM
(Support Vector Machine) and KNN (K-Nearest Neighbors)
algorithms (Ali, 2022). This choice is made because these
algorithms are generally sensitive to feature scaling. For
SVM algorithms, to determine the separating hyperplane,
the feature values are being used; whereas KNN uses
feature values to compute distances amongst samples. Thus,
features in varied scales could significantly affect the
models' performance. The MinMaxScaler scales every
feature to a fixed-range value, usually ranging between 0
and 1, on an equivalent scale. The formula for
MinMaxScaler is:

x_scaled=(x-x_min)/(x_max-x_min ) (1

In this formula:

xscaled is the normalized (scaled) feature value.

x is the original value of the feature.

xmin is the smallest value of the feature in the dataset.
xmax is the largest value of the feature in the dataset.

3-7- Data Balance
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One of the major challenges outlined in this study was the
distribution of samples into the different classes with
unequal frequency. From the data distribution, it has been
noted that there were only 16 samples at Stage I, while there
were 97 samples at Stage I, 109 samples at Stage III, and
more than to bring the order at the top. This imbalance
causes the machine learning algorithms to converge toward
the large classes, thus reducing any learning focused on the
smaller classes, like stage 1. This will probably have the
effect that the model identifies the classes having more
samples correctly, while disregarding or misclassifying the
classes that have very few samples.

Distribution of Stages in the Target Variable

80

Count

60

40

1 2 3 a
stage

Figure 3. Distribution of Stages

The SMOTE method was used to increase the number of
samples belonging to the minority class in the data set to
remove imbalance namely synthetic minority over-
sampling technique. It constructs synthetic instances and
follows the following steps:
1. A random sample from the minority class is chosen as
a reference sample.

2. Using the KNN algorithm (usually with K = 5) several
nearest neighbors from the same minority class, are
identified.

3.SMOTE generates new synthetic examples in feature
space. This is achieved by selecting at random one of
the nearest neighbors and by creating a new sample at a
point in-between the reference sample and the chosen
neighbor.
The formula used to compute the interpolation
between the two samples is expressed as:

X new=X sample+gapx(X neighbor-X sample) 2)

Here, Xsample stands for the reference sample,
Xneighbor for one of the nearest neighbors, and Gap for
some random number in the range (0, 1). The dataset in this
research was divided into two parts: training 70% of the
data and using 30% for the encoding models' performance
evaluation.

3-8- Machine Learning Algorithms

For predicting the stage of PBC in this study twelve
different machine learning algorithms were used. These
algorithms were used to identify the best-performing model
that would predict the disease stages with the highest
accuracy. The hyperparameters of each algorithm were
optimized using the Optuna tool. Optuna is a dynamically
designed hyperparameter optimization tool to automatically
find the best values for model parameters (Akiba et al.,
2019). Like others, efficiently finds the best hyperparameter
configurations with advanced search techniques like Tree-
structured Parzen Estimator (TPE) and Random Search. By
running several tests and comparing how models perform,
this tool minimizes the time to gain optimality. The table
below provides the list of 12 machine learning algorithms,
operational mechanisms, and the optimized values achieved
using Optuna:

Table 3. Machine learning algorithms used and optimized hyperparameter values

Algorithm

Method

Optimal hyperparameters

Decision Tree

The algorithm applies successive splitting of the data into either two or
more subsets. At every stage, one feature which works best for data
splitting is selected according to certain criteria, some of which are Gini
Index and Entropy(Mienye & Jere, 2024).

max_depth=32,
min_samples_split=8

Random
Forest

This algorithm, using a combination of multiple decision trees to reduce
data variance, trains each tree on a random subset of the data and obtains
its final output by following the majority voting rule in the case of
classification, or averaging in thg Oczagf of regression (Schonlau & Zou,

n_estimators=331,
max_depth=8

Extra Trees

It operates similarly to Random Forest but uses random values instead of
optimal values for node splitting. This approach reduces variance and
results in faster model training (Geurts et al., 2006).

n_estimators=373,
max_depth=14

Gradient
Boosting

2017).

To build weak models (decision trees) one after the other, correcting the
mistakes done by the previous model. The aim is to gradually minimize
model errors and boost performance with each step (Biau & Cadre,

n_estimators=191,
learning_rate=0/02662
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This algorithm iteratively trains weak models (small decision trees) and : _
AdaBoost assigns greater weight to misclassified samples at each step to create a 1 e;lrﬁ?rsltlmr%tt%rjo /15?126’8 4
stronger final model (Ding et al., 2022). g_
An optimized version of Gradient Boosting that reconciles the conflicts
between solving the execution speed and the execution accuracy by n estimators=162
XGBoost analyzing operations in parallel and using more efficient algorithms. This leamning rate=0/54684
optimization method can address large amounts of information and g_
diversity (Bentéjac et al., 2020).
An optimized Boosting algorithm that grows leaves instead of levels. : _
LichtGBM This method is suitable for large-scale, high-dimensional data and Irlmenslmfelzs)ersszglzg ’
g provides faster performance cg:r; argglt%other Boosting algorithms (Ke learning_rate=0/1 247
A fast and efficient Boosting algorithm optimized for categorical data, ) )
CatBoost which automatically encodes categorical values. This method requires iterations=435, depth=9,
fewer parameter adjustments compared to other Boosting algorithms learning_rate=0/2872
(Dorogush et al., 2018)
o A method for data classification using a linear model computes the
Logistic probability of the data belonging to different classes using the logistic C=0/1228
Regression (sigmoid) function. It is well suited to low-dimensional datasets
(Starbuck, 2023).
Support This algorithm finds an optimal hyperplane to separate classes in the _ _
Vector _ feature space. Using the RBF kernel, it maps data to a higher- C=459/ %Zc’rﬁggﬁ?f 0/0573,
Machine dimensional space, enabling nonlinear separation (Shmilovici, 2023).
The prediction takes into account the distance of the other instances from
K-Nearest the input data. The majority class among the k nearest nel%hbors is 1 neighbors=3
Neighbors considered for predicting the class of the novel sample (Halder et al., _neig
2024).
] A probabilistic model based on Bayes' theorem. This algorithm assumes Lacks suitable
Naive Bayes complete independence between features and is well-suited for low- hyperparameters for
dimensional and categorical data (Pajila et al., 2023). optimization.

To evaluate the performance of machine learning models
in this study, five key metrics were used: accuracy,
precision, recall, F1-score, and the area under the receiver
operating characteristic curve (ROC-AUC). These metrics
are defined based on the concepts of True Positive (TP) and
True Negative (TN) for correct predictions, and False
Positive (FP) and False Negative (FN) for incorrect
predictions.

Table 4. Evaluation indicators for machine learning models

index definition Formula

The ratio of correct

Accurac | predictions (both positive
y and negative) to the total

number of samples.

(TP+TN)/(TP+FP+FN+
TN)

The ratio of correctly
predicted instances for a
class to all instances
predicted as that class.

Precision TP/(TP+FP)

The ratio of correctly
predicted instances for a
class to all actual
instances of that class.

Recall TP/(TP+FN)

The harmonic mean of
Precision and Recall,
balancing the trade-off
between the two metrics.

(2xPrecisionxRecall)/(P

F1
Score recision+Recall)

The ROC-AUC metric measures the performance of a
classification model at all threshold levels and illustrates

how well the model is at distinguishing between classes;
thus, it shows how well the model can predict the different
stages of the disease. The ROC curve is created by plotting
the value of false positive rate (FPR) vs true positive rate
(TPR) for different thresholds and area under this curve is
known as the AUC. AUC can be understood as the higher
the better: The closer the AUC value is to 1, the better. In
order to test the generalizability of the model and verify that
it performed successfully regardless of the dataset with 5-
Fold Cross-Validation was performed. In this method, the
data set is split into five equal parts. At each iteration, one
of its sections is considered as test data, while the other four
sections are used as training data. This is done five times to
guarantee that each batch is tested once. Finally, the overall
performance of the model is reported as the mean values of
all the evaluation metrics across all iterations.

4- Results

In this section, the results of the machine learning models
are presented and analyzed. The Python programming
language was utilized for this study, and all models were
executed on a system equipped with an Intel Core i7-
13700H processor, 16GB of RAM, and Python version 3/12.
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The following outlines the performance results of the
models.

Table 5. Comparison of results

Model Accuracy | Precision | Recall Sfolr e
CatBoost 0/7708 0/7688 0/7708 | 0/7519
Extra Trees 0/7569 0/7636 0/7569 | 0/7400
LightGBM 0/7292 0/7182 0/7292 | 0/7126
Random
Forest 0/7222 0/7146 0/7222 | 0/7085
Gradient
Boosting 0/7153 0/7057 0/7153 | 0/7017
XGBoost 0/7083 0/6973 0/7083 | 0/6993
Support
Vector 0/7014 0/6895 0/7014 | 0/6847
Machine
K-Nearest
Neighbors 0/6667 0/6569 0/6667 | 0/6531
De{;g?“ 0/6319 0/6222 | 0/6319 | 0/6252
AdaBoost 0/5972 0/5961 0/5972 | 0/5949
Logistic
Repression 0/5139 0/5131 0/5139 | 0/5094
Naive
Bayes 0/5347 0/5129 0/5347 | 0/5083

Evaluation Results of the Machine Learning Models.
From all the above models, the CatBoost model presented
the best performance results with an accuracy equal to
0.7708, precision equal to 0.7688, recall equal to 0.7708 and
F1-score equal to 0/7519. These results show that CatBoost
not only predicts accurately, but have a good mean for all
metrics. This is because of its strong architecture for
processing  categorical data and its  automatic
hyperparameter tuning. Second only to CatBoost, the Extra
Trees model achieved an accuracy score of 0/7569 and an
Fl-score of 0/7400. Through a series of randomized
decision trees, this model provided a somewhat good
performance and outperformed other models, such as
LightGBM, Random Forest. Similarly, LightGBM also
performed well but produced an accuracy of 0/7292 and an
Fl-score of 0/7126, highlighting its ability to process
complex and high-dimensional data. Random Forest and
Gradient Boosting ranked next, achieving accuracies of
0/7222 and 0/7153, respectively. The two models
presented balanced trade-off between all metrics but were
not able to beat CatBoost and Extra Trees. The XGBoost
model followed closely, with an accuracy of 0.7083 and an
F1-score of 0.6993, highlighting the competitive nature of
Boosting-based algorithms. On the other hand, SVM
(accuracy = 0/7014) and KNN (accuracy = 0/6667)
exhibited less accuracy in predicting disease stages and
hence this concludes their lower efficiency in dealing with
complex data processing compared to the Boosting models.
Relative to simpler models like Decision Tree and
AdaBoost, these models exhibited moderate performance.
The Decision Tree performed with an accuracy of 0.6319.

Standard decision trees are underfitting models, and their
performance is less than ensemble trees (i.e. Random Forest,
Extra Trees). The AdaBoost model also performed
relatively weakly, with 0/5972 accuracy. Logistic
Regression and Naive Bayes performed the worst,
respectively. As a result of Logistic Regression (accuracy
of 0/5139) and Naive Bayes (accuracy of 0/5347), we
could claim that these simple models do not provide the
ability to process and predict complex, multidimensional
data effectively in this study.

Compariscn of MadelPerformance

Figure 4. Performance of various machine learning models

In the figure 4, we can see the comparison of various
machine learning models by accuracy, precision, recall, and
Fl-score. Overall, ensemble learning based models like
CatBoost, Extra Trees and LightGBM performed the best.
The outcomes show that advanced models based on
Boosting and ensemble approaches using decision trees
excel in performing accurate prediction of disease phases
whilst preserving an optimal equilibrium among evaluation
metrics compared with alternative models.

True Pestve Rate

Figure 5. ROC curve

Figure 5 shows ROC curves and AUC for PBC prediction.
The performance of models in separating classes is
visualized using the ROC curve, whereas the AUC is
another robust measure of model performance. If we
observe the graph, it is clear that Extra Trees model gave
the highest AUC 0/92. The CatBoost and Random Forest
both gave AUC 0/90. Gradient Boosting, LightGBM, and
SVM also performed distinctively well, attaining AUC
values ranging over 0/87 and 0/88. Conversely, simpler
models like Decision Tree and Naive Bayes had lower
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performance, with AUC of 0/74 and 0/79, respectively.
From the results collectively, we see that ensemble-based
models, specifically Extra Trees and CatBoost perform
better than simple models in class separation. This shows
that implementing complex algorithms in highly intricate
medical problems, like predicting the progression of
diseases, increases the performance of models significantly.

5- Discussion and Conclusion

Results from our study indicate that with the application
of modern machine learning algorithms, like CatBoost and
Extra Trees, it is possible to obtain accurate predictions of
PBC stages. CatBoost was found to be the best of all models
achieved, having produced an accuracy of 0/7708 and AUC
of 0/90.) Extra Trees also performed well in classifying
complex datasets, reaching an AUC of 0/92. These
findings underscore the significance of ensemble-based
methods in achieving superior predictive accuracy
compared to simpler models . This research represents
significant advances in machine learning techniques as
compared to previous studies. A notable limitation in earlier
studies was the use of unoptimized models with poorly
defined feature sets. For example, while Hanif and Khan
(2022) and Jamadar et al. (2023) employed algorithms such
as Random Forest and SVM, they did not utilize advanced
optimization techniques to enhance model performance or
implement robust feature selection methods.This poor
optimization restricted the generalizability and accuracy of
their results. As a result, the present study led to stable
prediction performance across all metrics by using an
automated hyperparameter optimization method (Optuna)
and an advanced feature selection method (Recursive
Feature Elimination with Cross-Validation). Another key
difference in prior studies is their inadequate consideration
of imbalanced datasets. When models are evaluated in such
manner, it may lead to misleading results because the model
can easily predict the majority class while performing
poorly on minority classes. For example, Bhardwaj et al.
(2024) and Sidana et al. (2022), which did not evaluate
models properly and did not point out that a better
evaluation is characterized by the reporting of important
imbalanced evaluation metrics such as precision, recall, F1-
score, etc. This contrast with this study, which used
standard performance metrics to give transparent and
comprehensive evaluation of model quality. SMOTE
process was applied to supporter model to solve imbalance
class, while RFECV was used to find out 14 essential
features to both reduce model complexity and improve
quality. These developments make this study unique
compared to previous studies that did not properly resolve
dataset imbalance or attempted basic feature selection
methodology. Here, we showcase the possibilities of
advanced machine learning models and structured

optimization techniques in predicting medical health
outcomes. Ensemble methods like CatBoost and Extra
Trees are better suited for these medical datasets with high-
dimension characteristics due to their superior
performances compared to simple methods Logistic
Regression and Naive Bayes. Such findings provide a
direction for future research using larger and diverse data
sets having imaging data to create models more accurate
with clinical relevance.

Based on the findings of this review, several
recommendations are made to enhance and direct future
research. The first improvement could be using more and
diverse data to provide machine learning models capable of
getting generalized. The combination of data from multiple
clinical sources with covariate data available in existing
datasets could provide more robust results. Secondly, it is
proposed that some of the more sophisticated preprocessing
methods such as feature engineering and nonlinear
transformations might reveal hidden patterns in the data that
could improve the model's performance. In future works,
DNN (Deep Neural Networks) or LSTM (Long-Short Term
Memory) could potentially replace GBDTs with a better
prediction performance for the disease stages. More
sophisticated ensemble techniques (hybrid Voting and
Stacking) are additionally likely to enhance the prediction
capabilities due to the synergy of the respective standalone
models. On the clinical side, a more detailed analysis of the
importance and sensitivity of the model features must
facilitate the identification of pertinent biomarkers
associated with the prediction of disease stage; each of the
findings will assist clinical applications. Finally, validating
the above machine learning models against clinical data
from hospitals and clinics would make various algorithms
appropriate for use as well as more reliable. Initiating these
efforts may lead to the development of more accurate and
reliable models of timely diagnostics and improved care of
patients.
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