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Abstract

The use of mobile devices with limited processing power has surged in recent years, alongside the expansion of cloud and
fog computing across various sectors. These devices can handle small to medium computing tasks, but they fall short when
it comes to large-scale processes, making computational offloading a crucial solution. Cloud computing and fog computing
provide an effective platform for offloading tasks from mobile devices. However, critical real-time applications necessitate a
near-edge approach to managing the computational load. Significant challenges exist in optimizing response times for
effective offloading in cloud computing. This research introduces a framework for predicting response times using Deep
Belief Network (DBN) learning to enhance offloading performance. Implementing a DBN aims to minimize response times
and resource consumption, thereby improving the overall efficiency of offloading processes. The framework is designed to
predict response times accurately, ensuring timely completion of tasks and efficient use of resources. Simulation results using
multiple models show that the use of DBN significantly reduces processing, response, and offloading times compared to other
algorithms. Consequently, the DBN algorithm proves to be more efficient in predicting response times and enhancing
offloading performance. By leveraging the capabilities of DBN, this framework provides a promising solution for optimizing
computational offloading in cloud computing environments. This enhances the performance of mobile devices and ensures
the reliability and efficiency of real-time applications, direct the way for more advanced and responsive computing
technologies.

Keywords: Computational Offloading; Cloud Computing; Deep Belief Network; Response Time; Resource Management;
Sustainable Smart Cities; Real-time Management.

Nevertheless, mobile cloud computing encounters
challenges such as limited network bandwidth and

1- Introduction

The proliferation of mobile devices has substantially
increased computing demands, introducing new challenges
in communication networks and resource provisioning. Due
to their limited resources, mobile devices struggle with
large-scale image processing and real-time conversion
services [1]. Cloud computing technology helps mitigate
these limitations; however, it is not applicable for real-time
applications considering latency issues. Consequently,
offloading computational tasks to independent platforms
becomes a practical solution. For instance, the mobile cloud
can provide maximum advantage for mobile video gaming
and streaming [2].
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offloading latency. Transmitting data from mobile devices
to distant clouds consumes significant bandwidth, leading
to traffic congestion and increased latency. Latency-
sensitive applications require offloading to nearby
locations, such as the nearest edge or mobile fog, to address
these issues [3].

Cisco Systems introduced fog computing as an extension of
cloud computing, bringing its capabilities to the network’s
edge. This extension benefits [oT services by supporting
latency-intolerant mobile services. Numerous studies have
focused on standardizing the computational offloading
process at the edge or mobile fog, particularly in selecting
mobile application units. Challenges related to offloading at
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the mobile edge or fog include mobility, heterogeneity, and
geographic distribution of devices.

As the digital world expands and network technologies
evolve, complex services are emerging [4]. The generation
of  online applications featuring computing,
communication, and intelligent capabilities continues to
grow. Despite the growing power of current devices, they
still struggle with tasks required for smart healthcare,
augmented reality, intelligent car communication, and
many smart city services. These applications often require
another individual to execute tasks as a representative of the
user's device, a technique known as process offloading [5].
Task disburdening is especially advantageous for Internet
of Things and cloud computing requisition, facilitating
interactions between edge devices or fog nodes and sensors
and IoT nodes. Load shedding can be established on
computational requirements, load balancing, energy
management, and latency management [6].

In a data-rich world, mobile devices with limited resources
can handle small-to-medium computations but struggle
with high-level computations. Processing offloading is an
effective solution to overcome this limitation. Recently,
cloud computing has been recognized as a suitable platform
for offloading tasks from mobile devices. However, the
distance of cloud data centers from mobile devices
increases network latency and affects the performance of
real-time loT applications.

For essential real-time applications, employing a near-edge
network approach for computing offload is vital.
Additionally, the primary controls for distributed mobile
devices are heterogeneous in the offloading process of
mobile computing. To overwhelm these contests, a deep
learning-based response time prediction framework has
been implemented to optimize offloading decisions near
fog/edge or cloud nodes.

The objectives of this research are:

e Enhance Offloading Performance: Develop a deep
learning-based framework to improve
computational offloading efficiency.

e Minimize Prediction Error: Achieve the lowest
discrepancy between actual and predicted
response times using deep learning techniques.

e  Boost Prediction Accuracy: Enhance the accuracy
of response time predictions with the proposed
deep learning method.

The paper is structured as follows: Section 2 covers related
concepts and foundational research. Section 3 outlines the
technical methodology, including the proposed method and
framework. Section 4 analyses the proposed framework,
presents results, and evaluates their theoretical implications.
The final section discusses the results' implications and
concludes with future trends and perspectives.

2- Background

This section explores concepts and metrics used in
computational offloading, IoT middleware technologies,
technologies that enhance fog computing tasks, and
offloading methods in fog and cloud computing. The
interplay between cloud, fog, and mobile computing
models, concerning large computing resources, is analyzed.
The literature review also covers computing resource
allocation methods and achievements in cloud computing
offloading.

Cloud computing resources are managed using
virtualization technology. For example,[7] explains optimal
virtual machine placement, examining distribution methods
in cloud data centers. Most resource allocation mechanisms
are designed for green computing. The DPRA allocation
mechanism, discussed in [8], considers energy consumption
of virtual and physical machines and data center air
conditioning. A comparison of three schemes with DPRA
shows energy savings, PM shutdowns, and reduced VM
migrations.

In [9], a multi-objective optimization algorithm balances
availability, costs, and performance for running big data
applications in the cloud, outperforming conventional
methods by reducing costs and achieving higher
performance. However, the study focuses on big data
applications.

In critical real-time applications, for example, patient
control systems and intelligent transportation, mobile cloud
computing offloads large tasks while maintaining quality
standards [10]. A mobility-aware resource allocation
architecture, Mobihat, provides efficient scheduling but
does not study the impact of mobility on delay and response
times for real-time mobile services.

Offloading mobile edge computing with multiple users,
based on TDMA and OFDMA, is introduced in [11]. The
TDMA-based method reduces mobile energy consumption,
while the OFDMA hybrid model transforms into TDMA,
defining a discharge priority function for optimal resource
allocation.

The optimal computational offloading framework for
DNN:s is presented in [12], considering mobile batteries and
cloud resources. This method evaluates energy
consumption and execution time.

In [13], battery life of nearby mobile devices is used to
select discharge positions. A non-interactive game model,
maximizing player payoffs, reduces response times. The
Nash equilibrium is obtained through the game model and
indirect induction method, evaluated for response time,
end-user benefit, and memory usage. Yang et al. [14]
address high implementation delays among mobile devices
and fog nodes using queuing theory. Data rate and power
consumption are selected as decision parameters,
formulating a multi-objective optimization problem to
decrease transmission energy consumption, power, and
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cost, determining the probability of discharge for all mobile
devices.

A survey on stochastic-based offloading methods in
different computing environments, including mobile cloud,
edge, and fog computing, is proposed in [15]. The
classification is divided into Markov chain, Markov
process, and hidden Markov models, discussing open issues
and future challenges.

In [16], a multi-objective optimization model addresses
time and energy consumption of mobile users and edge
server resource utilization. An edge-cloud joint offloading
method, based on the evolved Strength Pareto algorithm, is
effective and efficient for scenarios with multiple mobile
users and heterogeneous edge servers.

An offloading architecture, combining intelligent
computing with Al, is presented in [17]. Considering
mobile task data size and edge node performance, a load
shedding and task transfer algorithm optimize edge
computing offloading. Experiments show reduced task
delay by increasing data and subtask execution.

Du et al. [18] address offloading in a cloud-cloud
environment, supporting a heterogeneous model to consider
task communication cost asymmetry. They prove the NP-
hard nature of the problem and design an efficient algorithm
for an optimal solution, evaluated through a PageRank-
based program in a controlled cloud edge setting.

An adaptive wireless resource allocation strategy for
computational offloading, under a three-layer edge cloud
framework, is studied in [19]. Modeling the offloading
process at the minimum block level of allocable wireless
resources adapts to vehicular scenarios and evolves in the
5G network. The proposed value density function measures
cost-effectiveness and energy saving. Numerical results
show the designed algorithm achieves significant running
time and energy savings, with superior performance
compared to benchmark solutions.

An autonomous computational offloading framework is
presented in [20] for time-consuming programs, addressing
control model challenges for managing computing load.
Various simulations, including deep neural networks and
hidden Markov models, are performed. Results show the
hybrid model fits the problem with near-optimal accuracy
for discharge decisions, delay, and energy consumption
predictions. MAPE 1is used for discharge, collection, and
processing for decision making. The proposed method
outperforms local computing and offloading in latency,
energy consumption, network utilization, and execution
cost.

In [21], minimizing average task execution time in edge
systems, considering job request heterogeneity, application
data pre-storage, and base station cooperation, is addressed.
A mixed integer nonlinear programming (MINLP) problem
is formulated and addressed using decomposition theory.
The GenCOSCO algorithm improves service quality and
computational complexity. For fixed service cache

configurations, the FixSC algorithm derives evacuation
strategies, with simulations showing significant task
execution time reductions.

Peng et al. [22] propose three multi-objective evolutionary
algorithms to tackle the computing offloading challenges in
IoT for edge and cloud networks. They developed a
constrained multi-objective load calculation model that
accounts for time and energy consumption in mobile
environments. Drawing inspiration from the push and pull
search (PPS) framework, they introduced three algorithms
(PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE) that
integrate population-based search with flexible constraint
control. These algorithms were tested using multi-task,
multi-user scenarios across various [oT devices. The results
demonstrated their effectiveness and superiority.

Other research presents a user-centered joint optimization
offloading scheme designed to minimize the weighted costs
of time delay and energy consumption. The mixed-integer
nonlinear programming problem is addressed using a
particle swarm optimization algorithm that incorporates 0-
1 and weight improvement techniques. Simulation results
indicate higher performance in delay, energy consumption,
and cost [23].

In [24], a computation offloading scheme via mobile
vehicles in a cloud-IoT network is proposed. Sensing
devices generate tasks and transmit them to vehicles, which
then decide whether to compute the tasks locally, on a MEC
server, or at a cloud hub. The offloading decision is based
on a utility function that considers energy consumption and
transmission delay, using a learning-based approach.
Experimental results show that this solution maximizes
rewards and reduces delay.

Based on the research discussed, various techniques can be
adopted for cloud computing offloading, depending on
priorities. This research proposes using a response time
prediction model based on deep learning to determine the
optimal offloading position. The impact on delay and
energy efficiency will be evaluated to improve offloading
performance by minimizing the error between actual and
predicted response times.

3- Methodology

A mobile fog node expands the capabilities of fog and
mobile cloud computing models by offering a localized
system to minimize potential delays and execution times
while maintaining continuous and direct communication in
conjunction with the cloud data center. The proposed
model, depicted in Figure 1, encompasses three offloading
positions: the cloud data center, adjacent mobile station, and
mobile fog. This setup is supported by the LTE hierarchical
architecture and the Wi-Fi intra-network reference model,
situating the mobile fog at the network's edge. Access points
and access point controllers operate as mobile fog nodes.
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Fig. 1 Mobile Fog System Model for Computational Offloading -
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AAA via Extensible Authentication Protocol-Authentication and Key
Agreement(EAP-AKA) over Internet Key Exchange version 2 (IKEv2)

Within this architecture, the mobile edge/fog is represented
by the fog-1 node, the mobile fog by the fog-2 node, and the
public cloud serves as the third offloading position, referred
to as the cloud node. Communication within the fog is
enabled by the Evolved Packet Core, which provides the
Evolved Packet Data Gateway.

Access points not only facilitate communication between
mobile stations but also offer cloud services such as,
Network as a Service (NaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). IEEE Ethernet
interfaces connect access points to access point controllers,
while IEEE 802.11 WLAN interfaces link mobile stations
to access points. The access point controller manages block
code migration, overseeing memory, processing, 1/0, and
networking capabilities to sustain mobile cloud services.
Hence, the access point controller similarly serves as a fog
network controller. In Figure 1, fog-enabled access points
are labeled as "fog-access points," and access point
controllers are designated as "fog-access point controllers."
Mobile station authentication is conducted by the 3GPP
AAA via EAP-AKA over IKEv2, with the verification and
validation vector derive through the shared home server unit
in the LTE network. The data network gateway, which
handles access to user equipment or mobile stations and
virtual machines (VMs), has evolved into a packet data
gateway. The top module, the public cloud, functions as a
traditional delivery network, providing pervasive and
scalable services accessible via the web using both mobile
and static devices.

3-1- Unloading Node Process

This section details the offloading process based on the
previously described model, with a focus on the fog/mobile
edge. In critical real-time applications, nodes such as public
cloud and mobile fog and mobile edge are physically
dispersed to deliver services to mobile cloudlets, which are
resource-limited mobile stations. Due to the dynamic nature
of these applications, request times are unknown and
random, with variable response times, making it
challenging to identify the optimal offloading node.

To tackle this issue, a deep learning-based approach is
recommended. This approach learns from the request
history and response times of nodes to predict future
response times. The node with the lowest predicted
response time is then selected for offloading. The
relationship between the computing requirements of cloud
or fog nodes and the response time of virtual machines is
complex.

Predicting workload data patterns is challenging due to their
non-consecutive nature. Therefore, aggregated workload
data characteristics of VMs are used instead of single VM
data for prediction purposes. A deep learning model can
better determine workload data dispersions based on
inherent data characteristics, outperforming simpler
models. This preference is due to the deep model's ability to
learn complex relationships between workload data
features. Although structurally similar to a Multi-Layer
Perceptron (MLP), a Deep Belief Network (DBN) has a
diverse training method, allowing it to address gradient
fading effectively.
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Fig. 2 Flowchart of the DBN-based offloading decision process,
integrating predictive modelling, fallback selection via p-model, and
feedback-driven model updates for sustainable smart city applications.
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Figure 2 illustrates the complete workflow of the proposed
DBN-based computational offloading system for smart city
environments. The process begins with data collection from
mobile devices and virtual machines, including historical
request patterns and aggregated workload characteristics.
After preprocessing and feature extraction, the data be used
for DBN step, which performs multi-layer encoding and
pattern recognition to predict future response times of
candidate nodes. Based on these predictions, the system
attempts to select the node with the lowest latency for
offloading. If due to unpredictable workload patterns or
insufficient confidence no suitable node is identified, the
system activates a fallback mechanism using the p-model,
which randomly selects a server based on predefined
probability. The final stage involves task execution and
feedback logging, which continuously refines the DBN
model for future decisions.

3-2- Deep Belief Network (DBN)

A Restricted Boltzmann Machine (RBM) can extract
features and recreate data entry, in spite of that, it struggles
with gradient blurring. To address this, multiple RBMs can
be combined with a classifier to form a Deep Belief
Network (DBN). This method, known as greedy layer-by-
layer unsupervised pretraining, involves training the DBN
two layers at a time, treating each pair of layers as an RBM.
In this architecture, the hidden layer of one RBM acts as the
input layer for the subsequent RBM. The training process
starts with the initial RBM, whose outputs are fed into the
next RBM, and this sequence continues until the output
layer is reached. Through this process, the DBN identifies
inherent data patterns, functioning as an advanced multi-
layer feature extractor. A unique aspect of this network is
its ability to learn the complete structure of the input at each
layer, similar to a camera gradually focusing an image.
Finally, labels are applied to the resulting patterns in the
DBN. The DBN is subsequently fine-tuned through
supervised learning using a small set of labeled samples,
with minor changes to weights and biases leading to a
marginal increase in accuracy.

The proposed approach includes a deep belief network with
one-layer neural network. This method employs an
unsupervised approach to extract more robust and helpful
features from VM workload data. By increasing the hidden
layers in the DBN, the error gradient is significantly
amplified before being minimized. Training is conducted
using an unsupervised greedy layer-wise method. To further
optimize, the DBN's top layer utilizes a standard sigmoid
regression. Future request predictions are generated by
analyzing response times in terms of bandwidth (B),
memory (M), and processing capability (P).

As presented in Figure 3, inputs to the DBN model include
the bandwidth, memory and processing capability of entire
requests, along with the recent workload of all VMs. These

data cover actual response times discovered over various
time spans. For each node, the trained DBN models predict
response times, with input values normalized between 0 and
1. The core layer's units equal the sum of the VMs in the
cloud and the time slots.

Number of Units=VM XTI )
Where:
VM represents the number of virtual machines.
T1 represents the number of time intervals.
This simple yet effective formula helps determine the total
number of units required based on the given parameters.
Alternatively, a supervised approach with a precisely
configured logistic regression layer can be employed to
label the data and predict the workload of a VM.

Input Value Output Value
O+
O
O r
~

" hin-1)

Fig. 3 Stacks before RBM Training

Initially, the standard binary RBM is modified to a

Gaussian-Bernoulli RBM. The visible unit biases in the

RBM energy function are adjusted to include quadratic bias

terms [3]. An example of a load shedding decision session

is shown in Table 1. The Energy function and Conditional

Probability Distribution are conveyed in following way:

—a)? .

E(x,h|0) = f:l% - Y b - YK, Z?ﬂz—:hjwij
2

P(hilx; 0) = 6(iy wiyx, + by) 3)

P(x;|x; 0) = N(o; XiC, wijx; + aj,07) 4)

Table 1: Description of symbols

Symbol Description
U mean
a? variance
o standard deviation
P probability
E expectancy
X observable variables
H common hidden space of variables
w linear mapping coefficient
B bias

In this context, the Gaussian distribution's probability
distribution function is represented by N(u,c?), where p is
the mean, and o? is the variance vector. Hinton’s training
method outlines the prediction process as follows:
Unsupervised Training: The RBN visible and hidden
layer are trained. The RBM input comprises a request
section and a response time dataset. 8 is the only non-
continuous parameter in the RBM.
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Layer Inheritance: Each visible layer in RBM inherits and
utilizes the extracted features of the preceding RBM as its
input. This process is repeated for subsequent RBMs, with
the parameter 0 retained for the next and initial RBM.
Input to Logistic Regression: The regression layer is
trained using labelled data in a supervised manner; and
input of that is the output of the final RBM.

Supervised Training: The 0 parameters are trained and
adjusted using the backpropagation (BP) algorithm.

The deep belief network-based response time prediction
method leverages edge/cloud computing to accurately
determine whether to offload computations to a
neighbouring node, an edge/fog node, or a cloud node. To
handle the unpredictability of resource availability in
edge/fog and cloud nodes, the proposed offloading
procedure leverages the technique of RBM learning.

To begin the substantial data volumes and the demand for
real-time applications, particularly in the e-health sector, a
near-edge network approach for offloading computations is
recommended. This strategy addresses the primary controls
for distributed mobile devices, easing the offloading
process in mobile and heterogeneous computing
environments. A deep learning-based response time
prediction framework has been developed to enhance
computational offloading performance, determining the
optimal offloading target, whether it's a nearby fog/edge
node, an adjacent fog/edge node, or a cloud node.
Additionally, the Restricted Boltzmann Machine (RBM)
learning technique is utilized to handle the variability of
resource availability.

In this study, the DBN model was trained using aggregated
workload data collected from simulated virtual machines
operating under diverse conditions. The training process
involved unsupervised pre-training of Restricted
Boltzmann Machines (RBMs) followed by supervised fine-
tuning using labeled response time data. Training was
conducted on a standard CPU-based computing
environment, which, was sufficient for the scale and
complexity of the dataset used. The total training time
varied depending on the configuration, typically ranging
from 30 minutes to 2 hours. Once trained, the model was
deployed for inference on edge servers, where its
lightweight architecture enabled real-time prediction
without significant computational overhead. This setup
demonstrates that even without specialized hardware, the
DBN-based offloading strategy remains practical and
effective for mobile and fog-based environments.

4- Result and Analysis

This section examines the performance of the proposed
models. The simulation results integrate real mobility
tracking, server datasets, and model implementation on
actual machines. Subsequent sections will explore the

performance benefits of DBN-based models using three
probability distributions (uniform, normal, and exponential)
to achieve accurate results.

4-1- Data Collection

To simulate mobile node movements, a dataset of vehicle
movements in Rome was utilized, as referenced in [25].
This dataset comprises coordinates of 320 taxis collected
over 30 days, including their coordinates, date, time, and
GPS location. Mobility tracking treats any movement as a
point in time to check server or dump time, rather than
studying user mobility. Each movement is modeled as an
interaction with a mobile edge computing server.
Processing times are obtained from real servers (CPU
usage), involving around 150 data servers (over 1 billion
rows). With e very movement, a server is selected from the
dataset, its utilization is checked, and an unloading decision
is made based on the model's recommendation.

The evaluation spans more than five days (5000 rows of
movements). An evacuation decision is made every minute,
resulting in over 1000 evacuation decisions, ensuring the
proposed models' behavior is observed over an extended
period. The DBN-based response time prediction method
leverages edge/cloud computing to determine whether to
offload computations to a neighboring node, an edge/fog
node, or a cloud node.

Given the challenges posed by large data volumes and real-
time applications, particularly in the e-health sector, a near-
edge network approach was recommended for offloading
computations. The proposed RBM learning technique
addresses the randomness of resource availability.

Figure 4 distribution of server usage probabilities across all
servers in the dataset. The data generally follows a normal
distribution, illustrating typical CPU utilization patterns
observed during simulation.
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Fig. 4. CPU usage distribution of servers (CPU unit is percentage and
Density is J)
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Table 2 sample load shedding decision session, showing
CPU consumption values for selected mobile edge
computing servers at specific geographic positions and time
intervals.

Table 2: Dataset Sample Used in the Experiment. (ID: xx6, Motion Time
Interval: 10 Seconds

Position Machine CPU Consumption
e [ e | s
T Viivages | Mo a7
Camt e |
)éjlii%99201 M_xxdl 37

4-2- Evaluation

This section focuses on simulating and evaluating the
proposed evacuation rules across various variables. The
primary aim is to observe the models' behavior under
different conditions, allowing generalization to parameters
such as quality of service and response time concerning
computational load.

MATLAB software is chosen for the simulation, which can
perform process-based discrete event simulation. The
“Advance Mode” is selected for the probability distribution
of the random variable X, including time (processing). In
the simulation, a resource actually is a mobile edge
computing server k that is modelled and can advertises its
processing time Xk. A process is a mobile node that
modelled to traverses the mobile edge computing servers
and checks latency of each server based on the processing
time. Initially, we consider n=5, means having five mobile
edge computing servers. The processing time X follows a
normal distribution (50 ms to 10 ms), a uniform distribution
in the interval [0-1], and a binominal distribution of 50
J/mol. MATLAB has generated incidental variables
following the determined apportionment.

At every initiation, a node begins polling the mobile edge
computing servers consecutively, starts with server one. At
this step, the proposed approaches are utilized to choose a
mobile edge computing server. The important parameters in
processing time are waiting time, delay and total delay.
Additionally, based on the program types, the range of
processing time differs from 100 milliseconds to 800
seconds, and in intervals of 10 milliseconds to 30
milliseconds. Therefore, various ranges for parameter X can
be considered derived from the proposed models, which
producing similar outcomes as observed in the experiment
dataset. Table 3 shows the values and range of parameters
in the simulation test.

The main approach used in the simulation involves
comparing values obtained from other studies, random
values, the nearest server (immediate loading), and a

method from the same family of algorithms proposed in this
work. This evaluation is limited to comparisons between
different models, including the random and probabilistic
model (p). These approaches are compared to the superior
option, where the server or time with the minimum value is
chosen.

Table 3: Simulation Parameters Values for all Methods

Parameters Value / Range of Values
X N0, 50) & U(0, 1)
No. of mobile nodes 1000
N {3,5, 10}
P for p-model 0.8
R {0,0.25,0.5, 1}
{30, 40, 50, 60}
0 {0.3,0.4,0.5,0.6}
{20, 30, 40, 50, 60}
{1,2,3,4,5,20,30}
C {0.1,0.2,0.3, 0.4}
{1, 10, 15, 20, 30, 40}

The reasons for adopting this approach are as follows:
Primarily, this research emphasizes data decision-making
and task offloading. Additionally, deep learning algorithms
inherently differ from traditional algorithms, especially
when the decision maker lacks complete information. Thus,
the approach to optimality is the main analysis for
evaluating these algorithms. Optimization is suitable when
all server information is available to the decision maker,
facilitating the mobile node in determining the ideal
offloading location. Ultimately, these algorithms are
implemented in sequence, complicating direct comparisons
with other algorithms.

In this setting, in the absence of offloading rules, the mobile
node will likely choose the first available mobile edge
computing server. For edge computing load, such an
offloading method is optimal for task offloading. So, the p-
model method is utilized as a fallback technique. In the p-
model, each server is assigned a loading probability, set to
p=0.8. During each user move, each server has a probability
p=0.8 of being selected to load the job. In this experiment,
increasing p intensively the probability of selecting the first
server for loading. Consequently, the p-model replicates the
scenario where the mobile node chooses the nearest servers
that is closest edge servers due to the higher probability
p=0.8.

When evaluating the actual dataset, if a server is preferred
(server is chosen for loading) the process stops; if no server
is preferred, the last server is chosen. A server is randomly
preferred for each user to offload the work in the random
selection model.

The results of all models are compared with values obtained
from the proposed model, where the server with the shortest
processing time is chosen for each unloading session.
Models that are closer to the optimal value demonstrate
superior performance in offloading decisions. The optimal
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model is achieved by choosing the server with the shortest
processing time for each load sequence.

4-3- Results

The simulation results evaluate the performance of the
proposed DBN-based offloading model across multiple
dimensions, including execution time, server usage, energy
efficiency, and successful offloads. The evaluation spans
three distinct probability distributions for the processing
time variable X: normal, uniform, and exponential. Each
distribution reflects different real-world workload scenarios
in mobile edge computing environments.

Across all simulations, the DBN-based model consistently
demonstrates  superior performance compared to
benchmark algorithms such as Delay Tolerant Offloading
(DTO), Best Choice Problem (BCP), Cost-based Optimal
Task (COT), Quality-Aware Odds, Random selection, and
the p-model. The proposed method achieves lower average
execution times, reduced CPU usage, and higher rates of
successful offloads under varying resource constraints.
Figures 5 through 13 present comparative results for each
distribution scenario. These include average processing
times, server utilization, and the number of effective
offloads under different CPU thresholds. The DBN model
shows strong alignment with the optimal model,
particularly in scenarios where resource availability is
dynamic and unpredictable. This confirms the model’s
ability to make accurate offloading decisions and maintain
system efficiency under diverse conditions.

Performance Analysis with Normal Distribution

As illustrated in Figure 5, when the processing time X
follows a normal distribution, the proposed DBN-based
algorithm achieves the shortest execution time among all
evaluated methods. The average execution time for
computational discharge is approximately 40 milliseconds,
outperforming DTO, BCP, COT, and the p-model
algorithms.

Normal Distibution of X
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< Lail AR AL

000 |1 ||.I|| I ||||I.|.
25 30 35 40 45 50 55 60 65 70 75 80

Tme of Process
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Fig. 5 Simulation Results for All Models in Case of X Normal
Distribution.

The figure also reveals a significant overlap between the
DBN model and the optimal model, indicating that the
DBN’s predictions closely approximate ideal offloading
decisions. In contrast, models such as the p-model and
random selection exhibit higher variance and longer
processing times. The BCP model achieves a processing
time of 46 milliseconds, which is lower than the p-model
and random approaches but still less efficient than the DBN.
These results validate the effectiveness of the DBN-based
offloading strategy in minimizing latency and optimizing
resource allocation in mobile edge computing. The model’s
ability to learn from historical workload patterns and predict
response times contributes to its superior performance
across varying conditions.

The results in Figure 6 reveal that the variation between the
optimal model and DBN model is significantly smaller than
the variation detected with other models. Notably, for
models other than the DBN, the optimal threshold for each
experiment k is generally close to the average processing
time of 50 milliseconds. For example, in the DTO model
and COT model, the thresholds generated for n=5 are {40,
42,43, 46, 50}, all near the average processing time.
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Fig. 6 Average Processing Time for Different Models with X Normal
Distribution.

Using these optimal thresholds as a reference, the initial
threshold value for the Odds method is set to 50, with
performance evaluated for various values. The results,
indicate the effective performance of the Odds method. This
performance can be credited to the high likelihood of
choosing a server with a processing time under 50
milliseconds. Thus, by setting a threshold value close to the
average processing time, a shorter processing time is
achieved for unloading the computational load.
Furthermore, the results demonstrate better performance for
the BCP method compared to the p-models and Random
method. The BCP evacuation policy is more likely to
achieve the shortest processing time, leading to a lower
average processing time than other models. This increased
likelihood results in a lower expected processing time
compared to the random and p models

Significantly, while the probability of selecting the best
server is assumed to be similar in the BCP and Odds
models, the defined threshold in the Odds model enhances
performance by ensuring quality-aware decisions when
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examining mobile edge computing servers. The main
conclusion from these results is that the proposed method,
referred to as the optimal model, achieves a shorter
processing time than other methods, thereby reducing
response time and improving the performance of
computational offloading in cloud computing.

Performance Analysis with Uniform Distribution

In the initial results, the random variable X followed a
normal distribution. To achieve more accurate findings, we
conducted an additional simulation with X uniformly
distributed within the interval [0-1] (Figure 7). This range
represents server usage, such as CPU utilization, where a
value of 0.5 indicates 50% CPU usage. We applied similar
steps to all models, as in previous experiments.

In the DTO model, the delay coefficient initially began at
r=0, with results for other » values presented subsequently.
For the cost-based optimal task model, an ideal threshold
was identified for each cost value in the second set.
Specifically, for c = 0.2, evaluations determined the optimal
threshold to be 0.3. The cost interpretation is similar to the
normal distribution scenario: a higher cost (smaller
threshold V) signifies a greater need for shorter processing
times.
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Fig. 7 Simulation Results for All Models in Case of X Uniformly
Distribution.

In the quality-aware Odds model, the threshold was set to
0.5, yielding a 42% probability of selecting a server with
X=0.5. Though the BCP model shares this probability,
setting the threshold notably improved the Odds model's
performance. Figures 7 and 8 show that model performance
aligns closely with results from the normal distribution
scenario. DTO and COT models remain top performers,
with deep belief network-based models coming closer to
optimality compared to random and p models.

As illustrated in Figure 8, the average execution time for
various algorithms, including the proposed method based
on the deep belief network, has been evaluated. The results
demonstrate that the proposed method achieves a shorter

execution time compared to other methods, indicating a
more efficient response to computational offloading in
mobile edge computing.
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Fig. 8 Average Processing Time for Different Models with Uniform X
Distribution.

Performance
Distribution

Figure 8 demonstrates that the proposed algorithm achieves
an execution time of approximately 0.15 milliseconds,
which is shorter compared to other methods. On the other
hand, the p-model algorithm exhibits the longest execution
time due to the consideration of a threshold value for
selecting servers. These results suggest that the deep belief
network (DBN) method provides superior response times
for computational offloading in mobile edge computing,
attributed to its layered approach.

Besides normal and uniform distributions, this experiment
also included an exponential distribution with a mean of 50.
The same procedural steps were followed as in the previous
distributions. Initially, the delay coefficient in the DTO
method was set to »=0, with results for other » values
subsequently presented. The results under these conditions
are shown in Figures 9.

In the Cost-based Optimal Task model, the figures depict
the optimal threshold values V' corresponding to each cost
value. For this simulation, the cost was initially set to 20,
with the optimal threshold determined to be 45.81, resulting
in the lowest simulated expectation of X among other
values. Performance across various cost values is also
demonstrated. The cost interpretation aligns with scenarios
where X follows normal and uniform distributions: a higher
cost (smaller threshold V) indicates an increased demand for
shorter processing times.

In the quality-aware Odds method, the threshold was set to
50, resulting in a 44% probability of selecting a server with
X=50. The results in Figures 9 and 10 indicate that the
proposed model's performance is consistent with the results
obtained when X follows normal and uniform distributions.
The DBN-based method consistently outperforms other
algorithms, demonstrating the best performance and closest

Analysis  with  Exponential
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proximity to optimality compared to the random and p-
models.

Figure 9 demonstrates that the proposed method with
exponential distribution achieves a lower execution time
compared to other methods. This distribution effectively
guides server selection for mobile edge calculations,
showing that the deep belief network-based method
provides a faster response for computational offloading in
mobile edge computing than other algorithms.
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Fig. 9 Simulation Results for All Models in Case of X Exponential
Distribution.

Figure 10 illustrates the average response time for different
methods with exponential distribution. The proposed
method has a significantly lower response time,
approximately 10 milliseconds, compared to other
algorithms. This demonstrates that the proposed method
surpasses other approaches in reducing response time for
computational offloading in mobile edge computing.

Time of Process for exponential distribution of X

P-model

Random

BCP

Quality-Aware Odds
coT

DTO

Optimal

Fig. 10 Average Processing Time for Different Models With X
Exponential Distribution.

Server Usage and Energy Efficiency

Figure 11 illustrates the average server usage recommended
by each model. The DTO and COT models show results
closest to the proposed method, with DTO performing
better than the others by an absolute difference of 23 units

compared to the proposed method. The findings indicate
that the proposed method has a lower average server
consumption than the other methods, meaning it consumes
less energy for mobile edge calculations.

Additionally, the proposed method, based on the deep belief
network, demonstrates a shorter average unloading time
compared to other algorithms. Consequently, this suggests
that the response time for computational offloading in
mobile edge computing is more efficient with the proposed
method than with others.

Average CPU Usage
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Fig. 11 Average CPU Usage and Average Computational Drain Time by
each Model

Server Consumption and Successful Offloads

Figure 12 illustrates the average server consumption for the
proposed method compared to other solutions. The
proposed deep belief network method demonstrates a lower
average server consumption, indicating that it not only
reduces the response time for computational offloading but
also optimizes server usage. This results in lower overall
server consumption compared to other algorithms.
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Fig. 12 Average Usage of Servers for Different Algorithms.

Result presented the average server consumption for the
proposed method compared to other solutions. The
proposed deep belief network method demonstrates lower
average server consumption, indicating that it not only
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reduces response time for computational offloading but also
optimizes server usage, resulting in lower overall server
consumption compared to other algorithms.
Beyond average server utilization, we compare
performance based on the number of effective offloads for
each model. An effective offload refers to unloading
decisions that meet specific requirements set by each
model. To assess this, we assume three different mobile
edge computing programs (X, y, and z) each with distinct
needs. For example:
e  Program x requires less than 10% CPU utilization.
e  Program y requires less than 20% CPU utilization.
e Program z requires a server with less than 30%
CPU utilization.
If an offload occurs for a server with usage less than 10%,
it is considered a successful offload for program x.
Figure 13 illustrates the effective offloads for various
resource demands across entire methods. The proposed
deep belief network-based method achieves the highest
number of successful offloads in these three cases, with
values of 102, 463, and 1887 successful offloads,
respectively.

Successful Offloads
3000
2500
2000
1500
1000

500

0

Quali
- ty- P-
OPU | 15 ot awar Bcp 2 mod
mal om
e el
Odds

30% CPU Utilization | 1887 952 834 1131 102 473 489
W 20% CPU Utiloization 463 186 250 | 342 297 | 148 135
W 10% CPU utilization 102 53 41 55 43 25 21

Fig. 13 Number of Effective Discharges for each Model Based on
Various Threshold Values.

4-4- Discussion

The simulation results for various methods indicate that the
presented models generally exhibit a time complexity of
O(n) at worst, both in terms of time and space. If each
model's condition is met on server number n, the mobile
node will visit server n. For the DTO, COT, and Quality-
aware Odds models, a pre-observation step involves
generating thresholds. This step is presumed to be executed
a single time by the service provider, external to the mobile
node, although it can be implemented within the mobile

node if necessary. For example, computing the threshold at
the mobile node in the Odds and DTO methods requires
O(n) time complexity. The COT method requires more time
to calculate the threshold, depending on the likelihood
distribution. Merely a sole operation is essential for a
(uniform) distribution, while a normal distribution requires
integration estimation with a time complexity no greater
than O(r’).

Regarding space complexity, the BCP model does not
require additional space for data storage, resulting in a space
complexity of O(n). This also applies to other models,
provided the training step is performed outside the mobile
node. If the training step is conducted locally at the mobile
node, only the probability distribution parameters need to
be stored. For a uniformly distributed X, the maximum and
minimum values are stored, while for exponentially
distributed X, the u mean and o?standard deviation are
required. Previous results showed that the time complexity
of the proposed method based on a deep belief network
(DBN) is O(1), the lowest complexity for predicting time
and improving computational offloading performance in
mobile edge computing.

Analyzing the execution time and server consumption
across different algorithms reveals that the proposed
method is more efficient in performing the computational
offloading process. The results indicate that the proposed
model is completely independent and lightweight for
implementation in the mobile node, outperforming other
compared solutions. The DBN-based method requires less
processing time for computational offloading and task
execution, with lower CPU consumption than other
solutions. This makes it suitable for managing
computational offloading of resources, compressing, or
delaying limited tasks.

A practical scenario that highlights the effectiveness of the
proposed DBN-based offloading mechanism involves a
mobile user engaged in augmented reality (AR) navigation
within a smart city. AR applications are latency-sensitive
and require rapid processing of environmental data, user
location, and graphical overlays. In such a context, the DBN
model predicts the response times of available fog and cloud
nodes based on historical workload patterns and real-time
system conditions. By selecting the node with the lowest
predicted latency, the system ensures that AR content is
rendered and delivered with minimal delay, thereby
preserving user experience and application responsiveness.
In cases where no optimal node is identified, the fallback
mechanism ensures continuity by probabilistically selecting
a viable server. This dynamic and adaptive offloading
strategy demonstrates the model’s potential to support real-
time, resource-intensive mobile applications in complex
urban environments.
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5- Conclusion

The principal aim of this research is to enhance
computational offloading performance in mobile edge
computing. To achieve this, we have employed a
computational analysis method based on the deep belief
network (DBN), incorporating various deep learning
features to improve the evacuation process. By adding
specific steps to the computational evacuation process, we
aim to reduce server consumption, increase process speed,
and decrease response time to computational requests.

In this study, the deep belief network algorithm has been
utilized to further optimize computational offloading,
making it suitable for various cloud computing applications,
including mobile edge computing. The proposed algorithm
focuses on reducing execution time for requests and
increasing the number of successful offloads within the
mobile edge computing system. By combining different
distribution functions and the core features of the DBN
algorithm, our method seeks to enhance efficiency and the
volume of computational offloading.

Our approach to computational offloading on the server side
is designed to provide a solution with low response time,
ultimately reducing time complexity and energy
consumption. It is crucial to employ the appropriate method
to perform this process efficiently. Incorrect algorithms for
computational offloading in cloud computing can lead to
increased energy consumption and decreased successful
offloads. Timely offloading reduces server-side energy
consumption and increases efficiency, highlighting the
importance of an accurate response time prediction solution
to improve computational offloading performance in
mobile edge computing.

A detailed examination of our results indicates that the
proposed algorithm effectively improves computational
offloading in mobile edge computing. This algorithm
requires less time to execute offloading processes and
respond to requests from mobile nodes. The number of
requests handled by the servers does not increase response
time, thereby reducing the duration of computational
offloading. Compared to Delay Tolerant Offloading (DTO),
Best Choice Problem (BCP), Cost-based Optimal Task
(COT), and p-model algorithms, our method demonstrates
shorter average processing times for computational
offloading and request responses, achieving optimal results
for the evaluated dataset. The proposed method outperforms
other methods in terms of time complexity, energy
consumption, processing time, CPU usage, average offload
time, and the number of successful offloads.

While the proposed algorithm sometimes exhibits longer
processing times for specific requests, overall performance
in processing time, resource utilization, average server
usage, successful offloads, and computational offload time
is superior in improving computational offloading in mobile
edge computing. By balancing accuracy and speed, our

method effectively reduces response time and increases the
number of successful offloads.

Future research should evaluate the proposed method across
various cloud computing systems, applications, and datasets
to fully explore its efficiency and applicability.
Additionally, further studies can investigate other neural
network algorithms, such as long short-term memory and
convolutional neural networks, to enhance offloading
performance in mobile edge computing. Meta-heuristic
algorithms may also be considered to address the NP-hard
nature of computational offloading problems, aiming to
reduce complexity and increase successful offloads.
Finally, developing solutions that require minimal
processing and computing resources, while considering
available resource consumption, will lead to more efficient
computational offloading and increased successful offloads.
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