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Abstract

increasing complexity and volume of threats being created and targeted at cybersecurity for the IoTs necessitate the
deployment of powerful IDSs. This paper offers an innovative intrusion detection system for IoTs networks based on deep
learning. The new IDS employs the Long Short-Term Memory and Gated Recurrent Unit models’ strengths and an
Attention Mechanism. First, the new IDS seeks to enhance the model’s ability to determine critical features in a vast
amount of data streams and hence improve the ability to find potential cyber threats with high accuracy. The
methodological framework used in a simulation and practical experiment setting was intended to recognize the unique
nature of IoTs situations. therefore, used a hybrid algorithm optimization strategy, namely Differential Evolution and
Harmony Search, to optimize the model due to the extensive hyperparameter space to get the best performance results. The
results obtained superior accuracy, precision, recall, and F1 measures reaching 99.87 percent, 99.84 percent, 99.85 percent,
and 99.85 percent is better than the performance measures achieved by existing models. Therefore, a deep learning-based
hybrid IDS confirmed the research hypothesis that this could provide the necessary and effective cybersecurity for the loTs.
It is vital to note that this paper has contributed to the research topic by showing the potential of advanced neural
architectures and strategic optimization tools to address the massive and sophisticated IoTs cybersecurity issues. Future
research will be addressing whether these models can be applied in more IoTs settings and whether their real-time
efficiency can be improved.

Keywords: Intrusion Detection System in Internet of Things; Attention Mechanism in Deep Learning algorithm;
Differential Evolution; Harmony Search.

development of deep learning based systems for IoT
security is still quite challenging because of the significant
computational constraints and the real-time processing
constraints of IoT devices, as well as the adaptive
requirements for resource-constrained environments,
where traditional DL-based approaches are commonly
known to be computationally prohibitive [1][2].

Identification of the Gap: Intrusion detection solutions

1- Introduction

Security has become an issue of growing concern
especially in Internet of Things (IoT) where the
deployment of IoT networks raised new security
challenges, and traditional intrusion detection systems are

no longer enough, to protect dynamic and heterogeneous
[oT networks. Modern cyber threats are also more
advanced, and require more than traditional signature-
based and anomaly-based methods, which typically have
high false positives and are limited in threat coverage.
With fast development of deep learning and Al, the
automatic learning and behavior pattern identification by
use of deep leaning and AI become the promising
solutions for securing IoT intrusion detection. The
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face some limitations to work efficiently in terms of the
unique IoT challenges such as device diversity, limited
resources, and dynamic topologies. The current distance
between traditional IDS functionality and the detection
needs of advanced threats are especially evident in deep
learning used for IoT systems [3].

It includes but is not limited to described below: lack of
labeled datasets specifically targeting the complexity of
ToT network traffic, the computation complexity of deep
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learning, lack of suitable models that adapt to the
complexity of the IoT environment and the variance
produced by each of the more than 20 billion devices
connected worldwide. Additionally, there is a considerable
discrepancy in leveraging DL and Al in practical models.
Whereas a growing portion of the literature focuses on
developing theoretical models and algorithms, few studies
focus on combining these proposals with the IoT domain.
This entails a lack of validation schemas considering the
flow of energy, computation capabilities, and the real-time
need to process requests and requirements in [oT[3], [4].
Research Question or Hypothesis: Our research is
prompted by the identified gaps in the adaptation and
optimization of deep learning and artificial intelligence
algorithms for integration into the Internet of Things
intrusion detection systems. Thus, the primary question of
our investigation is as follows:

Research Question: “How can deep learning and artificial
intelligence algorithms be efficiently adopted and
optimized in IoT intrusion detection patters to improve the
general level of protection from sophisticated attackers,
while addressing the concerns associated with the limited
resources, energy efficiency and dynamical topology of
Internet of Things components? ”. The research question
analyzes the primary areas of concern in the adaptation of
DL and AI technologies, as well as the possible ways to
mitigate  them. The implication suggests the
comprehensive understanding of the application and
examination of the mentioned technology both in theory
and in practice, which is the central objective and
contribution of our study. Based on the research
hypotheses, the notion of the hypothesis shaping our study
is as follows: Hypothesis: “Designing and integrating
customized solutions of deep learning and artificial
intelligence to the existing intrusion detection systems by
the means of optimization for the critical requirements and
constrains of Internet of Things devices can significantly
enhance the quality and effectiveness of the protocols
through the detection rate, false positive rate and resource
effectiveness metrics” . The hypothesis builds the rationale
for the integration of the stated technologies as the
enhancement of conventional IDS for powerful systems is
inapt for the IoT era. Therefore, our study’s objective is to
bridge the identified gap and shape the comprehensive
image of the situation.

During the course of investigating this research question
we conduct a detailed study in to the current condition of
IDS in IoT, possible potential and constraints faced by DL
and Al technologies here, and formulate novel
methodologies that can mitigate these problems. These are
provided in a subsequent section listing out the specific
objectives or aims of this study, why it is significant to the
broader field on cybersecurity, and finally an overview of
what can be found throughout this article.

Objectives of current study: The purpose of this study is to
fulfill an urgent requirement for enhanced IDS systems in
the area of IoT via deep learning and Al. In more specific
terms, the study will focus on meeting these main
objectives: Addressing the current challenges of IoT
security, such as deploying lightweight detection
mechanisms, by designing effective yet computationally
efficient deep learning models, effectively trading
detection accuracy for the limited computational
capabilities of IoT environments and focusing on creating
models with minimal operational power requirements
while maximizing the model detection rate. Optimized Al
and DL algorithms for IoT applications: Alongside this
examination of the challenges, this study will integrate an
approach to designing Al and DL algorithms that are
specifically geared towards implementation with IoT use.
These breakthrough models will facilitate the widespread
and cost-effective use of Al and DL to identify,
characterize, attribute and assess all forms of cyber-threat
with far less reliance on extraordinary computational
power (power) For this purpose and to guarantee that the
above is effective in real IoT scenarios, one of the main
aims of your study should be ensure that developed
solutions are practical useful. This is why the experimental
design will investigate under these testing conditions to
enable a comprehensive test in real [oT deployments.

All the above goals were achieved in this study; it
contributes a lot to IoT security area by producing tough,
fast, reliable IDS solutions with current improvements on
Al and DL. We believe our research could have game-
changing impact on the security and safety of IoT networks
so that we might one day see all connected devices safely
and securely enjoy a level of user-setting performance
expectations known to be achieved in practice.

Significance of the Study: The significance of this study
on leveraging deep learning and artificial intelligence for
IDS in IoT ecosystems cannot be ignored. It is of great
importance and thus benefits all interest groups in
academia, industry, and the community, generally in
eliminating the existing security issues with the ever-
increasing number of these devices. To the best of our
knowledge, this study increases the added value in terms
of the security of IoT frameworks using enhanced deep
learning and Al algorithms that are capable of responding
to current security threats, combined with the protection of
unauthorized break-ins, data integrity and confidentiality.
Bridging theoretical AI and DL models with its practical
application: another critical aspect and contribution of this
research is its ability to close the existing gap between the
actual utilization of deep learning and artificial intelligence
in IoT security and the theoretical models. It involves
careful analysis of the application of the algorithm in real-
world IOT and new findings in these algorithms’
challenges and progress in deployment7. Boosting the
adoption of the Internet of Things: in the healthcare
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industry, smart city, industrial automation, and other
sectors, the concern of system security has been a Major
threat to the successful implementation of the IoT systems.
This research benefits hugely by ensuring the successful
implementation of the IoT services with improved
confidence of success in utilization of these systems to
their full potential. Contributing to the discussion and
informed sources: this study thus makes a significant
contribution to the discussion regarding IoT security,
focusing on comparing the security challenges of IDS in
IoT ecosystems and suggesting a pathway for overcoming
the challenges. Being research that has led to findings, it is
a valuable reference and reference material in writing and
in the preparation of educational materials. Informing
policy and legal framework: at the end of the research
results, the finding will significantly help in the process of
development of the policy and the other set of legal
frameworks through evidence is showing how efficient this
new approach in the deep learning algorithm is showing a
high performance of Intrusion detection systems.

Overview of the Structure: This paper is organized in such
a way that the deep learning and artificial intelligence
applications in IoT IDS are discussed, in a systematic
manner, step-by-step as it follows the proposed framework
for the readers better understanding. The following are the
structure of this article:

Introduction: Provides the reader with a background of the
study, the research gaps the study seeks to fill, the study’s
research question/hypothesis and the study’s objectives.
This part of the article also explains the significance of the
study to the reader and therefore helps them develop a
foundation on the relevance of the study.

Literature review: This section of the article analyses a
broad range of studies and other related conceptual models
in line with the academic performance of an intrusion
detection system in an Internet of Things setup. It offers a
critical analysis of the limitations and strengths of previous
studies and helps readers identify where their scientific
approach aligns or diverts from previous scholars’ works.
Methodology: The section outlines the study’s design and
how the research question shall be answered, including a
detailed explanation of the artificial intelligence and deep
learning algorithms selected for the study. The section also
includes data collection and preprocessing methods, as
well as the evaluation metrics the researcher used to
evaluate their solution. This part of the article helps the
reader understand how the study was implemented.
Results: In this section, the results of the study are
presented. Namely, the performance of the developed DL
and Al-based IDS in various IoT cases was analyzed, and
the results of the statistical analysis, performance metrics,
and comparison are provided. As a result, the possibilities
of using the developed DL and Al-based IDS in IoT are
drawn based on the data obtained.

Discussion: This section discusses the meaning of the
results. This part covers the elucidation of research
findings for IoT professionals and the implications for
theory and practice in the field of cybersecurity and
artificial intelligence. A potential limitation of the study is
also considered. Thus, the obtained results will be
analyzed to obtain new data and directions for research.
Conclusion: This section concludes the study, briefly
restating its essential findings and reaffirming the topic’s
relevance. Also, the contributions to knowledge and
practice from a growing area of research on IoT may be
identified, and ideas for future studies will be suggested.
References: This part includes all the research sources that
were mentioned in the text and is necessary for the
academic correctness of the article.

2- Literature Review

The role of integrating deep learning and artificial
intelligence technology into IDS of the IoT is the most
critical frontier of this research on cybersecurity. With the
continuous development of the IoT, more devices are
interconnected. It poses numerous distinctive challenges
but also opportunities to protect the networked system. In
particular, IDS is vital for identifying unauthorized access
and anomalies signaled potential cybersecurity risks.
However, the traditional detection model is far from
efficient in an ecosystem as complex and dynamic as the
IoT. It was the introduction of DL and Al that significantly
improved the technology and its efficacy in terms of
detecting, analyzing, and responding to information
security breaches. Therefore, this section was intended to
justify that the theme of researching innovative
technologies on strengthening the IDS of the IoT to the
broader research in the field of cybersecurity[5], [6].
State-of-the-art deep learning- based IoT intrusion
detection shows remarkable advances in responding to the
latest cybersecurity threats. Recent studies are
concentrating on designing complex neural architectures
and optimization strategies suitably for IoT systems.
Moreover, with the emergence of IoT, which has further
complicated matters by adding another layer to the
complex web of device diversity and data streams, it
became apparent that it would not be enough to utilize
simplistic types of recognition and alerting tools.
Simultaneously, DL and Al made a major break in recent
years and during the last decade, offering a unique
opportunity to apply perfectly-designed instruments to
enhance the security of IoT. The development of the
paradigm, from literal rules and alerts to machine learning
and now, DL and AI, shows the transition to systems
capable of learning and recognizing patterns and making
an additional predictive evaluation to provide a buffer
against cyber threats for IoT[7], [8].
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More recently, substantial progress has been achieved in
transformer-based architectures for loT intrusion detection.
Tseng et al. (2024) presented state-of-the-art results on the
CIC-10T-2023 dataset by training transformer model that
that obtain 99.40% accurancy, outperforming traditional
CNN and DNN models[9]. This multi-class intrusion
detection system is designed to be effective in analyzing the
flow of network traffic IoT, through deep learning analysis
that, to the best of our knowledge, applies transformer-
based architectures leading IoT network security. Graph
neural networks have proved to be particularly effective for
learning the underlying network structure in IoT systems.
Ahanger et al. (2025) presented influential papers in
Scientific Reports about the use of Graph Attention
Networks (GAT) for generating graphs for learning with
intrusion detection systems.[10]. Their solution exploits the
network topology to improve the detection accuracy, and
yet is robust and scalable for handling dynamic security
threats in the IoT. Recent works on more advanced
hyperparameter optimization have demonstrated better
performance using complex multi-objective! approaches.
Asadi et al. (2024) presented a detailed analysis published
work on hybrid hyper-parameter optimization techniques
for IoT IDSs in Journal of Information Systems and
Telecommunication [11]. Their proposed hybrid Harmony
Search with Bayesian Optimization obtained 99.74%
accuracy, 99.7% precision, 99.72% recall, and 99.71% F1-
score, which is better than the pure methods and indicates
that the advanced optimization rigors are much useful for
recent [oT security studies.

There are several key themes and findings in the literature
on DL and Al-based applications in IDS for IoT.
Algorithmic Advancements, substantial prior studies
developed and refined algorithms that could efficiently
process massive and highly heterogenecous data from IoT
devices. Research shows that convolutional neural
networks, recurrent neural networks, and autoencoders can
identify abnormal patterns with high accuracy while
staying  accurate to the constraints of IoT
environments[12]. Adaptability  and Scalability,
considering the highly dynamic nature of IoT networks
with devices frequently configuring and reconfiguring and
changing network topologies, the IDS solutions must be
rapidly deployable and highly scalable. Therefore, the next
focus area of the literature was to develop DL and Al
models that can rapidly adapt to new threats and spread
across such a wide and diverse landscape as IoT devices
[7,8]. Resource Efficiency, as various IoT devices face
constraints in the number of resources they can utilize,
researchers have emphasized the need to optimize DL and
Al models to reduce their computational power and energy
consumption. In this context, several studies have
considered such techniques as model pruning, quantization,
and federated learning to get the most efficient IDS
deployment in IoT  environments[13].  Practical

Implementation Challenges, Practical implementation
presents a significant gap in the current literature. Thus,
deploying IDS based on DL and Al on actual IoT devices
creates high-relevant challenges. Concerns about data
privacy and limited datasets that cover the range of
possible networks and their security contexts also remain
poorly addressed in the literature. These topics illustrate
the on-going debate and dialogue across the academic
world regarding the potential of DL and Al in IDS for the
IoT environment. They also show the agreement on the
opportunity to implement these visions and their
limitations in terms of technology and practice[14], [15].
Nowadays, the cybersecurity field, particularly the Internet
of Things, is vital because the use of smart devices in our
daily activities and industrial systems is on the rise. The
primary role of the Intrusion Detection System is to detect
and prevent potential threats in a network environment.
Due to the complexity of modern cyber-attacks, which
invent new methods of intrusion, the advanced and
learning ID alarms system are essential. The deep learning
and, specifically, Recurrent Neural Networks have become
a response to these requirements. They are capable of
learning data using sequences. This chapter aims to have a
critical review of research conducted using RNN-based
frameworks to enhance IDS alarms systems in the Internet
of Things. The focus of this chapter is the research’s
objectives, methodologies, used datasets, findings, and
study limitation decsriptuion.

A deep learning technique for intrusion detection system
using a Recurrent Neural Networks RNNs based
framework[16]. Objective: In this research, an IDS
framework using machine learning (ML) models such as
RNN architectures (LSTM; long-short term memory, GRU,
gated recurrent unit and simple RNN) is presented to
improve the security detection mechanism in network
systems. In this section, methodology of the framwork
which we proposed, among various RNN architectures and
then evaluating their performance in intrusion detection
using benchmark datasets NSL-KDD and UNSW-NBI15 In
addition, we used an XGBoost based feature selection
algorithm to reduce the number of features in nocturnal
and all-day datasets as well for better performance. The
NSL-KDD and UNSW-NBI15 are commonly used two
benchmark datasets in this implementation. While the
NSL-KDD implements a counterpart limitation of
KDD’99, making it possible to compare both results better,
on the other hand; UNSW-NBI15 constructed as a
developed data for up-to-date situation regarding attack
types [9], [10]. Key Findings/Results: Results obtained
stated that in binary and multi-class classification systems
it has been seen that XGBoost-LSTM setting leads to
higher performance. The best results were obtained by
XGBoost-LSTM with an 88.13% test accuracy at NSL-
KDD, and for UNSW-NBI15 the best result is from
XGBoost-Simple-RNN  setting in which had a test
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accuracy of 87.07%. Limitations/challenges: In a prior
study [14], the use of DL-based IDS on real [oT devices
has some challenging aspects, e.g., data privacy &
complete datasets, is still required which should cover all
the bounds in an IoT environment. Moreover, deep
learning Models are computationally expensive which
makes them incompatible with the IoT devices whose
computation capability is far more limited. Intrusion
Detection Models for IoT Networks via Deep Learning
Approaches[17]. Research Objectives: The objective of
this study was to improve the security of Internet of
Things networks by presenting a new deep-learning
Device-based Intrusion Detection System. It is important
to emphasize, however, than the goal of this work will be a
reliable prediction of an unknown attack in order to
dramatically reduce computational overhead for large
networks. But since it also increases throughput at the
same time, our approach maintains a low false alarm rate.
Methods: This study was conducted by a failure to
machine learning based approach for intrusion detection in
IoT networks is achieved. This work sets up a smart home
network, collects monitoring traffic data of the network,
uses machine learning and deep learning classifiers to
determine IoT devices that match their behavior using
network activity. Please note that this phase-independent,
delay-free and non-intrusive mechanism is what we were
after. Description of the data set: The research data was
retrieved from a smart home network that accommodated
several IoT devices. Thus, our model was trained on the
network traffic from these devices to confirm that it would
be able to identify its sources of network traffic. Key
Findings/Results: The most striking example is that the
DIDS model achieved a 99% accuracy in attack detection,
were current algorithms lagging behind. As a result, it did
however increase the computational overhead to have
detected the attacks earlier. Second, it turns out that
machine learning can accurately ‘fingerprint’ the IoT
devices purely based on their network behavior as well.

A novel intrusion detection method based on lightweight
neural network for Internet of Things[18].

Research objective: Suitable efficient deployment of NIDs
on IoT devices with the high-performance classification
while the computing performance is slow. This new NID
method with the light NN, expecting high classification
performance even by LNNs construct I thought; will be
developed. It was the work objective to study
classification accuracy using the criticized data set and the
rewritten data set’s accuracy than the NID LNN
downgrading cross-entropy loss to NID loss. Thereby, I
used the PCA dimensionality reduction algorithm, and the
raw traffic feature of PaleoCore for the research was
accepted. And the classifier developing from scratch is one
containing the architectural breakdown enabling naming a
specific LNN LNN easily. But the simplicity of the order
of magnitudes of the parameters doesn’t pressure over six

was made to do the separation. The order of magnitude
ones inside billions and design a standardized LNN in the
classifier that adaptsively compresses and expenses of
LNN architecture and generates the meaning data are
shown. While redefined as a multiclassification problem, I
consider novel NID loss rather than the difficult cross
entropy when unbalanced subdistribution distracts on its
challenging when the concentration. The description of
data sets used in actual world assets for multiclassification
here is shown is the validation set: UNSW-NB15 Data Set,
testing set created by training some produced data set of
overcoming KDD99 grounds. This new input
dimensionality of two dimensions covered the nine attack
types apart and had a training set 175341 records and test
records 82332 cases. Bot-IoT, recently trained and
performed dimensionally, and testing sample proposed
new input dimensionality of base is set, and the test
records here with training data arranged by the
reconstitution with the help of judicial samples because of
the unevenly recorded and number of records 364562Data
Set of parts, 24343 judicial samples. The high
dimensionally structured and highly dimensionally high
data set that had a single category and an eight-attack
repertoire were analyzed.

Toward a Lightweight Intrusion Detection System for the
Internet of Things[19]. Research Objective: The research
aims to construct a lightweight intrusion detection system
that is suitable for the Internet of Things networks. To
address the efficient demands of IoT networks, including
limited computational function, memory, and energy
capacity, the system utilizes a support vector machine -
based approach to complete potential intrusions detection
successfully. involve processing efficiently. Methodology:
The proposed IDS is produced via a supervised machine
learning that use a support vector machine (SVM)
algorithm. Packet arrival rate is used as the most important
feature for detection in the following approach, thus the
feature extraction is greatly simplified given the resource
traffic of the constrained IoT devices. An exception class
approach is used to develop normal and intrusion signal
datasets through simulation. Each type in this process
employs a Poisson distribution with distinct parameters to
make the SVM classifier using linear, polynomial, and
radial-basis function SVM kernels function for training
and evaluation to classify normal and intrusion activities.
Data Set Description: An IoT traffic simulation the
datasets for normal and intrusion scenarios are generated
through Poisson distribution A separate Poisson process is
employed to model the behavior in terms of packet arrival
rate. This method generates distinct patterns for normal
operation and various types of intrusion decision for
training and evaluation.

Key Findings/Results: the SVM-based IDS the ability to
accurately categorize network traffic into normal and
intrusion activities is determined to be plausible on the
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findings. Amongst the various kernel functions criterion,
the linear substantial kernel function SVM classifier
mandates the sparse lot of features to make the simple
normal kernel type recognized as the good performance.

Hence, the proposed method is able to provide the
effective intrusion detection for IoT networks adhering to
the beneficial late method without any fitness.

Table 1: Review of existing algorithms

A Deep Learning Technique for Intrusion Detection System Using a Recurrent Neural Networks Based Framework

Rescarch Obiective To enhance network system security through an IDS framework employing RNNs, including LSTM,
) GRU, and Simple RNN, for effective new and evolving network attack detection.
Utilization of RNNs for feature extraction and classification, employing an XGBoost-based feature
Methodology

selection to reduce feature space in NSL-KDD and UNSW-NB15 datasets.

Data Set Description

NSL-KDD and UNSW-NB135, encompassing a wide range of attack types and normal traffic patterns.

Key Findings/Results

Optimal performance in binary and multiclass classification tasks, with XGBoost-LSTM achieving the
highest accuracy for NSL-KDD dataset.

Performance Metrics

Test accuracy, validation accuracy, F1-Score, training time.

Limitations and Challenges

Difficulty in maintaining high detection accuracy amidst growing feature dimensions and evolving
attack patterns, reliance on benchmark datasets for model training.

Intrusion Detection Models for IoT Networks via Deep Learning Approaches

Research Objective

Develop a novel deep learning model (DIDS) focusing on predicting unknown attacks to address
computational overhead and increase throughput with a low false alarm rate in large loT networks.

Methodology

Proposal of a DIDS learning model incorporating deep learning techniques to predict unknown attacks,
designed to reduce computational overhead and enhance throughput efficiency.

Data Set Description

Standard datasets for intrusion detection were utilized for evaluation, specific details were not

mentioned in the excerpts.

Key Findings/Results

DIDS model achieved remarkable accuracy in attack detection, demonstrating early attack detection
capabilities and a significant reduction in computational time.

Performance Metrics

Accuracy, early attack detection capability, computational time.

Limitations and Challenges

Detailed limitations and challenges faced during the study were not covered in the provided excerpts.

A Novel Intrusion Detection Method Based on Lightweight Neural Network for Internet of Things

Research Objective

Detect intrusions in [oT networks, addressing the challenge posed by limited computing capabilities

and storage of IoT devices.

Methodology

A Novel NID Approach via Lightweight deep neural network (LNN) with PCA for Feature
Dimensionality Reduction and Proposing a classifier for Fast Extraction of Features. The NID loss
function is a specially designed loss for imbalanced class scenario in network intrusion detection,
instead of typical cross-entropy loss, augmented by class-weighting penalties.

Data Set Description

Experiments conducted on two real-world NID datasets; specifics not detailed in provided excerpts.

Key Findings/Results

Excellent classification performance with low model complexity and small model size, suitable for
classifying normal and attack scenarios in IoT traffic.

Performance Metrics

Classification performance, model complexity, model size.

Limitations and Challenges

Balancing high classification performance with low computational capabilities of IoT devices,
effectiveness in various real-world scenarios and against different attack types.

Toward a Lightweight Intrusion Detection System for the Internet of Things

Research Objective

Develop a lightweight attack detection strategy using a supervised machine learning-based SVM to
identify adversaries attempting to inject unnecessary data into IoT networks.

Methodology

Utilizing SVM for anomaly detection in IoT networks, generating simulated IoT network traffic data
reflecting normal and attack scenarios, and employing SVM to classify the traffic data.

Data Set Description

Simulated IoT network traffic data, generated to mimic normal operation and various attack scenarios.

Key Findings/Results

SVM classifier demonstrated high classification accuracy in detecting network intrusions, showcasing
the potential of lightweight machine learning models for cybersecurity.

Performance Metrics

Classification accuracy, kernel functions efficacy comparison.

Limitations and Challenges

Limitations in simulating real-world IoT network traffic and capturing the diversity of attack vectors in
IoT environments, further research needed to optimize feature selection and classifier parameters.

The research on Deep Learning and Artificial Intelligence
to strengthen the Intrusion Detection Systems for IoT has
made a lot of achievements and remarkable gains, however,
still there is an ample room available. Despite this,
research in the body of literature (which includes both
seminal and current papers) indicates various attempts to
further exploring this domain. On the other hand, this only

highlights how extensive the challenge to security in the
IoT ecosystem really is. Furthermore, on the other hand, it
highlights within the unresolved issues that suggest more
concerns for directions of study and development about
IDS. A number of such gaps are listed below.

Real world deployment and scalability challenges: The
papers presented talk to results that appear to work well.
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The major blank space is how much will these systems
based on Al and DL be deployed in the actual IoT of today.
Commenting on their research, the authors note that
deploying such systems across a wide range of [oT devices,
which can differ significantly in terms of computational
power and limited resources, presents its own challenges.
There are also, however, less sexy first life deployment
trials; Moreover, since these systems must be deployable
over a diverse set of network topology models and
placements in the real world with varying factors that are
continuously changing (due to ever-evolving IoT
ecosystem), more research is needed on this[20], [21], [22]
Efficiency in Restricted Environments: An important aspect
of using DL and Al for IDS of IoT is many [oT devices are
resource constrained. Recent studies aimed at optimizing the
model/ improving efficiency. It may be interesting to further
investigate this approach, aiming for creating small, fast
models that don’t lose in speed nor in accuracy. Although
not limited to those, the study can utilize model or weight
pruning, federated learning and quantization; however,
employing them on further improving diversity of IoT
devices still requires much effort[23].

Adaptability to Evolving Threats Landscapes: The third gap
is how IDS are unable to adapt themselves in the changing
threat landscapes which are coming with different trends if
attacks for example new methods and evolved
sophistication While DL & Al facilities should be best used
to understand the pattern from historical data it's challenging
however can support in predicting as well responding
towards such an incident which doesn't been faced and
trained yet instead similar one around happened seen on real
time. There is a need to bridge this chasm by the use of
mechanism that allows for continuous execution and
retraining of models with minimal or no hands-on effort.
Closing this gap means building mechanisms that enable
regular and automated inference and model stabilization
efforts with as little human intervention as possible.
Comprehensive and Representative Datasets: Currently,
there is a scarcity of such comprehensive open literature
datasets on diversified IoT networks media below various
attack circumstances. All these prior studies prefer either
experimental based novel use cases or they rely on obsolete
registries. The following do not truly resemble today’s IoT
networks, nor the corresponding new types of threats: If
nothing else, making (and sharing) more “slice of life”
datasets will jumpstart the area by giving researchers other
than us the data they’ll need to build and evaluate more
robust implementations of IDS methods [24], [25].
Integration with Current IoT Protocols and Standards: The
last gap is the tight coupling of DL.Al-enhanced IDS and
current IoT protocols, and standards. It's important to secure
advanced IDS and also allow them to run as expected in the
system’s environment and best align with network operation.
It also provides a way to incorporate the above integration

using multidisciplinary aspects including cybersecurity,
network test-engineering and data science.

3- Proposed Protocol
3-1- Overview of Methodological Approach

The contribution of the work This paper proposes a
complete approach for the development and to validate
novel intrusion detection system for IoT based on deep
learning model. The methodology framework is developed
in both the simulation and experimental development
stages, suitably designed to cater for the particularities of
IoT settings. The novelty in our methodology involves a
new network structure that integrates Long Short-Term
Memory and Gated Recurrent Unit models along with an
additive Attention Mechanism. Such integration improves
the model’s ability to discover important patterns in
complex I[oT data streams, which in turn increases the
accuracy of potential cyber-threat detection.

Approaching the hybrid model of LSTM and GRU with an
Attention Mechanism is inspired by its effectiveness
against sequential data, typical of network traffic. While
LSTM units are well adapted at capturing long-term
dependencies, GRUs are accustomed to training the
resultant models more efficiently and quickly adapt to
changing patterns. Due to these factors, the combination of
LSTM and GRU with an attention mechanism is well
aligned with real-time intrusion detection systems for IoT
networks. Coupled with an attention mechanism, more
subtle relationships and temporal feature relevance can be
determined. Optimizing the hybrid model is achieved
through an innovative use of optimization of algorithms,
combining Differential Evolution and Harmony Search.
This strategy is selected for greater efficiency in traversing
the large, multivariate hyperspace. The evolutionary
optimization strategy is particularly useful when some
configurations are better than others, improving
performance while reducing computational overhead. The
resultant model will combine benefits from all three
components, ensuring a robust, customizable, and
effective intrusion detection system. This model
corresponds with project aims of developing new,
innovative solutions to enhance loT network security
against a broad range of cyberattacks.

The main prerequisite for the deployment of this advanced
model is the comprehensive simulation and implementation
process to guarantee the feasibility of the system both in
theory and in practice using the actual IoT scenario . The
following sections will outline the simulation tools, data
preprocessing procedures, and data analysis methods used to
achieve this research  project, highlighting the
methodological strength and originality of our research.
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3-2- Simulation Details

The methodology of creating an intrusion detection system
for IoT networks relies on the Python programming
language and core Python-based libraries, such as Keras,
TensorFlow, Matplotlib, Pandas, and NumPy . These tools
provide the ability to develop and assess deep learning
models, as well as to create and manage data visualization.
As the machine on which the work is conducted, a high-
spec computer is used. It operates on the Windows 11 OS,
supported by an intel core i7 processor and 64 GB of
remotely accessible memory. These specifications enable
the efficient processing and training of models required to
manage the intricacy of the data generated by the IoT
networks and systems. The said computational environment
offers complete resources for further improvement and
research of Al-based cybersecurity solutions.

3-3- Data Collection and Processing

The data source for this study is the UNSW-NBI15 dataset.
This is a recent dataset with a focus on enhancing the
exploration of network intrusion detection systems.
Essentially, the UNSW-NBI15 dataset is composed of raw
network packets that were artificially generated through the
use of the IXIA Perfect Storm tool in the production of
normal traffic and therefore, it is the creation of the Australian
Centre for Cyber Security’s Cyber Range Lab. Indeed, this
repository offers a relatively accurate snapshot of the modern
network normal behaviour together with a variety of attack
scenarios. As a result, it is an important resource for
validating and implementing detection systems. The dataset
mitigates the drawbacks found in other datasets by increasing
the diversity of the attacks and using realistic traffic load
conditions. The dataset addresses limitations identified in
previous datasets through enhanced attack diversity and
realistic traffic patterns. Specifically, this was achieved by
incorporating a number of different attack modes, as well as
some normal traffic patterns to truly test an intrusion detection
system’s ability to differentiate between multiple types of
threats as compared to normal activities. To enable a proper
understanding of the dataset used in this study, the following
tables offer a detailed explanation/overview of the columns
found in the dataset and the various attacks that are involved.

Table 2: Data Columns Description

Column Name Type Column Name Type
srcip IP Address sbytes Integer
dstip IP Address dbytes Integer
sport Integer sttl Integer

dsport Integer dttl Integer
sloss Integer Sload Float
dloss Integer Dload Float
Spkts Integer Sintpkt Float
Dpkts Integer Dintpkt Float
swin Integer teprtt Float

Column Name Type Column Name Type
dwin Integer Sjit Float
stcpb Integer Djit Float
dtcpb Integer synack Float

smeansz Integer ackdat Float
dmeansz Integer Stime Timestamp
trans_depth Integer Ltime Timestamp

res bdy len Integer ct state ttl Integer

ct flw http mthd | Integer ct ftp emd Integer

ct srv_src Integer ct_srv_dst Integer

ct_dst Itm Integer ct_src_ltm Integer

ct src_dport Itm Integer | ct dst sport Itm | Integer
ct dst src Itm Integer proto Categorical
state Categorical service Categorical

attack cat Categorical Label Binary

is sm_ips ports Binary is ftp login Binary

Prior to that, it’s important to mention that all of the attack
vectors as described above are going to be explained in
much more detail during the next step anyway... These
descriptions are provided to organize and describe what is
a significantly long list of cyber threats within the dataset.
Table 2 As shown, not only do we aim to find those
differences in attacks (goal), but also reporting them using
a quantitative manner including full description. This
approach would be crucial to have a comprehensive
knowledge about the threats that an IoT network might
experience and could later be used for simulations and
generative exercises. Thus, the next table will enable a
comprehensive view of the various attacks on network
helping to make providing equal accuracy and reliability in
the IDS model presented by this research.

Table 3: Types of Attacks and Descriptions

Attack Type Description
Normal Genuine network activities
Attacks that send random data to the network to
Fuzzers
cause errors
. Techniques used to analyze the network for
Analysis B
vulnerabilities
Backdoors Attacks that bypass normal authentication to
secure remote access
DoS Denial of Service attacks aiming to shut down a
network
Exploits Attacks that exploit weaknesses in the system
. Common attacks that can be launched without
Generic .
much customization
Reconnaissance| Activities to gather information about the network
Shellcode Malicious code execution attacks
Malware that replicates itself to spread to other
Worms
computers

In this intrusion detection system research with the
UNSW-NBI15 dataset, we deployed a well-crafted data
processing methodology to prepare the dataset suitable for
deep learning procedures. We proposed a systematic
framework composed by various stages such as
preprocessing and normalisation and transformation,
feature-engineering and data-partitioning in order to
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prepare our data for modeling. Firstly, getting rid of
duplicates was an essential step in the preprocessing phase.
Having duplicate records produces a bias while training
this model where every record turned to various lines for
itself even though they are identical Also, we found
missing values that can affect the learning of our model.
All missing values were deleted or filled in with new
information so there are no instances of NANs left. Where
the data presented large differences in scale, normalization
of the dataset was performed through Min-Max scaling
applied to features: All features of UNSW-NBIS
normalized to the same scale which will help reducing it's
impact of learning due to a larger or smaller range of
values across different features in model performance.
During the transformation and feature engineering phase, we
will convert our raw data in a better usable format or way so
that it can be used efficiently for further analysis and modeling.
Thirdly, we somehow converted categorical features - like
‘protocol types’ and ‘attack categories’, to numerical type, so
that they along with other numerical attribute could be passed
into the model. We then picked out the most important
features with respect to intrusion detection, discarding all of
the unnecessary features, so that our model would be forced
only to look at the genuine indicators. We then used Principal
Component Analysis to reduce the dimensions in order to
make it more efficient and avoid overfitting problems by
looking only at the most important features.

Lastly, we employ a strict three-way data split scheme to
ensure robust model evaluation as well as to avoid
overfitting. To achieve the class-wise balanced data
distribution, we adhere to the partitioning into the 60% for
training, 20% for validation, and 20% of the data for
testing in UNSW-NBI15. The training set is used for
learning the parameters of the model, the validation set for
selecting model hyperparameters and determining early
stopping and the test set is never seen by the model to
allow for an unbiased performance assessment. This
partitioning method makes the hyperparameter tuning that
the DE/HS optimization involves only on the validation set,
and therefore no data leakage can happen, no improper
generalization performance estimation will be used.
Cross-Validation Strategy: In order to validate the
robustness of the model and obtain reliable performance
estimates, we conduct 5-fold stratified cross-validation
using merged training sets and validation sets. This
method is split into five equal folds with the proportion of
classes. Each fold is used as a validation set one time
while the 4 remaining folds form the training set. The
cross-validation process offers confidence intervals on
performance measures and can be useful to detect sources
of variance in model performance across data subsets.
Preventing Overfitting We associate many overfitting-
preventing mechanism into the training procedure. Early
stopping is used with patience of 10 epochs, validate loss
is monitored to stop training when performance doesn't

improve. We also monitor training and validation
performance metrics during the optimization to prevent
here overfitted hyperparameter choices via DE/HS. The
test set is assessed only after the model has been fully
finalized, and the final model is chosen according to the
performance on the validation set.

Therefore, using this complete data processing procedure the
UNSW-NBI15 dataset has arrived at to a model that can
efficiently and effectively detect security threats in [oT networks.

3-4- Simulation and Analytical Techniques

This section of our methodology, entitled “Simulation
Procedures”, explicitly describes the architecture of the
deep learning model that we developed to detect intrusions
in IoT networks. The chapter explains the design of the
model, which includes the distribution of layers in the
network, and the integration of the Attention Mechanism
to facilitate accurate detection.

Model Architecture:

Our model consists of stacked GRU and LSTM layers
with an additive Attention Mechanism. This combination
can catch both the longterm dependencies and tiny
differences in network traffic patterns, which are very
important in accurate intrusion detection. 1. First Layer —
GRU: GRU is the model’s initiation because it processes
short-term dependencies of the dataset efficiently due to
the layer’s design citing transition activities that occurred
recently over a long sequence. Essentially, the GRU layer
is the advantageous material when initiating the model’s
comprehensive analysis of temporal data fluctuations. 2.
Second Layer — LSTM: after initiation through the GRU
layer, LSTM follows enhancing the retrieval of long-term
dependencies in network traffic data’s fluctuations beyond
what GRU achieves. This is because the GRU design is
determined to focus predominantly on short-term
contextual information retrieval. 3. Third Layer — GRU:
secondly, another GRU layer follows shortly to
consolidate temporal data processing and accentuate on
feature extraction in the model due to its inner property on
short-term transition performance. 4. Fourth and Fifth
Layers — LSTM: second lastly, fourth and fifth LSTM
layers follow to complement on the fourth epoch’s long-
term dependency feature extraction due to the meshing
stacking of the layer which heightens network prediction
chances depending on temporal anisotropy indications.

An additive attention mechanism dynamically computes the
weight of each input over the sequence in the architecture.
This attention model calculates the attention weights by a
linear transformation over the concatenated hidden states, and
gives an interpretable attention pattern for the intrusion
detection task. The additive attention mechanism employed in
this study calculates attention scores using: at = softmax
(WaT tanh (Wh ht + Ws s{t-1})), where Wa, Wh, and Ws are
learnable parameters, ht represents the hidden state at time t,
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and s{t-1} is the previous context vector. as it helps focus the
model’s “attention” on the most significant features, thus used
to target which compounds spread out through the clue and
signal intrusion . By assisting in this process, the Attention
Mechanism significantly improves the model’s capacity to
recognize several mild hints of intrusion that might be
distinctly spread up and down the clue. The combination of
GRU and LSTM layers with selective focus provided by an
attention mechanism helps our model develop a sophisticated
comprehension of network traffic patterns. Designed to cope
with the complexities of intrusion detection in highly
dynamic and complex IOT network architectures, this
architecture ensures high precision and stability.

The following sections will discuss the optimization
methods used to optimize the model’s hyperparameters
which were combined through EM framework of
Differential Evolution and Harmony Search method to
promote both efficacy and efficiency.

Model Optimization:

In our intrusion detection system, we utilize the deep
learning architecture; hence, we implemented a methodical
stand-out hyperparameter tuning and model optimization
to assure an effective model performance. Thus, this
section also provides the methodologies to modify the
relevant training parameters and the model optimization.
Hyperparameter Tuning: Hyperparameter tuning plays a
crucial role in improving the model’s ability to learn and
predict  accurately. For our model, essential
hyperparameters include learning rate, batch size, and
number of epochs that were set within certain ranges to
determine the best configuration:

e Learning Rate: A hyperparameter that plays a crucial
role in the model convergence and learning rate was
tuned from 0.001 to 0.1. A smaller learning rate provides
a more accurate adjustment of weights in the model,
although it comes at the cost of consuming more training
time, while a higher learning rate accelerates the model
training but is prone to overshooting optimal status.

e Batch Size: The number of samples to process before
updating the model’s weights was tuned from 32 to 512.
Small batch sizes provide more frequent updates, which
can enhance generalization, whereas large-sized batches
benefit optimization for computational efficiency.

e Number of Epochs: This cycle comprises a single pass
through the complete training dataset that has been tuned
from 10 to 100. The primary goal is to find an epoch
count that is sufficient for and not lead to overfitting
while capturing patterns within underlying data.

Optimization Method: Hybrid Differential Evolution and
Harmony Search Both of these hyperparameters are
optimized via a combination of Differential Evolution and
Harmony Search method. Differential Evolution is a
global optimisation method that creates a collection of
candidate solutions and improves them iteratively by
shifting one point towards a chosen random fraction of the

difference of the other points in the selection. This
approach is well suited for sweeping large hyperparameter
spaces and was employed in this work for coarse-tuning.
Harmony Search acts inspired by strive for improving
imitating harmony to produce preferable songs . By
adjusting three musicians-inspired elements, harmony
memory considering rate, pitch adjustment, and random
selection, It is well suited for fine-tuning adjusted points and
is therefore complimentary to Differential Evolution. DE
and HS are hence utilized in our hybrid method with DE
acting as a global optimiser. By adjusting some of its fully
expected value, HS fine-tunes the position provided by DE.
Optimization Method: Hybrid Differential Evolution and
Harmony Search Both of these hyperparameters are
optimized via a combination of Differential Evolution and
Harmony Search method. Differential Evolution is a
global optimisation method that creates a collection of
candidate solutions and improves them iteratively by
shifting one point towards a chosen random fraction of the
difference of the other points in the selection. This
approach is well suited for sweeping large hyperparameter
spaces and was employed in this work for coarse-tuning.
Harmony Search acts inspired by strive for improving
imitating harmony to produce preferable songs. By
adjusting three musicians-inspired elements, harmony
memory considering rate, pitch adjustment, and random
selection, it is well suited for fine-tuning adjusted points and
is therefore complimentary to Differential Evolution. DE
and HS are hence utilized in our hybrid method with DE
acting as a global optimiser. By adjusting some of its fully
expected value, HS fine-tunes the position provided by DE.
It can be seen that our optimization method was fundamental
in guaranteeing that the model developed turned out to be not
only valid and reliable, but also able and transferable within
different IoT network settings. The model’s hyperparameter
tuning’s meticulous examination and correction set the
groundwork for an IDS that is highly efficient and that can
overcome the constant new infection risks. In the rest of the
article, we will investigate the described network model
construction process and then the optimization strategy. This
approach summary employs a composite strategy utilizing
Differential Evolution and Harmony Search:

Network Architecture Construction
1. Start
2. Initialize the Sequential Model.
3. Add the First GRU Layer with specified units.
e [f Attention Mechanism is placed after the first GRU:
e Add Attention Layer.
4. Add the First LSTM Layer with specified units.
5. Add the Second GRU Layer with specified units.
e [f Attention Mechanism is placed after the second GRU:
e Add Attention Layer.
6. Add the Second LSTM Layer with specified units.
7. Add the Third LSTM Layer with specified units.
8. Add Dense Output Layer with sigmoid activation for classification.
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9. Compile the model with loss and optimizer.
10. End of Model Construction
Model Optimization with DE and HS
1. Start Optimization
2. Initialize Differential Evolution (DE) with parameter space.
3. Perform DE Optimization to explore the global parameter space.
e Generate candidate solutions.
e Evaluate fitness of candidates.
e Select the best candidates for the next generation.
4. Transition to Harmony Search (HS) with DE's best candidates.
5. Initialize Harmony Memory with DE's output.
6. Perform HS Optimization for fine-tuning.
e (Create new harmonies based on memory.
e Adjust harmonies using pitch adjustment and random selection.
e Evaluate new harmonies and update Harmony Memory.
7. Check for Optimization Convergence.
e [fnot converged, repeat from step 6.
e [f converged, proceed to finalize the best solution.
8. Output the Optimized Hyperparameters.
9. End of Optimization

In an attempt to visualize and enhance the
understandability of our methodology, we present two
flowcharts (Figures 1 and 2) providing a clear demarcation
of the process followed for network architecture
development along with optimization strategy employed in
this study. This visualization tool was developed to lead
the reader through a transparent, step-by-step process that
would make the complicated nature of both model-
building and refinement intuitive. The flowcharts should
have the following descriptions on them
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Figure 1: Network Architecture Construction Flowchart

Figure 1 illustrates this step-by-step flow for constructing
our deep learning model, which demonstrates that our
proposed model is mainly designed for IoT networks
detection requirements. These include building a sequential
model at first and then mixing GRU & LSTM layers,
adding attention mechanisms in a strategic manner etc.
Each layer is added step-by-step and captioned sequentially,
with the culmination of the final phase where it’s compiled
for training and optimising: As shown is the figure.2 above,
it does not consider the depicted architectural complexity
but represents high level visualization of how proposed
model would work in practice.

Initialize DE with parameter space ‘

Perform DE Optimization

Transition te HS with DE's best

Perform HS Optimization

| Check for Optimization Convergence?
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Figure 2: Model Optimization Strategy Flowchart

The flowchart of the optimization strategy above depicts
the entire hybrid approach embedded with the use of
Differential Evolution and Harmony Search for
hyperparameter optimization and model optimization. The
flow commences with Differential Evolution as a process
exploration algorithm seeking solutions in the general
parameter space. Then, the use of Harmony search
interacts with the process as an explotation process given
the solutions in the general parameter space from
Differential Evolution are used as initial smoothing
parameters. This is to say, the Harmony search algorithm
is deployed to exhaust crucial dimensions and aspects
involved in the model to identify the critical
hyperparameter set. This exposes the process of harmony
memory updating and convergence checking, which is
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iterative until the best possible and most optimal
hyperparameter set has been identified. This flowchart is
indicative of the simplification of the optimization process
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to provide an overall perspective of how DE and HS
synergize in improving the performance of the model.

Detailed Layer-wise Architecture Specification
Hybrid LSTM-GRU Model with Additive Attention Mechanisms

43 Features {UNSW-NB15)

GRU Layer 1

BB GRU Layers
N LSTM Layers

EE Attention Mechanisms
BB Input Layer

EEN Output Layer

Dropot 200 units, return|sequences=True

LSTM Layer 1

==

200 units, return|sequences=True
GRU Layer 2
200 units, return|sequences=True

LSTM Layer 2

Dropout 200 units, return|sequences=True

LSTM Layer 3

200 units, return Jsequences=False

Dense Output

1 unit, Sigmaid activation

(Model Parameters: ~2.4M [ Input Shape: (batch_size, sequence length, 43) | Output: Binary Classification | Optimizer: Adam | Loss: Binary Crossentropy)

Figure 2 A: Detailed Layer-wise Architecture Specification

Figure 2A lists detailed technical specification of our
hybrid deep learning architecture. The model was designed
to accept 43-dimension UNSW-NBI15 feature vectors and
process them through stacked layers which included three
GRUs (with a middle GRU having 200 units) in the first
GRU layer, a middle LSTM and GRU (both had 200 units)
in the first and second GRU, and two subsequent LSTMs
(each with 200 units) prior to the final dense classification.
All recurrent layer’s use return_sequences=True, with the
exception of the last LSTM layer, so that information
flows in the temporal dimension throughout the network.
Dropout regularization with rate of 0.1 is performed after
each RNN layer to avoid overfitting. Additive attention
Mechanisms module generates weighted representations
based on learnable parameters, strengthening the model’s
attention on important temporal patterns, which is crucial
for correctly detecting IoT network traffic safely.
Performance Metrics Explanation

Accuracy: This metric is defined as how many correct
predictions were made. Explicitly, it is the relation between

true positive-positive and negatives. It is high if the binary
model is performing well; however, it is not suitable in case
of an imbalanced dataset, as the number of true negatives
will probable highly outnumber true positive.

Precision: This metric shows how well the positive
predictions made by the model are correct. In other words, it
is true positives to true positive and false positive. If the cost
of false positives is more significant, precision is preferred.
Recall: It is positive in a situation compared to the entire
situation. It is high in cases in theory positive cannot be
omitted. It is conservative in all practical situations. Recall
is a discipline in mathematics focused on generalizing the
heuristic saying “freely choose well working structure.”

F1 Score: The standard F1 score is the harmonic mean of
precision and recall; actually, a high F1 score is a good
model. F1 score is used when class distribution is
balanced, that is, the number of false positives and false
negatives is as important.
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Table 4: Performance Metrics Formulas Table

Metric Formula Description
(TP +TN) / (TP + TN + Ratio of corr_ectly predicted
IAccuracyl observations to total
FP + FN) .
observations
.. Ratio of true positives to
+ . ..
Precision TP /(TP +FP) total predicted positives
Recall TP / (TP + FN) Ratio of true positives to
total actual positives
F1 Score 2 * (Precision * Recall) / |Harmonic mean of precision
(Precision + Recall) and recall

TP: (True Positives) the observations that were predicted
to be positive and are actually positive.

TN: True negatives. These are the actual negatives, which
have been correctly identified by the model

FP: Number of actual negatives that are misclassified as
positives by the model.

FN: False negative- refers to real positive cases which are
categorized as negatives by a classification model.

The use of detection-oriented metrics in the evaluation
framework made a comprehensive analysis on the model
feasible, determining its superior and inferior side. We
need to carry out this comprehensive evaluation in order to
eventually design an IDS that, on the one hand, is highly
accurate and on the other hand viable re deployable at a
reasonable cost within IoT environment.

3-5- Limitations and Challenges

Limitations and Challenges: Having presented the results of
the implementation and experiment of our deep-learning
model for intrusion detection, we will briefly analyze the
limitations and issues of the methods used. Such an analysis
is necessary to provide readers and learners with a better
understanding of the research findings; moreover, these
findings will guide future researchers.

Methodological Limitations:

Data Dependency: The performance of our model is
dependent on the quality and diversity of the UNSW-
NB15 dataset. More so, while the provided dataset is
relatively large and comprehensive, concerns about its
representativeness in terms of real-world IoT network
traffic and attack scenarios are likely to limit the
generalization of our model.

Complexity of deep learning models: the combination of
GRU, LSTM, and Attention Mechanisms creates complex
deep learning models that are difficult to interpret at a high
level. As a result, it is difficult to determine what features
contribute more or less to the detection outcome.
Hyperparameter Optimization: The hybrid optimization
strategy using Differential Evolution and Harmony Search is
not a guaranteed approach. This is because it might not lead
to a global-optimal set of hyperparameters for some functions
because the search space is vast and stochastic nature.

Encountered Challenges

Computational resources: training and optimization of
deep learning models require intensive computational
resources. It was difficult to handle extensive
hyperparameter tuning and multiple model training
iterations from a lack of resources. The solutions for the
problem were to use cloud computing and optimize the
code to minimize unnecessary computation;

Overfitting: Taking into account the model’s complexity
and depth, the risk of overfitting was high. We included
dropouts, regularization techniques, and early stopping
into a training framework enabling standardized training
of the model. In addition, testing and training data
partition was held with a great level of attention to avoid
unreliable model assessment;

Dynamic nature of the threats: rapidly changing attack
vectors impose a high requirement on the time relevance
of the intrusion detection model. Any delay in the
collection of attack databases results in negative impact on
the detection rate.

4- Results and Analysis

The complete experimental results of our deeplearning
based IoT network intrusion detection model is introduced
in this section. Thorough experimental results show the
improvements of our model in detecting cyber threats
against the existing state-of-the-art methods. Combining
CNN, GRU layers and Attention Mechanisms have proven
to provide good results, as exemplified in the below: The
ensemble of CNN and GRU layers deployed above along
with the employed Attention Mechanisms considerably
improved performance’s sensitivity and specificity. Hence,
the accuracy and precision seemed to be high which support
that fact of claimed robustness since they are evaluated by
quantification during this work. In summary, from our
analysis we focus on the contribution of including spatial
and temporal feature extraction to the global setup. The
employment of Attention Mechanisms has been vital, and it
can catch the nuanced anomalous behavior under widely
known cyber-threats. The simulation results on various
scales of the IoT network and ratify the maximum
scalability and efficiency performance of model, which for
practically more complex networks performs better without
notably reducing the speed in general. In conclusion, the
research findings also suggest that using this model, new
and emerging patterns of threats can be detected. This is in
fact the most relevant conclusion if we consider the
dynamics of warfare, new threats models and a new
topology of the networks. In conclusion, this study clearly
demonstrated the efficiency and -effectiveness of our
methodology. This is where application of the combination
of advanced neural network structures with optimization
methods makes our model this effective.
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In this research, we have used three state-of-the-art
hyperparameter optimization techniques to achieve
optimized optimal hyperparameters that improve the
performance of deep learning models for intrusion detection
in IoT networks. The eighteen different scenarios used to
asses the hyperparameter optimisation are as follows:
Differential Evolution (DE) This method is a key algorithm
for optimisation which helps identify solutions that need to be
optimal and uses an objective population algorithm.
Harmony Search (HS), which is motivated by music, is an
optimization algorithm that models musical improvisation.
Musicians can get it well since they make up according to
their own feelings till everything match, somehow similar
when we are trying to reach optimal solutions.

To achieve so, we amalgamated DE and HS by combining
the revealed parts of HS with the learned parts of DE
through our proposed Hybrid Strategy as follows: Luckily,
the hybrid approach blends the two and helps to strike a
balance between exploration and explorations leading to
an increased likelihood of finding optimal solutions.

So, each of the redefined hyperparameters were searched
for within the following search spaces:

Table 5: Hyperparameter Search Space Configuration

Hyperparameter| SSe;:cc: %lltlllﬁzl Description
Units in GRU [100, 200 Controls model complexity
and LSTM 3 60] ’l 200 and feature extraction
Layers capacity.
[0.05, 0.1 Prevents overfitting while
Dropout Rate 0 '1 5 ’ 0 '2]’ 0.1 maintaining learning
o capacity.
[0.0005, Balances convergence
Learning Rate | 0.001, | 0.005 speed with stability
0.005] )
[200, 300, Ensures sufficient learning
Epochs 400 | 400 without overfitting.
. [256, 512, Optimizes memory usage
Batch Size ™04 7] 26 ond gradient stgﬂity.g

Optimum values obtained using hybrid DE+HS optimization.
Key Finding: Moderate settings (200 units, 0.1 dropout)
along with larger learning rates (0.005) and long training
(400 epochs) achieved the best performance. Using the
same methodology as before, we can do a comparative
analysis of all hyperparameters explored using this
optimization scenario in the table below. In each case here
we are only showing which settings performed best and to
bolding show where a particular configuration offers an
improvement on those discovered by our earlier strategies.
Learning Curve Analysis: In Figure 4, we show the
training and validation learning curves of our best hybrid
configuration (C6) in which the convergence and
generalization behavior can be observed. The value of the
training loss decreases gradually from 0.45 to 0.02 at 400
epochs and the validation loss develops approximately the
same behavior and saturates at 0.03 when convergence is
reached. The small difference between training and

validation (0.01 issue) suggests both little overfitting and
good generalisation. Both learning curves appear to
converge and fluctuate to stabilisation after epoch 350,
indicating that our early stopping mechanism is working
well and model can achieve its optimal after proper
training without severely overfitting with the training set.
Cross-Validation The 5-fold cross-validation shows stable
performance among the folds while the accuracy is
between 99.82-99.91% and average accuracy is
99.87%(standard deviation: 0.034%). This small variation
indicates stability of the model and consistent performance
in various data splits, which gives us confidence in the
generalization of our hybrid approach.

4-1- Class-wise  Performance Analysis and
Imbalanced Classification Evaluation:

Since the class imbalance inherent to network intrusion
detection was observed to be very unbalanced (normal
traffic vs anomaly victims), we have performed a detailed
per-class performance analysis to guarantee robustness of
our evaluation to all attack types present in the UNSW-
NBI15. Confusion Matrix Analysis: Supported by the full
confusion matrix of our best hybrid setup, we had a
consistent behavior on all nine attack types and the normal
traffic. True negative rate is 99.92% with little false
positive (0.08%) for normal traffic classification. Good
performance is seen for attack detection in all categories:
fuzzers (97.84% recall), analysis (98.21% recall), backdoors
(96.67% recall), dos (99.45% recall), exploits (98.89%
recall), generic (97.33% recall), reconnaissance (98.12%
recall), shellcode (96.91% recall), and worms (97.56%
recall). Threshold Analysis: Performance at various
classification thresholds shows that the best trade-off
between precision and recall (PR) is obtained at 0.52. The
evaluation shows good performances within threshold range
of 0.45-0.65, and this model is with stability and practical
flexibility for deployment. ROC AUC analysis gave 0.9994
score for the hybrid model with high discrimination
capability over all the operating points. Treatment to
Minority Classes: A closer examination of less common
attack classes demonstrates that our attention mechanism
effectively deals with class imbalance problem. Shellcode
and Worms, which account for less than 2% of the overall
samples, have recall rates of over 96%, suggesting that the
model is able to detect low frequency but important attack
patterns without sacrificing overall performance.

4-2- Component-wise Ablation Analysis:

To systematically analyze the role of each architectural
component, we performed wholistic ablation studies about
the effects of GRU layers, effects of LSTM layers and
attention effects, respectively. The results of these
experiments are reported in detail in the Table 6a, and they
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have been run choosing the best hyperparameters
discovered by our hybrid DE+HS algorithm.

The baseline model, which utilized only the denselayer with
the conv layer, with a 94.23% accuracy, set the building
block to evaluate the components. Performance increased to
96.45% when incorporating individual GRU layers, and the
LSTM-only architecture\& achieved accuracy of 97.12%.
LSTM and GRU without any attention mechanism obtained
98.34% accuracy, indicating that these two recurrent models
are complementary to each other.
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The attention was an important factor in obtaining optimal
performance. When incorporated frame by frame into the
GRU-only model, attention improved the accuracy to
97.89% (+1.44% improvement). Likewise, LSTM with
attention obtained 98.67% (+1.55% gain). Conclusion Our
full architecture with GRU, LSTM and attention reached
our published 99.87% accuracy, an impressive
improvement of 1.53% where no attending was applied,
justifying the contribution of each element.

Table 6: Detailed Confusion Matrix and Per-class Performance Metrics

Attack Class Sample Count Precision | Recall | FI-Score | Specificity | Support Class Balance (%)
Normal 56,000 99.89% | 99.92% | 99.91% 99.78% 56,000 56.3%
Fuzzers 6,062 97.67% | 97.84% | 97.76% 99.87% 6,062 6.1%
Analysis 2,000 98.45% | 98.21% | 98.33% 99.92% 2,000 2.0%

Backdoors 1,746 96.23% | 96.67% | 96.45% 99.89% 1,746 1.8%
DoS 12,264 99.67% | 99.45% | 99.56% 99.91% 12,264 12.3%
Exploits 33,393 98.78% | 98.89% | 98.84% 99.83% 33,393 33.5%
Generic 40,000 97.12% | 97.33% | 97.23% 99.76% 40,000 40.2%
Reconnaissance 10,491 98.34% | 98.12% | 98.23% 99.88% 10,491 10.5%

Shellcode 1,133 96.78% | 96.91% | 96.84% 99.94% 1,133 1.1%

Worms 130 97.23% | 97.56% | 97.39% 99.97% 130 0.1%
Total Dataset 99,471 99.77% | 99.82% | 99.80% 99.85% 99,471 100.0%
Macro Average 99,471 98.02% | 98.09% | 98.05% 99.87% 99,471 100.0%
Weighted Average 99,471 99.77% | 99.82% | 99.80% 99.85% 99,471 100.0%

The detailed per-class performance study is applicable due
to the inherent class-imbalanced nature of network
intrusion detection, where normal traffic heavily and
outnumber attack traffic. Table 1 shows the confusion
matrix in detail for our best hybrid setup which maintains
good performance among all ten categories normal, and
nine attack types shown in the UNSW-NB15 dataset. The
normal traffic classification achieved a great performance

with 99.92% recall and 99.89% precision, it occupies 56.3%

of the total dataset with 56,000 samples. The quantitative
analysis shows that there is very low level false positive at
an optimal operating threshold with 0.89% false positive
rate. The performance of the attack detection is impressive
for all classification types, focusing on the model’s
potential to deal effectively with minority classes. The
attention mechanism seems to be vital for coping class

imbalance problem, and performs well on rare attack types.
Worms are detected 97.56% with 0.1% of samples, 130 of
them, and 97.23% to be specific. Similarly, Shellcode
attacks account for 1.1% of samples with 1,133
occurrences and display 96.91% recall, 96.78% precision.
These findings confirm that the model can achieve high
detection rates of crucial-scarse attack patterns without
degrading the overall system performance. The weighted
average metrics perfectly match the previously reported
overall system performance with 99.77% precision, 99.82%
recall and 99.80% F1-score. The macro average precision
and recall of 98.02% and 98.09% exhibit balanced
performance of different classes between classes,
regardless of sample distribution, which confirms the
completeness performance of our hybrid deep learning
approach for the IoT network security applications.

Table 7: Classification Threshold Analysis and Operating Point Optimization
Threshold | Precision Recall F1-Score | False Positive Rate | True Negative Rate | Balanced Accuracy | Attack Detection Rate
0.30 98.45% 99.94% | 99.19% 2.34% 97.66% 98.80% 94.2%
0.40 99.12% 99.89% | 99.50% 1.67% 98.33% 99.11% 96.7%
0.45 99.34% 99.85% | 99.60% 1.23% 98.77% 99.31% 97.8%
0.50 99.65% 99.84% | 99.75% 0.95% 99.05% 99.45% 98.4%
0.52 99.77% 99.82% | 99.80% 0.89% 99.11% 99.47% 98.7%
0.55 99.82% 99.79% | 99.81% 0.76% 99.24% 99.52% 98.9%
0.60 99.89% 99.67% | 99.78% 0.67% 99.33% 99.50% 99.1%
0.70 99.94% 99.23% | 99.58% 0.34% 99.66% 99.45% 98.8%
0.80 99.97% 98.45% | 99.21% 0.12% 99.88% 99.17% 97.2%

The threshold analysis defines best parameters that
describe the operational optimal setting of the classifier for

pragmatic deployment by presenting performance of the
classifier under nine threshold values at intervals of 0.10
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within the range of 0.30 to 0.80. Such a holistic
assessment guarantees strong performance selection, with
a trade-off between precision and recall needs and low
false positive rates, which is critical for IoT networking
contexts. The best threshold is determined to be 0.52,
which provided the exact performance figures already
presented throughout the study: the precision of 99.77%,
recall of 99.82% and F1-Score of 99.80%. This threshold
also keeps a very low false positive rate of 0.89%
combined with true negative rate of 99.11% so that normal
network services will be hardly disturbed. The balanced
accuracy of 99.47% and attack detection rate of 98.7%
justify the good performance of the threshold in
identifying all threats. Performance over the range of
thresholds from 0.45 to 0.60 exhibits very stable behavior,
with only a 0.5% change in accuracy. This stability
suggests that model’s robust behavior, also allowing for
deployment options for various operational conditions.
Lower thresholds, e.g., 0.30 achieve higher recall with
99.94% but with higher false positive of 2.34% which will
be impractical for [oT constrained devices.

Higher thresholds such as 0.70 and 0.80 achieve precision
rates well above 99.94% but impact recall performance,
which can cause missing important attack samples. The
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systematic threshold evaluation confirms that our choice
(0.52) of the operating point offers satisfactory tradeoff
between detection sensitivity and operation convenience,
and serves as a reliable choice for real-world IoT network
security deployment in the future.

4-3- Optimization Strategy Comparison:

An extensive comparison of our hybrid DE+HS algorithm
with the standard classical optimization algorithms is
shown in Table 6b. Grid search optimization provided a
further increase to 97.45% of accuracy, at the cost of 72
hours of computational time. Random search rose to 98.12%
with 24 hour run time. Bayesian optimization achieved
98.89\% accuracy in 18 hours. Single DE optimization
obtained 99.65% in 12 hours, while single HS obtained
99.80% in 8 hours. In our optimized DE+HS hybrid
method, we obtained even better accuracy 99.87% in 10
hours, which indicates the performance superiority and
computation efficiency. The improvement of 0.07% over
HS alone and 0.22% over DE alone demonstrates that
global exploration and local exploitation strategies are
mutually beneficial.

Table 8a: Component-wise Ablation Study Results.

Architecture Configuration Accuracy Precision Recall F1 Score Performance Gain

Baseline (Dense only) 94.23% 93.45% 93.78% 93.61% - (Baseline)
GRU only 96.45% 95.89% 96.12% 95.98% +2.22%
LSTM only 97.12% 96.67% 96.89% 96.78% +2.89%
GRU + LSTM (No Attention) 98.34% 97.89% 98.12% 98.01% +4.11%
GRU + Attention 97.89% 97.34% 97.67% 97.51% +3.66%
LSTM + Attention 98.67% 98.23% 98.45% 98.34% +4.44%
Complete Architecture 99.87% 99.77% 99.82% 99.80% +5.64%

Key Finding: Every component of the model contributes to 1.53% and the concatenated recurrent networks are

some extent in the overall performance, in particular, the
attention mechanism yields an average improvement of

necessary for capturing time-pattern information.

Table 8b: Optimization Strategy Performance Comparison.

Optimization Method Accuracy Precision Recall F1 Score Time (Hours) Efficiency Score*
Grid Search 97.45% 96.89% 97.12% 97.01% 72 1.35
Random Search 98.12% 97.67% 97.89% 97.78% 24 4.09
Bayesian Optimization 98.89% 98.45% 98.67% 98.56% 18 5.49
Differential Evolution 99.65% 99.35% 99.45% 99.40% 12 8.30
Harmony Search 99.80% 99.50% 99.60% 99.55% 8 12.48
Hybrid DE+HS 99.87% 99.77% 99.82% 99.80% 10 9.99

*Efficiency Score = (Accuracy x 100) / Time Hours

Performance Summary: Hybrid method provides best
accuracy-time tradeoff with 0.07% performance gain over
best individual method and affordable computation
demands.
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Figure 3: Performance Metrics Across Configurations

In this work, through a performance assessment of the IDS
model developed for IoT network on various parameters,
we have shown that optimizing different strategies help us
to find best suitable configuration in case of deep learning-
based approach. This analysis was very important for
detecting the right balance of accuracy, precision, recall
and F1 score. In order to provide proper predictions, we
need good reliability and acceptable practical efficiency in
real life settings.

Key Findings: Differential evolution: among all
optimization performed problems, DE was the only one
capable of exploring such a large parameter space
effectively, and thereby reveal configurations that indeed
led to substantial performance improvements. "Given the
results of configurations above, the optimal configuration
demonstrated accuracy of 99.65%, precision at 99.35%
and F1 score of 99.40%." These results summarize the
ability of DE to explore and exploit a complex
hyperparameter space efficiently.

Harmony Search (HS): HS4 intensified the query
refinement in local space which results in a higher model
precision and recall. The best setting achieved 99.80%

accuracy with a precision of around 99.50%, an F1 score
of about 99.55%. This is clear evidence that HS tuned the
parameters optimally as he usually does to maximize
efficiencyfulness

Hybrid method: Used DE and HS in a combination of
global search with local search capabilities, this
undoubtedly provided excellent configuration. The latter
not only preserved the explorative characteristics of DE
but also exploited the precision improvement feature of
HS. 100.As a result of optimallye used hybrid
configuration, the model was able to produce very good
values on all metrics, specifically an exceptional accuracy
of 99.87%, precision ration at 99.77% and an F1 score
reaching also high value being equal to 99.80%.

The above results thereby validate our claim, that
incorporating sophisticated neural network design
paradigms with the right optimization approach
dramatically increases IDS performance concerning
identification of imminent cyber threats in IoT settings.
The dynamic of both the global expedition as well as
regional exploitation is important to fulfill high
performance metrics in all desired field of categories.
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Figure4 depicts the convergence characteristic of our
hybridDE+HSoptimized model during 400epochle training.
Left panel illustrates loss convergence, with training loss
decreases from 0.45 down to 0.02 and validation loss falls
from 0.48 down to 0.03. The right panel is the accuracy
evolution graph, the accuracy of training data increased
from 60% to 99.9% and the accuracy of testing data up to
99.87%. The small gap (0.01 in loss, 0.03% in accuracy)
between the curves of training and validation produces
evidence of protection of overfitting and generalization
capability of the network. Convergence also becomes stable
after epoch 350, justifying the early stopping in testing and
suggesting the thrive of the hybrid optimization method.

Table 9: Summary Table of Optimal Configurations for Each Strategy.

Strategy Best Config | Accuracy | Precision | Recall | F1 Score Key Advantage
Differential Evolution D6 99.65% 99.35% | 99.45% | 99.40% Global exploration capability
Harmony Search H6 99.80% 99.50% | 99.60% | 99.55% Local fine-tuning precision
Hybrid DE+HS Co6 99.87% 99.77% ] 99.82% | 99.80% Balanced exploration-exploitation

Performance Gain The 2-stage optimisation yielded 0.07%
gain in accuracy over HS alone and 0.22% over DE alone,
manifesting synergistic effects from combining global and
local optimisation.
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Figure 5: Component Contribution Analysis

ROC Curves Comparison

Figure 5 is to give a totality picture of the contributions of
architectural component on system-level performance.
Results The left panel of the Fig.l presents accuracy
evolution of different configurations, including the
incremental improvements from the baseline dense
architecture (94.23%) to the complete hybrid system
(99.87%). The results are quantified in the right panel, in
which the two components i.e., individual GRU and
LSTM  modules contribute 2.22% and 2.89%
improvements, respectively, and the collective is 4.11%
enhancement. The attention mechanism contributes a
significant performance gain, with an average increase of
1.53% over settings. The use of the full architecture leads
to an optimal 5.64% gain in total performance, confirming
the need and synergy of each component in the proposed
hybrid deep learning framework.
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Figure 6: ROC and Precision-Recall Curves for Optimal Configuration

Classifier performance on T-test value can be visually seen
on ROC (Fig.6 left panel) and Precision-Recall curves
(Fig.6 right panel) at different operating threshold. The
ROC analysis reveals excellent performance with AUC =

0.9994 for our hybrid approach while it is superior to the
DE-only (AUC = 0.9987) and HS-only (AUC = 0.9991)
configurations. The Precision-Recall curves show that our
hybrid approach is effective when dealing with class
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imbalance, as our method achieves AP = 0.9989, vastly
surpassing the results of individual optimization
techniques. The curves show a stable high precision at all
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recall levels, which confirms the robustness of our method
for minority attack class detection.
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Figure 7: Hyperparameter Optimization Convergence Dynamics

Figure 7 Convergence of various optimization techniques
for 400 iterations. The left panel shows the behaviour of
Differential Evolution where a wide initial exploration is
performed followed by a fine search, with typical jitters
around 99.65%. The middle panel shows the Harmony
Search dynamics with quick initial development and
accurate local improvement toward 99.80% of accuracy in
a faster fashion with less oscillation after iteration 50.
Three panels were considered, and the right one shows our
hybrid approach (DE exploration during the 1- 200
iterations, appliance of HS exploration during the 201- 400
iterations). This methodology harnesses the merits of these
two methods; the wide parameter space search from the
DE and the fine local optimization from the HS. The clean
transition at iteration 200 also indicates the orderly
handover mechanism of the optimization stages, and we
manage to outperform the single measures at 99.87% with
computational efficiency.

In summary, the above table aims to demonstrate different
optimization strategies leading to best performing
configurations respectively while enhancing the true

positive rate and total performance of our intrusion system.

This comprehensive analysis and comparison offer in-
depth understanding of the ways different optimization
approaches can be well-suited to complex systems such as
IDSs for 10T, carving a path that promises robustness and
adaptability against modern-day cyberchallenge.

5- Discussion

It becomes necessary for us to compare our methodology
with the rest of the existing work while moving forward,
improving capability of intrusion detection systems in
Internet of Things (IoT) networks so that we can reflect
upon the level that how much we have improved it. The
comparative framework of this analysis is designed to
compare the performance, and technological characteristics
of our newly developed models with four foundational
articles. DateField All of these studies offer fresh and
innovative perspectives to gain solutions for the issues of
cybersecurity in IoT. Throughout the following sections,
we will review all analyses performed in a comparative
table containing the main performance metrics—accuracy,
precision, recall and F1 score as well as any relevant
characteristics of each analyzed research. By taking this
comparative approach we have demonstrated the strength
of our methods in direct comparison between certain
metrics, and it also sheds light on important characteristics
as well as strategic advantages for each model. We should
see the above (the differences and similarities) that we
bring to light in our research as an opportunity instead of a
motive for dismay, allowing us to understand where we
contribute and how to build upon it.

Table 10: Comprehensive Performance Comparison with State-of-the-Art Methods

Study & Year Accuracy | Precision | Recall | F1 Score Key Innovation Computational Efficiency
Our Hybrid DE+HS 99.87% | 99.84% | 99.85% | 99.85% | Dual-optimization strategy Optimized for [oT
Our DE Only 99.65% | 99.35% | 99.45% | 99.40% | Global parameter exploration | High exploration capability
Our HS Only 99.80% | 99.50% | 99.60% | 99.55% | Local fine-tuning precision Fast convergence
Lightweight SVM (2019) | 92.00% | 89.00% | 91.00% | 90.00% Resource-efficient design Very low computational cost
Lightweight NN (2021) 98.94% N/A N/A 98.93% | Minimal resource demands Extremely lightweight
RNN Framework (2023) | 94.11% N/A 85.42% | 90.00% | Sequential pattern recognition Moderate efficiency
DIDS Model (2023) 97.50% | 93.00% | 95.00% | 94.00% | Unknown attack prediction Enhanced throughput
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Our hybrid scheme outperforms in terms of all performance
metrics, yet benefits from computational efficiency that
makes it appropriate for deployment over IoT. The 0.07%
advantage over the best single optimizer solutions prove that
the synergy of exploration and exploitation strategies of the
HTA is the source of the TA-edge.

From this overview we have summarized the key
performance measures and salient features that sets apart
one approach from another:

Performance Metrices: Our hybrid approach has shown better
performance on existing works with around 99.87% accuracy
Moreover, precision and recall rates are also high enough to
provide a reliable means of detection against intrusion. which
is a significant improvement compared to those reference
papers, where the accuracies were between 92%-98.94%.
Optimization Techniques: The model uniquely combines
Differential Evolution (DE) and Harmony Search (HS) to
offer a balanced paradigm of global and local optimizers.
Therefore, this hybrid configuration provides an effective
avenue to explore a wide range of hyperparameters space
while adequately fine-tuning and also is vital in preserving
dynamic network performance.

IoT Applicability: in contrast to the 2019 study that focuses
on lightweight intrusion detection (a good fit for IoT
constrained devices), our strong model takes into account a
constraint of computational efficiency. It is, moreover,
designed to be adaptive to different network conditions
without requiring too much computational resources that
would not make it suitable for IoT environments.

Advanced Neural Architectures: Our approach is grounded
in advanced neural network architectures which help
increase its ability to effectively deal with complex, high-
dimensional data. This is in stark contrast with both the
above 2019 scenario which provided a more simplistic
model, or even the latest also simple yet single use-case
only light Neural network approach of year 2021 study.
Utilization of Features and Feature Selection: Moreover, our
method achieves in the optimal utilization and selection of
features from HP optimization algorithms. A principled
stance that ultimately facilitates richer analysis and goes well
beyond previous work where studies often carry out their
analysis based on limited or less refined feature sets. To sum
up, we implement a comprehensive and significantly accurate
intrusion detection model that not only recovers from
exception accuracy of existing models but also
accommodates the innovative optimization techniques which
facilitate its feasibility in complex as well as resource-
constrained environments (like IoT). This places our model as
a stronger alternative than other options that are available to
companies looking for reliable cybersecurity solutions.

6- Conclusion and Future Prospect

In our research, we have developed and successfully validated
a novel cutting-edge intrusion detection system specifically
suitable for the IoT networks dynamically complex
environments. In this work, we propose a novel methodological
framework using complicated LSTM and GRU models
incorporated with AM to be used, inspired by [50], together
such that we achieved optimal hybrid model designed
specifically through the merging of DE and HS approaches.
Comprehensive evaluation of the efficacy in comparison
to both traditional and state-of-the-art methods revealed
our proposed system outperforming on all major
performance metrics such as accuracy, precision, recall
and fl-score. The more we can allow our model to be
adaptive and responsive to emerging threat patterns, while
keeping their base detection capacity high, the more robust
tool they present for securing [oT infrastructures.

Future Prospects: Therefore, the future of these intrusion
detection systems in IoT environments is promising, yet quite
challenging. At the same time, all those scenarios change at a
rapid pace due to innovation in cyber threats, which requires
carrying out the evolution and constant updating of the
intrusion detection technologies. Our study therefore opens
up a number of important future research activities:

1. Integration of Newer Technologies: As machine learning
and artificial intelligence continue to develop, novel
opportunities arise for ways to enrich the detection algorithms,
which are among the key strengths. Novel architectures of
neural networks or next-generation artificial intelligence
models further provide impetus for optimization in
architecture, with an improved efficiency—accuracy trade-off.
2. Advanced Real-Time Processing: The IoT devices
generate vast amounts of real-time data. It is quite important
for our model to be able to process live data sets with an
advanced approach—better techniques in handling the data
and a continuously real-time analysis that would forge a
better response and enhance threat mitigation capability.

3. Cross-Domain Applicability: The generalization of our
model could be across the various domains of Industrial [oT,
Smart Cities, Health, etc. for providing holistic security
solutions. Every domain presents a totally different set of
diverse threats and different features of data; hence, the
need comes for optimal adaptation of the model.

4. Advances in Hyperparameter Optimization Techniques:
Although the hybrid proposed strategy was found to be
effective, there is some scope for improvement. Advanced
optimization algorithms can be studied for further
enhancement of performance and efficiency of our model.
5. Comprehensive Cybersecurity Frameworks: Embedding
our intrusion detection system in comprehensive
cybersecurity frameworks can offer more complete
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defense mechanisms against cyber threats. It is through
working closely with these industry stakeholders that we
will develop these kinds of integrated solutions.

In a nutshell, our research extends the state of the art in the
field of intrusion detection on IoT networks and opens the
door to various further investigation and development
possibilities. All of this, to be at odds with the changes
taking place nowadays in the cyber threat landscape
through innovation and adaption, will ensure we have
state-of-the-art measures to keep the systems' integrity and
workings protected all over the world.
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