

 Kaebeh Yaeghoobi

yaeghoobi@kntu.ac.ir

Journal of Information Systems and Telecommunication
Vol.13, No.3, July-September 2025, 243-255

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

Enhancing Computational Offloading for Sustainable Smart
Cities: A Deep Belief Network Approach

Kaebeh Yaeghoobi1*, Mahsa Bakhshandeh N.2

1.Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran Iran
2.Faculty of Engineering, Ale-Taha Institute of Higher Education, Tehran, Iran

Received: 12 Nov 2024/ Revised: 11 Sep 2025/ Accepted: 13 Oct 2025

Abstract
The use of mobile devices with limited processing power has surged in recent years, alongside the expansion of cloud and

fog computing across various sectors. These devices can handle small to medium computing tasks, but they fall short when

it comes to large-scale processes, making computational offloading a crucial solution. Cloud computing and fog computing

provide an effective platform for offloading tasks from mobile devices. However, critical real-time applications necessitate a

near-edge approach to managing the computational load. Significant challenges exist in optimizing response times for

effective offloading in cloud computing. This research introduces a framework for predicting response times using Deep

Belief Network (DBN) learning to enhance offloading performance. Implementing a DBN aims to minimize response times

and resource consumption, thereby improving the overall efficiency of offloading processes. The framework is designed to

predict response times accurately, ensuring timely completion of tasks and efficient use of resources. Simulation results using

multiple models show that the use of DBN significantly reduces processing, response, and offloading times compared to other

algorithms. Consequently, the DBN algorithm proves to be more efficient in predicting response times and enhancing

offloading performance. By leveraging the capabilities of DBN, this framework provides a promising solution for optimizing

computational offloading in cloud computing environments. This enhances the performance of mobile devices and ensures

the reliability and efficiency of real-time applications, direct the way for more advanced and responsive computing

technologies.

Keywords: Computational Offloading; Cloud Computing; Deep Belief Network; Response Time; Resource Management;

Sustainable Smart Cities; Real-time Management.

1- Introduction

The proliferation of mobile devices has substantially

increased computing demands, introducing new challenges

in communication networks and resource provisioning. Due

to their limited resources, mobile devices struggle with

large-scale image processing and real-time conversion

services [1]. Cloud computing technology helps mitigate

these limitations; however, it is not applicable for real-time

applications considering latency issues. Consequently,

offloading computational tasks to independent platforms

becomes a practical solution. For instance, the mobile cloud

can provide maximum advantage for mobile video gaming

and streaming [2].

Nevertheless, mobile cloud computing encounters

challenges such as limited network bandwidth and

offloading latency. Transmitting data from mobile devices

to distant clouds consumes significant bandwidth, leading

to traffic congestion and increased latency. Latency-

sensitive applications require offloading to nearby

locations, such as the nearest edge or mobile fog, to address

these issues [3].

Cisco Systems introduced fog computing as an extension of

cloud computing, bringing its capabilities to the network’s

edge. This extension benefits IoT services by supporting

latency-intolerant mobile services. Numerous studies have

focused on standardizing the computational offloading

process at the edge or mobile fog, particularly in selecting

mobile application units. Challenges related to offloading at

mailto:yaeghoobi@kntu.ac.ir

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

244

the mobile edge or fog include mobility, heterogeneity, and

geographic distribution of devices.

As the digital world expands and network technologies

evolve, complex services are emerging [4]. The generation

of online applications featuring computing,

communication, and intelligent capabilities continues to

grow. Despite the growing power of current devices, they

still struggle with tasks required for smart healthcare,

augmented reality, intelligent car communication, and

many smart city services. These applications often require

another individual to execute tasks as a representative of the

user's device, a technique known as process offloading [5].

Task disburdening is especially advantageous for Internet

of Things and cloud computing requisition, facilitating

interactions between edge devices or fog nodes and sensors

and IoT nodes. Load shedding can be established on

computational requirements, load balancing, energy

management, and latency management [6].

In a data-rich world, mobile devices with limited resources

can handle small-to-medium computations but struggle

with high-level computations. Processing offloading is an

effective solution to overcome this limitation. Recently,

cloud computing has been recognized as a suitable platform

for offloading tasks from mobile devices. However, the

distance of cloud data centers from mobile devices

increases network latency and affects the performance of

real-time IoT applications.

For essential real-time applications, employing a near-edge

network approach for computing offload is vital.

Additionally, the primary controls for distributed mobile

devices are heterogeneous in the offloading process of

mobile computing. To overwhelm these contests, a deep

learning-based response time prediction framework has

been implemented to optimize offloading decisions near

fog/edge or cloud nodes.

The objectives of this research are:

• Enhance Offloading Performance: Develop a deep

learning-based framework to improve

computational offloading efficiency.

• Minimize Prediction Error: Achieve the lowest

discrepancy between actual and predicted

response times using deep learning techniques.

• Boost Prediction Accuracy: Enhance the accuracy

of response time predictions with the proposed

deep learning method.

The paper is structured as follows: Section 2 covers related

concepts and foundational research. Section 3 outlines the

technical methodology, including the proposed method and

framework. Section 4 analyses the proposed framework,

presents results, and evaluates their theoretical implications.

The final section discusses the results' implications and

concludes with future trends and perspectives.

2- Background

This section explores concepts and metrics used in

computational offloading, IoT middleware technologies,

technologies that enhance fog computing tasks, and

offloading methods in fog and cloud computing. The

interplay between cloud, fog, and mobile computing

models, concerning large computing resources, is analyzed.

The literature review also covers computing resource

allocation methods and achievements in cloud computing

offloading.

Cloud computing resources are managed using

virtualization technology. For example,[7] explains optimal

virtual machine placement, examining distribution methods

in cloud data centers. Most resource allocation mechanisms

are designed for green computing. The DPRA allocation

mechanism, discussed in [8], considers energy consumption

of virtual and physical machines and data center air

conditioning. A comparison of three schemes with DPRA

shows energy savings, PM shutdowns, and reduced VM

migrations.

In [9], a multi-objective optimization algorithm balances

availability, costs, and performance for running big data

applications in the cloud, outperforming conventional

methods by reducing costs and achieving higher

performance. However, the study focuses on big data

applications.

In critical real-time applications, for example, patient

control systems and intelligent transportation, mobile cloud

computing offloads large tasks while maintaining quality

standards [10]. A mobility-aware resource allocation

architecture, Mobihat, provides efficient scheduling but

does not study the impact of mobility on delay and response

times for real-time mobile services.

Offloading mobile edge computing with multiple users,

based on TDMA and OFDMA, is introduced in [11]. The

TDMA-based method reduces mobile energy consumption,

while the OFDMA hybrid model transforms into TDMA,

defining a discharge priority function for optimal resource

allocation.

The optimal computational offloading framework for

DNNs is presented in [12], considering mobile batteries and

cloud resources. This method evaluates energy

consumption and execution time.

In [13], battery life of nearby mobile devices is used to

select discharge positions. A non-interactive game model,

maximizing player payoffs, reduces response times. The

Nash equilibrium is obtained through the game model and

indirect induction method, evaluated for response time,

end-user benefit, and memory usage. Yang et al. [14]

address high implementation delays among mobile devices

and fog nodes using queuing theory. Data rate and power

consumption are selected as decision parameters,

formulating a multi-objective optimization problem to

decrease transmission energy consumption, power, and

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

245

cost, determining the probability of discharge for all mobile

devices.

A survey on stochastic-based offloading methods in

different computing environments, including mobile cloud,

edge, and fog computing, is proposed in [15]. The

classification is divided into Markov chain, Markov

process, and hidden Markov models, discussing open issues

and future challenges.

In [16], a multi-objective optimization model addresses

time and energy consumption of mobile users and edge

server resource utilization. An edge-cloud joint offloading

method, based on the evolved Strength Pareto algorithm, is

effective and efficient for scenarios with multiple mobile

users and heterogeneous edge servers.

An offloading architecture, combining intelligent

computing with AI, is presented in [17]. Considering

mobile task data size and edge node performance, a load

shedding and task transfer algorithm optimize edge

computing offloading. Experiments show reduced task

delay by increasing data and subtask execution.

Du et al. [18] address offloading in a cloud-cloud

environment, supporting a heterogeneous model to consider

task communication cost asymmetry. They prove the NP-

hard nature of the problem and design an efficient algorithm

for an optimal solution, evaluated through a PageRank-

based program in a controlled cloud edge setting.

An adaptive wireless resource allocation strategy for

computational offloading, under a three-layer edge cloud

framework, is studied in [19]. Modeling the offloading

process at the minimum block level of allocable wireless

resources adapts to vehicular scenarios and evolves in the

5G network. The proposed value density function measures

cost-effectiveness and energy saving. Numerical results

show the designed algorithm achieves significant running

time and energy savings, with superior performance

compared to benchmark solutions.

An autonomous computational offloading framework is

presented in [20] for time-consuming programs, addressing

control model challenges for managing computing load.

Various simulations, including deep neural networks and

hidden Markov models, are performed. Results show the

hybrid model fits the problem with near-optimal accuracy

for discharge decisions, delay, and energy consumption

predictions. MAPE is used for discharge, collection, and

processing for decision making. The proposed method

outperforms local computing and offloading in latency,

energy consumption, network utilization, and execution

cost.

In [21], minimizing average task execution time in edge

systems, considering job request heterogeneity, application

data pre-storage, and base station cooperation, is addressed.

A mixed integer nonlinear programming (MINLP) problem

is formulated and addressed using decomposition theory.

The GenCOSCO algorithm improves service quality and

computational complexity. For fixed service cache

configurations, the FixSC algorithm derives evacuation

strategies, with simulations showing significant task

execution time reductions.

Peng et al. [22] propose three multi-objective evolutionary

algorithms to tackle the computing offloading challenges in

IoT for edge and cloud networks. They developed a

constrained multi-objective load calculation model that

accounts for time and energy consumption in mobile

environments. Drawing inspiration from the push and pull

search (PPS) framework, they introduced three algorithms

(PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE) that

integrate population-based search with flexible constraint

control. These algorithms were tested using multi-task,

multi-user scenarios across various IoT devices. The results

demonstrated their effectiveness and superiority.

Other research presents a user-centered joint optimization

offloading scheme designed to minimize the weighted costs

of time delay and energy consumption. The mixed-integer

nonlinear programming problem is addressed using a

particle swarm optimization algorithm that incorporates 0-

1 and weight improvement techniques. Simulation results

indicate higher performance in delay, energy consumption,

and cost [23].

In [24], a computation offloading scheme via mobile

vehicles in a cloud-IoT network is proposed. Sensing

devices generate tasks and transmit them to vehicles, which

then decide whether to compute the tasks locally, on a MEC

server, or at a cloud hub. The offloading decision is based

on a utility function that considers energy consumption and

transmission delay, using a learning-based approach.

Experimental results show that this solution maximizes

rewards and reduces delay.

Based on the research discussed, various techniques can be

adopted for cloud computing offloading, depending on

priorities. This research proposes using a response time

prediction model based on deep learning to determine the

optimal offloading position. The impact on delay and

energy efficiency will be evaluated to improve offloading

performance by minimizing the error between actual and

predicted response times.

3- Methodology

A mobile fog node expands the capabilities of fog and

mobile cloud computing models by offering a localized

system to minimize potential delays and execution times

while maintaining continuous and direct communication in

conjunction with the cloud data center. The proposed

model, depicted in Figure 1, encompasses three offloading

positions: the cloud data center, adjacent mobile station, and

mobile fog. This setup is supported by the LTE hierarchical

architecture and the Wi-Fi intra-network reference model,

situating the mobile fog at the network's edge. Access points

and access point controllers operate as mobile fog nodes.

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

246

Fig. 1 Mobile Fog System Model for Computational Offloading -

Verification and confirmation of Mobile Stations is Achieved by 3GPP

AAA via Extensible Authentication Protocol-Authentication and Key

Agreement(EAP-AKA) over Internet Key Exchange version 2 (IKEv2)

Within this architecture, the mobile edge/fog is represented

by the fog-1 node, the mobile fog by the fog-2 node, and the

public cloud serves as the third offloading position, referred

to as the cloud node. Communication within the fog is

enabled by the Evolved Packet Core, which provides the

Evolved Packet Data Gateway.

Access points not only facilitate communication between

mobile stations but also offer cloud services such as,

Network as a Service (NaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS). IEEE Ethernet

interfaces connect access points to access point controllers,

while IEEE 802.11 WLAN interfaces link mobile stations

to access points. The access point controller manages block

code migration, overseeing memory, processing, I/O, and

networking capabilities to sustain mobile cloud services.

Hence, the access point controller similarly serves as a fog

network controller. In Figure 1, fog-enabled access points

are labeled as "fog-access points," and access point

controllers are designated as "fog-access point controllers."

Mobile station authentication is conducted by the 3GPP

AAA via EAP-AKA over IKEv2, with the verification and

validation vector derive through the shared home server unit

in the LTE network. The data network gateway, which

handles access to user equipment or mobile stations and

virtual machines (VMs), has evolved into a packet data

gateway. The top module, the public cloud, functions as a

traditional delivery network, providing pervasive and

scalable services accessible via the web using both mobile

and static devices.

3-1- Unloading Node Process

This section details the offloading process based on the

previously described model, with a focus on the fog/mobile

edge. In critical real-time applications, nodes such as public

cloud and mobile fog and mobile edge are physically

dispersed to deliver services to mobile cloudlets, which are

resource-limited mobile stations. Due to the dynamic nature

of these applications, request times are unknown and

random, with variable response times, making it

challenging to identify the optimal offloading node.

To tackle this issue, a deep learning-based approach is

recommended. This approach learns from the request

history and response times of nodes to predict future

response times. The node with the lowest predicted

response time is then selected for offloading. The

relationship between the computing requirements of cloud

or fog nodes and the response time of virtual machines is

complex.

Predicting workload data patterns is challenging due to their

non-consecutive nature. Therefore, aggregated workload

data characteristics of VMs are used instead of single VM

data for prediction purposes. A deep learning model can

better determine workload data dispersions based on

inherent data characteristics, outperforming simpler

models. This preference is due to the deep model's ability to

learn complex relationships between workload data

features. Although structurally similar to a Multi-Layer

Perceptron (MLP), a Deep Belief Network (DBN) has a

diverse training method, allowing it to address gradient

fading effectively.

Fig. 2 Flowchart of the DBN-based offloading decision process,

integrating predictive modelling, fallback selection via p-model, and

feedback-driven model updates for sustainable smart city applications.

Framework

evolved packet core (EPC)

Public Cloud

Packet Data
Gteway

Evolved Packet
Data Gateway

Fog-Access Point
Controller

Number of Fog-
Access Points

Mobile Stations

AAA
Evolved Packet
Data Gateway

Fog- Access Point
Controller

Number of Fog-
Access Points

Mobile Stations

Fog Node 1 Fog Node 2

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

247

Figure 2 illustrates the complete workflow of the proposed

DBN-based computational offloading system for smart city

environments. The process begins with data collection from

mobile devices and virtual machines, including historical

request patterns and aggregated workload characteristics.

After preprocessing and feature extraction, the data be used

for DBN step, which performs multi-layer encoding and

pattern recognition to predict future response times of

candidate nodes. Based on these predictions, the system

attempts to select the node with the lowest latency for

offloading. If due to unpredictable workload patterns or

insufficient confidence no suitable node is identified, the

system activates a fallback mechanism using the p-model,

which randomly selects a server based on predefined

probability. The final stage involves task execution and

feedback logging, which continuously refines the DBN

model for future decisions.

3-2- Deep Belief Network (DBN)

A Restricted Boltzmann Machine (RBM) can extract

features and recreate data entry, in spite of that, it struggles

with gradient blurring. To address this, multiple RBMs can

be combined with a classifier to form a Deep Belief

Network (DBN). This method, known as greedy layer-by-

layer unsupervised pretraining, involves training the DBN

two layers at a time, treating each pair of layers as an RBM.

In this architecture, the hidden layer of one RBM acts as the

input layer for the subsequent RBM. The training process

starts with the initial RBM, whose outputs are fed into the

next RBM, and this sequence continues until the output

layer is reached. Through this process, the DBN identifies

inherent data patterns, functioning as an advanced multi-

layer feature extractor. A unique aspect of this network is

its ability to learn the complete structure of the input at each

layer, similar to a camera gradually focusing an image.

Finally, labels are applied to the resulting patterns in the

DBN. The DBN is subsequently fine-tuned through

supervised learning using a small set of labeled samples,

with minor changes to weights and biases leading to a

marginal increase in accuracy.

The proposed approach includes a deep belief network with

one-layer neural network. This method employs an

unsupervised approach to extract more robust and helpful

features from VM workload data. By increasing the hidden

layers in the DBN, the error gradient is significantly

amplified before being minimized. Training is conducted

using an unsupervised greedy layer-wise method. To further

optimize, the DBN's top layer utilizes a standard sigmoid

regression. Future request predictions are generated by

analyzing response times in terms of bandwidth (B),

memory (M), and processing capability (P).

As presented in Figure 3, inputs to the DBN model include

the bandwidth, memory and processing capability of entire

requests, along with the recent workload of all VMs. These

data cover actual response times discovered over various

time spans. For each node, the trained DBN models predict

response times, with input values normalized between 0 and

1. The core layer's units equal the sum of the VMs in the

cloud and the time slots.

Number of Units=VM×TI (1)

Where:

VM represents the number of virtual machines.

TI represents the number of time intervals.

This simple yet effective formula helps determine the total

number of units required based on the given parameters.

Alternatively, a supervised approach with a precisely

configured logistic regression layer can be employed to

label the data and predict the workload of a VM.

Fig. 3 Stacks before RBM Training

Initially, the standard binary RBM is modified to a

Gaussian-Bernoulli RBM. The visible unit biases in the

RBM energy function are adjusted to include quadratic bias

terms [3]. An example of a load shedding decision session

is shown in Table 1. The Energy function and Conditional

Probability Distribution are conveyed in following way:

E(x, h|θ) = ∑
(𝑥𝑖−𝑎𝑖)2

2𝜎𝑖
2

𝑋
𝑖=1 − ∑ 𝑏𝑗ℎ𝑗

𝐻
𝑗= − ∑ ∑

𝑣𝑖

𝜎𝑖
ℎ𝑗𝑤𝑖𝑗

𝐻
𝑗=1

𝑋
𝑖=1

 (2)

𝑃(ℎ𝑖|𝑥; 𝜃) = 𝛿(∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑏𝑗) (3)

𝑃(𝑥𝑖|𝑥; 𝜃) = 𝑁(𝜎𝑖 ∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑎𝑗 , 𝜎𝑖

2) (4)

Table 1: Description of symbols

Symbol Description

𝜇 mean

𝜎2 variance

𝜎 standard deviation

P probability

E expectancy

X observable variables

H common hidden space of variables

W linear mapping coefficient

B bias

In this context, the Gaussian distribution's probability

distribution function is represented by N(μ,σ2), where μ is

the mean, and σ2 is the variance vector. Hinton’s training

method outlines the prediction process as follows:

Unsupervised Training: The RBN visible and hidden

layer are trained. The RBM input comprises a request

section and a response time dataset. θ is the only non-

continuous parameter in the RBM.

Input Value Output Value

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

248

Layer Inheritance: Each visible layer in RBM inherits and

utilizes the extracted features of the preceding RBM as its

input. This process is repeated for subsequent RBMs, with

the parameter θ retained for the next and initial RBM.

Input to Logistic Regression: The regression layer is

trained using labelled data in a supervised manner; and

input of that is the output of the final RBM.

Supervised Training: The θ parameters are trained and

adjusted using the backpropagation (BP) algorithm.

The deep belief network-based response time prediction

method leverages edge/cloud computing to accurately

determine whether to offload computations to a

neighbouring node, an edge/fog node, or a cloud node. To

handle the unpredictability of resource availability in

edge/fog and cloud nodes, the proposed offloading

procedure leverages the technique of RBM learning.

To begin the substantial data volumes and the demand for

real-time applications, particularly in the e-health sector, a

near-edge network approach for offloading computations is

recommended. This strategy addresses the primary controls

for distributed mobile devices, easing the offloading

process in mobile and heterogeneous computing

environments. A deep learning-based response time

prediction framework has been developed to enhance

computational offloading performance, determining the

optimal offloading target, whether it's a nearby fog/edge

node, an adjacent fog/edge node, or a cloud node.

Additionally, the Restricted Boltzmann Machine (RBM)

learning technique is utilized to handle the variability of

resource availability.

In this study, the DBN model was trained using aggregated

workload data collected from simulated virtual machines

operating under diverse conditions. The training process

involved unsupervised pre-training of Restricted

Boltzmann Machines (RBMs) followed by supervised fine-

tuning using labeled response time data. Training was

conducted on a standard CPU-based computing

environment, which, was sufficient for the scale and

complexity of the dataset used. The total training time

varied depending on the configuration, typically ranging

from 30 minutes to 2 hours. Once trained, the model was

deployed for inference on edge servers, where its

lightweight architecture enabled real-time prediction

without significant computational overhead. This setup

demonstrates that even without specialized hardware, the

DBN-based offloading strategy remains practical and

effective for mobile and fog-based environments.

4- Result and Analysis

This section examines the performance of the proposed

models. The simulation results integrate real mobility

tracking, server datasets, and model implementation on

actual machines. Subsequent sections will explore the

performance benefits of DBN-based models using three

probability distributions (uniform, normal, and exponential)

to achieve accurate results.

4-1- Data Collection

To simulate mobile node movements, a dataset of vehicle

movements in Rome was utilized, as referenced in [25].

This dataset comprises coordinates of 320 taxis collected

over 30 days, including their coordinates, date, time, and

GPS location. Mobility tracking treats any movement as a

point in time to check server or dump time, rather than

studying user mobility. Each movement is modeled as an

interaction with a mobile edge computing server.

Processing times are obtained from real servers (CPU

usage), involving around 150 data servers (over 1 billion

rows). With e very movement, a server is selected from the

dataset, its utilization is checked, and an unloading decision

is made based on the model's recommendation.

The evaluation spans more than five days (5000 rows of

movements). An evacuation decision is made every minute,

resulting in over 1000 evacuation decisions, ensuring the

proposed models' behavior is observed over an extended

period. The DBN-based response time prediction method

leverages edge/cloud computing to determine whether to

offload computations to a neighboring node, an edge/fog

node, or a cloud node.

Given the challenges posed by large data volumes and real-

time applications, particularly in the e-health sector, a near-

edge network approach was recommended for offloading

computations. The proposed RBM learning technique

addresses the randomness of resource availability.

Figure 4 distribution of server usage probabilities across all

servers in the dataset. The data generally follows a normal

distribution, illustrating typical CPU utilization patterns

observed during simulation.

Fig. 4. CPU usage distribution of servers (CPU unit is percentage and

Density is J)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0-10 10 20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

D
en

si
ty

CPU Usage Interval

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

249

Table 2 sample load shedding decision session, showing

CPU consumption values for selected mobile edge

computing servers at specific geographic positions and time

intervals.

Table 2: Dataset Sample Used in the Experiment. (ID: xx6, Motion Time
Interval: 10 Seconds)

Position Machine CPU Consumption

X=41.8911,

Y=12.49073
M_xx39 51

X=41.89905,

Y=12.4899
M_xx36 47

X=41.8994,

Y=12.48940
M_xx41 20

X=41.8994,

Y=12.489401
M_xx41 37

4-2- Evaluation

This section focuses on simulating and evaluating the

proposed evacuation rules across various variables. The

primary aim is to observe the models' behavior under

different conditions, allowing generalization to parameters

such as quality of service and response time concerning

computational load.

MATLAB software is chosen for the simulation, which can

perform process-based discrete event simulation. The

“Advance Mode” is selected for the probability distribution

of the random variable X, including time (processing). In

the simulation, a resource actually is a mobile edge

computing server k that is modelled and can advertises its

processing time Xk. A process is a mobile node that

modelled to traverses the mobile edge computing servers

and checks latency of each server based on the processing

time. Initially, we consider n=5, means having five mobile

edge computing servers. The processing time X follows a

normal distribution (50 ms to 10 ms), a uniform distribution

in the interval [0-1], and a binominal distribution of 50

J/mol. MATLAB has generated incidental variables

following the determined apportionment.

At every initiation, a node begins polling the mobile edge

computing servers consecutively, starts with server one. At

this step, the proposed approaches are utilized to choose a

mobile edge computing server. The important parameters in

processing time are waiting time, delay and total delay.

Additionally, based on the program types, the range of

processing time differs from 100 milliseconds to 800

seconds, and in intervals of 10 milliseconds to 30

milliseconds. Therefore, various ranges for parameter X can

be considered derived from the proposed models, which

producing similar outcomes as observed in the experiment

dataset. Table 3 shows the values and range of parameters

in the simulation test.

The main approach used in the simulation involves

comparing values obtained from other studies, random

values, the nearest server (immediate loading), and a

method from the same family of algorithms proposed in this

work. This evaluation is limited to comparisons between

different models, including the random and probabilistic

model (p). These approaches are compared to the superior

option, where the server or time with the minimum value is

chosen.

Table 3: Simulation Parameters Values for all Methods

Parameters Value / Range of Values

X N(10, 50) & U(0, 1)

No. of mobile nodes 1000

N {3, 5, 10}

P for p-model 0.8

R {0, 0.25, 0.5, 1}

𝜃
{30, 40, 50, 60}

{0.3, 0.4, 0.5, 0.6}

{20, 30, 40, 50, 60}

C
{1, 2, 3, 4, 5, 20, 30}

{0.1, 0.2, 0.3, 0.4}

{1, 10, 15, 20, 30, 40}

The reasons for adopting this approach are as follows:

Primarily, this research emphasizes data decision-making

and task offloading. Additionally, deep learning algorithms

inherently differ from traditional algorithms, especially

when the decision maker lacks complete information. Thus,

the approach to optimality is the main analysis for

evaluating these algorithms. Optimization is suitable when

all server information is available to the decision maker,

facilitating the mobile node in determining the ideal

offloading location. Ultimately, these algorithms are

implemented in sequence, complicating direct comparisons

with other algorithms.

In this setting, in the absence of offloading rules, the mobile

node will likely choose the first available mobile edge

computing server. For edge computing load, such an

offloading method is optimal for task offloading. So, the p-

model method is utilized as a fallback technique. In the p-

model, each server is assigned a loading probability, set to

p=0.8. During each user move, each server has a probability

p=0.8 of being selected to load the job. In this experiment,

increasing p intensively the probability of selecting the first

server for loading. Consequently, the p-model replicates the

scenario where the mobile node chooses the nearest servers

that is closest edge servers due to the higher probability

p=0.8.

When evaluating the actual dataset, if a server is preferred

(server is chosen for loading) the process stops; if no server

is preferred, the last server is chosen. A server is randomly

preferred for each user to offload the work in the random

selection model.

The results of all models are compared with values obtained

from the proposed model, where the server with the shortest

processing time is chosen for each unloading session.

Models that are closer to the optimal value demonstrate

superior performance in offloading decisions. The optimal

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

250

model is achieved by choosing the server with the shortest

processing time for each load sequence.

4-3- Results

The simulation results evaluate the performance of the

proposed DBN-based offloading model across multiple

dimensions, including execution time, server usage, energy

efficiency, and successful offloads. The evaluation spans

three distinct probability distributions for the processing

time variable X: normal, uniform, and exponential. Each

distribution reflects different real-world workload scenarios

in mobile edge computing environments.

Across all simulations, the DBN-based model consistently

demonstrates superior performance compared to

benchmark algorithms such as Delay Tolerant Offloading

(DTO), Best Choice Problem (BCP), Cost-based Optimal

Task (COT), Quality-Aware Odds, Random selection, and

the p-model. The proposed method achieves lower average

execution times, reduced CPU usage, and higher rates of

successful offloads under varying resource constraints.

Figures 5 through 13 present comparative results for each

distribution scenario. These include average processing

times, server utilization, and the number of effective

offloads under different CPU thresholds. The DBN model

shows strong alignment with the optimal model,

particularly in scenarios where resource availability is

dynamic and unpredictable. This confirms the model’s

ability to make accurate offloading decisions and maintain

system efficiency under diverse conditions.

Performance Analysis with Normal Distribution

As illustrated in Figure 5, when the processing time X

follows a normal distribution, the proposed DBN-based

algorithm achieves the shortest execution time among all

evaluated methods. The average execution time for

computational discharge is approximately 40 milliseconds,

outperforming DTO, BCP, COT, and the p-model

algorithms.

Fig. 5 Simulation Results for All Models in Case of X Normal

Distribution.

The figure also reveals a significant overlap between the

DBN model and the optimal model, indicating that the

DBN’s predictions closely approximate ideal offloading

decisions. In contrast, models such as the p-model and

random selection exhibit higher variance and longer

processing times. The BCP model achieves a processing

time of 46 milliseconds, which is lower than the p-model

and random approaches but still less efficient than the DBN.

These results validate the effectiveness of the DBN-based

offloading strategy in minimizing latency and optimizing

resource allocation in mobile edge computing. The model’s

ability to learn from historical workload patterns and predict

response times contributes to its superior performance

across varying conditions.

The results in Figure 6 reveal that the variation between the

optimal model and DBN model is significantly smaller than

the variation detected with other models. Notably, for

models other than the DBN, the optimal threshold for each

experiment k is generally close to the average processing

time of 50 milliseconds. For example, in the DTO model

and COT model, the thresholds generated for n=5 are {40,

42, 43, 46, 50}, all near the average processing time.

Fig. 6 Average Processing Time for Different Models with X Normal

Distribution.

Using these optimal thresholds as a reference, the initial

threshold value for the Odds method is set to 50, with

performance evaluated for various values. The results,

indicate the effective performance of the Odds method. This

performance can be credited to the high likelihood of

choosing a server with a processing time under 50

milliseconds. Thus, by setting a threshold value close to the

average processing time, a shorter processing time is

achieved for unloading the computational load.

Furthermore, the results demonstrate better performance for

the BCP method compared to the p-models and Random

method. The BCP evacuation policy is more likely to

achieve the shortest processing time, leading to a lower

average processing time than other models. This increased

likelihood results in a lower expected processing time

compared to the random and p models

Significantly, while the probability of selecting the best

server is assumed to be similar in the BCP and Odds

models, the defined threshold in the Odds model enhances

performance by ensuring quality-aware decisions when

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

25 30 35 40 45 50 55 60 65 70 75 80

D
en

si
ty

Tme of Process

Normal Distibution of X

Optimal COT BCP DTO Odds Random P-model

0 10 20 30 40 50 60

DTO

COT

Quality-Aware Odds

BCP

Random

p-model

Optimal

Time of Process

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

251

examining mobile edge computing servers. The main

conclusion from these results is that the proposed method,

referred to as the optimal model, achieves a shorter

processing time than other methods, thereby reducing

response time and improving the performance of

computational offloading in cloud computing.

Performance Analysis with Uniform Distribution

In the initial results, the random variable X followed a

normal distribution. To achieve more accurate findings, we

conducted an additional simulation with X uniformly

distributed within the interval [0-1] (Figure 7). This range

represents server usage, such as CPU utilization, where a

value of 0.5 indicates 50% CPU usage. We applied similar

steps to all models, as in previous experiments.

In the DTO model, the delay coefficient initially began at

r=0, with results for other r values presented subsequently.

For the cost-based optimal task model, an ideal threshold

was identified for each cost value in the second set.

Specifically, for c = 0.2, evaluations determined the optimal

threshold to be 0.3. The cost interpretation is similar to the

normal distribution scenario: a higher cost (smaller

threshold V) signifies a greater need for shorter processing

times.

Fig. 7 Simulation Results for All Models in Case of X Uniformly

Distribution.

In the quality-aware Odds model, the threshold was set to

0.5, yielding a 42% probability of selecting a server with

X=0.5. Though the BCP model shares this probability,

setting the threshold notably improved the Odds model's

performance. Figures 7 and 8 show that model performance

aligns closely with results from the normal distribution

scenario. DTO and COT models remain top performers,

with deep belief network-based models coming closer to

optimality compared to random and p models.

As illustrated in Figure 8, the average execution time for

various algorithms, including the proposed method based

on the deep belief network, has been evaluated. The results

demonstrate that the proposed method achieves a shorter

execution time compared to other methods, indicating a

more efficient response to computational offloading in

mobile edge computing.

Fig. 8 Average Processing Time for Different Models with Uniform X

Distribution.

Performance Analysis with Exponential

Distribution

Figure 8 demonstrates that the proposed algorithm achieves

an execution time of approximately 0.15 milliseconds,

which is shorter compared to other methods. On the other

hand, the p-model algorithm exhibits the longest execution

time due to the consideration of a threshold value for

selecting servers. These results suggest that the deep belief

network (DBN) method provides superior response times

for computational offloading in mobile edge computing,

attributed to its layered approach.

Besides normal and uniform distributions, this experiment

also included an exponential distribution with a mean of 50.

The same procedural steps were followed as in the previous

distributions. Initially, the delay coefficient in the DTO

method was set to r=0, with results for other r values

subsequently presented. The results under these conditions

are shown in Figures 9.

In the Cost-based Optimal Task model, the figures depict

the optimal threshold values V corresponding to each cost

value. For this simulation, the cost was initially set to 20,

with the optimal threshold determined to be 45.81, resulting

in the lowest simulated expectation of X among other

values. Performance across various cost values is also

demonstrated. The cost interpretation aligns with scenarios

where X follows normal and uniform distributions: a higher

cost (smaller threshold V) indicates an increased demand for

shorter processing times.

In the quality-aware Odds method, the threshold was set to

50, resulting in a 44% probability of selecting a server with

X=50. The results in Figures 9 and 10 indicate that the

proposed model's performance is consistent with the results

obtained when X follows normal and uniform distributions.

The DBN-based method consistently outperforms other

algorithms, demonstrating the best performance and closest

0

20

40

60

80

100

120

140

160

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

D
en

si
ty

Time of Process

Uniformly Distribution of X

Optimal BCP DTO COT Odd Random p-model

0 0.1 0.2 0.3 0.4 0.5 0.6

Optimal

DTO

COT

Quality-Aware Odds

BCP

Random

P-model

Time of Process

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

252

proximity to optimality compared to the random and p-

models.

Figure 9 demonstrates that the proposed method with

exponential distribution achieves a lower execution time

compared to other methods. This distribution effectively

guides server selection for mobile edge calculations,

showing that the deep belief network-based method

provides a faster response for computational offloading in

mobile edge computing than other algorithms.

 Fig. 9 Simulation Results for All Models in Case of X Exponential

Distribution.

Figure 10 illustrates the average response time for different

methods with exponential distribution. The proposed

method has a significantly lower response time,

approximately 10 milliseconds, compared to other

algorithms. This demonstrates that the proposed method

surpasses other approaches in reducing response time for

computational offloading in mobile edge computing.

Fig. 10 Average Processing Time for Different Models With X

Exponential Distribution.

Server Usage and Energy Efficiency

Figure 11 illustrates the average server usage recommended

by each model. The DTO and COT models show results

closest to the proposed method, with DTO performing

better than the others by an absolute difference of 23 units

compared to the proposed method. The findings indicate

that the proposed method has a lower average server

consumption than the other methods, meaning it consumes

less energy for mobile edge calculations.

Additionally, the proposed method, based on the deep belief

network, demonstrates a shorter average unloading time

compared to other algorithms. Consequently, this suggests

that the response time for computational offloading in

mobile edge computing is more efficient with the proposed

method than with others.

Fig. 11 Average CPU Usage and Average Computational Drain Time by

each Model

Server Consumption and Successful Offloads

Figure 12 illustrates the average server consumption for the

proposed method compared to other solutions. The

proposed deep belief network method demonstrates a lower

average server consumption, indicating that it not only

reduces the response time for computational offloading but

also optimizes server usage. This results in lower overall

server consumption compared to other algorithms.

Fig. 12 Average Usage of Servers for Different Algorithms.

Result presented the average server consumption for the

proposed method compared to other solutions. The

proposed deep belief network method demonstrates lower

average server consumption, indicating that it not only

0

20

40

60

80

100

120

140

160

180

0
-

10

10
 2

0

20
 -

 3
0

30
 -

 4
0

40
 -

 5
0

50
 -

 6
0

60
 -

 7
0

70
 -

 8
0

80
 -

 9
0

90
 -

 1
00

10
0

-
15

0

15
0

-
20

0

20
0

-
25

0

25
0

-
30

0

D
en

si
ty

Time of Process

Exponential Distribution of X

Optimal Random P-model

BCP DTO (r = 0) COT (C = 20)

Quality-Aware Odds (θ = 50)

0 10 20 30 40 50 60

Optimal

DTO

COT

Quality-Aware Odds

BCP

Random

P-model

Time of Process for exponential distribution of X

0

20

40

60

80

100

120

21.45 26 28 29.5 30 37.56 36.74

49.45 43 42.19

64.2
44

66.33

45.74

Average CPU Usage

Average Utilisation Average Offloading Times

0 5 10 15 20 25 30 35 40

Optimal

DTO

COT

Quality-Aware Odds

BCP

Random

P-model

Server Usage

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

253

reduces response time for computational offloading but also

optimizes server usage, resulting in lower overall server

consumption compared to other algorithms.

Beyond average server utilization, we compare

performance based on the number of effective offloads for

each model. An effective offload refers to unloading

decisions that meet specific requirements set by each

model. To assess this, we assume three different mobile

edge computing programs (x, y, and z) each with distinct

needs. For example:

• Program x requires less than 10% CPU utilization.

• Program y requires less than 20% CPU utilization.

• Program z requires a server with less than 30%

CPU utilization.

If an offload occurs for a server with usage less than 10%,

it is considered a successful offload for program x.

Figure 13 illustrates the effective offloads for various

resource demands across entire methods. The proposed

deep belief network-based method achieves the highest

number of successful offloads in these three cases, with

values of 102, 463, and 1887 successful offloads,

respectively.

Fig. 13 Number of Effective Discharges for each Model Based on

Various Threshold Values.

4-4- Discussion

The simulation results for various methods indicate that the

presented models generally exhibit a time complexity of

O(n) at worst, both in terms of time and space. If each

model's condition is met on server number n, the mobile

node will visit server n. For the DTO, COT, and Quality-

aware Odds models, a pre-observation step involves

generating thresholds. This step is presumed to be executed

a single time by the service provider, external to the mobile

node, although it can be implemented within the mobile

node if necessary. For example, computing the threshold at

the mobile node in the Odds and DTO methods requires

O(n) time complexity. The COT method requires more time

to calculate the threshold, depending on the likelihood

distribution. Merely a sole operation is essential for a

(uniform) distribution, while a normal distribution requires

integration estimation with a time complexity no greater

than O(n2).

Regarding space complexity, the BCP model does not

require additional space for data storage, resulting in a space

complexity of O(n). This also applies to other models,

provided the training step is performed outside the mobile

node. If the training step is conducted locally at the mobile

node, only the probability distribution parameters need to

be stored. For a uniformly distributed X, the maximum and

minimum values are stored, while for exponentially

distributed X, the 𝜇 mean and 𝜎2 standard deviation are

required. Previous results showed that the time complexity

of the proposed method based on a deep belief network

(DBN) is O(1), the lowest complexity for predicting time

and improving computational offloading performance in

mobile edge computing.

Analyzing the execution time and server consumption

across different algorithms reveals that the proposed

method is more efficient in performing the computational

offloading process. The results indicate that the proposed

model is completely independent and lightweight for

implementation in the mobile node, outperforming other

compared solutions. The DBN-based method requires less

processing time for computational offloading and task

execution, with lower CPU consumption than other

solutions. This makes it suitable for managing

computational offloading of resources, compressing, or

delaying limited tasks.

A practical scenario that highlights the effectiveness of the

proposed DBN-based offloading mechanism involves a

mobile user engaged in augmented reality (AR) navigation

within a smart city. AR applications are latency-sensitive

and require rapid processing of environmental data, user

location, and graphical overlays. In such a context, the DBN

model predicts the response times of available fog and cloud

nodes based on historical workload patterns and real-time

system conditions. By selecting the node with the lowest

predicted latency, the system ensures that AR content is

rendered and delivered with minimal delay, thereby

preserving user experience and application responsiveness.

In cases where no optimal node is identified, the fallback

mechanism ensures continuity by probabilistically selecting

a viable server. This dynamic and adaptive offloading

strategy demonstrates the model’s potential to support real-

time, resource-intensive mobile applications in complex

urban environments.

Opti
mal

DTO COT

Quali
ty-

Awar
e

Odds

BCP
Rand
om

P-
mod

el

30% CPU Utilization 1887 952 834 1131 102 473 489

20% CPU Utiloization 463 186 250 342 297 148 135

10% CPU utilization 102 53 41 55 43 25 21

0

500

1000

1500

2000

2500

3000

Successful Offloads

Yaeghoobi & Bakhshandeh, Enhancing Computational Offloading for Sustainable Smart Cities: A Deep Belief Network Approach

254

5- Conclusion

The principal aim of this research is to enhance

computational offloading performance in mobile edge

computing. To achieve this, we have employed a

computational analysis method based on the deep belief

network (DBN), incorporating various deep learning

features to improve the evacuation process. By adding

specific steps to the computational evacuation process, we

aim to reduce server consumption, increase process speed,

and decrease response time to computational requests.

In this study, the deep belief network algorithm has been

utilized to further optimize computational offloading,

making it suitable for various cloud computing applications,

including mobile edge computing. The proposed algorithm

focuses on reducing execution time for requests and

increasing the number of successful offloads within the

mobile edge computing system. By combining different

distribution functions and the core features of the DBN

algorithm, our method seeks to enhance efficiency and the

volume of computational offloading.

Our approach to computational offloading on the server side

is designed to provide a solution with low response time,

ultimately reducing time complexity and energy

consumption. It is crucial to employ the appropriate method

to perform this process efficiently. Incorrect algorithms for

computational offloading in cloud computing can lead to

increased energy consumption and decreased successful

offloads. Timely offloading reduces server-side energy

consumption and increases efficiency, highlighting the

importance of an accurate response time prediction solution

to improve computational offloading performance in

mobile edge computing.

A detailed examination of our results indicates that the

proposed algorithm effectively improves computational

offloading in mobile edge computing. This algorithm

requires less time to execute offloading processes and

respond to requests from mobile nodes. The number of

requests handled by the servers does not increase response

time, thereby reducing the duration of computational

offloading. Compared to Delay Tolerant Offloading (DTO),

Best Choice Problem (BCP), Cost-based Optimal Task

(COT), and p-model algorithms, our method demonstrates

shorter average processing times for computational

offloading and request responses, achieving optimal results

for the evaluated dataset. The proposed method outperforms

other methods in terms of time complexity, energy

consumption, processing time, CPU usage, average offload

time, and the number of successful offloads.

While the proposed algorithm sometimes exhibits longer

processing times for specific requests, overall performance

in processing time, resource utilization, average server

usage, successful offloads, and computational offload time

is superior in improving computational offloading in mobile

edge computing. By balancing accuracy and speed, our

method effectively reduces response time and increases the

number of successful offloads.

Future research should evaluate the proposed method across

various cloud computing systems, applications, and datasets

to fully explore its efficiency and applicability.

Additionally, further studies can investigate other neural

network algorithms, such as long short-term memory and

convolutional neural networks, to enhance offloading

performance in mobile edge computing. Meta-heuristic

algorithms may also be considered to address the NP-hard

nature of computational offloading problems, aiming to

reduce complexity and increase successful offloads.

Finally, developing solutions that require minimal

processing and computing resources, while considering

available resource consumption, will lead to more efficient

computational offloading and increased successful offloads.

References

[1] A. Mahdavi and A. Ghaffari, “Embedding Virtual Machines

in Cloud Computing based on Big Bang–Big Crunch

Algorithm,” Journal of Information Systems &

Telecommunication (JIST), p. 305, 2019.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud

computing: A survey,” Future Generation Computer Systems,

vol. 29, no. 1, pp. 84–106, Jan. 2013, doi:

10.1016/J.FUTURE.2012.05.023.

[3] Md. G. R. Alam, M. M. Hassan, Md. Z. Uddin, A. S.

Almogren, and G. Fortino, “Autonomic computation

offloading in mobile edge for IoT applications,” Future

Gener. Comput. Syst., vol. 90, pp. 149–157, 2019, [Online].

Available:

https://api.semanticscholar.org/CorpusID:52899499

[4] P. Boopathy et al., “Deep learning for intelligent demand

response and smart grids: A comprehensive survey,” Comput

Sci Rev, vol. 51, p. 100617, Feb. 2024, doi:

10.1016/J.COSREV.2024.100617.

[5] I. Abdullaev, N. Prodanova, K. A. Bhaskar, E. L. Lydia, S.

Kadry, and J. Kim, “Task Offloading and Resource Allocation

in IoT Based Mobile Edge Computing Using Deep Learning,”

Computers, Materials and Continua, vol. 76, no. 2, pp. 1463–

1477, Aug. 2023, doi: 10.32604/CMC.2023.038417.

[6] H. Naseri, S. Azizi, and A. Abdollahpouri, “BSFS: A

Bidirectional Search Algorithm for Flow Scheduling in Cloud

Data Centers,” Journal of Information Systems and

Telecommunication (JIST), vol. 3, no. 27, p. 175, 2020.

[7] D. Seddiki, F. J. Maldonado Carrascosa, S. García Galán, M.

Valverde Ibáñez, T. Marciniak, and N. Ruiz Reyes,

“Enhanced virtual machine migration for energy sustainability

optimization in cloud computing through knowledge

acquisition,” Computers and Electrical Engineering, vol. 119,

p. 109506, Oct. 2024, doi:

10.1016/J.COMPELECENG.2024.109506.

[8] L.-D. Chou, H.-F. Chen, F.-H. Tseng, H.-C. Chao, and Y.-J.

Chang, “DPRA: Dynamic Power-Saving Resource Allocation

for Cloud Data Center Using Particle Swarm Optimization,”

IEEE Syst J, vol. 12, no. 2, pp. 1554–1565, 2018, doi:

10.1109/JSYST.2016.2596299.

Journal of Information Systems and Telecommunication, Vol.13, No.3, July-September 2025

255

[9] H. Wang, S. Cao, H. Li, L. Yan, Z. Guo, and Y. Gao, “Multi-

objective joint optimization of task offloading based on

MADRL in internet of things assisted by satellite networks,”

Computer Networks, vol. 254, p. 110801, Dec. 2024, doi:

10.1016/J.COMNET.2024.110801.

[10] T. Tsokov and H. Kostadinov, “Dynamic network-aware

container allocation in Cloud/Fog computing with mobile

nodes,” Internet of Things, vol. 26, p. 101211, Jul. 2024, doi:

10.1016/J.IOT.2024.101211.

[11] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-

Efficient Resource Allocation for Mobile-Edge Computation

Offloading,” IEEE Trans Wirel Commun, vol. 16, no. 3, pp.

1397–1411, 2017, doi: 10.1109/TWC.2016.2633522.

[12] Q. Wang, S. Guo, J. Liu, and Y. Yang, “Energy-efficient

computation offloading and resource allocation for delay-

sensitive mobile edge computing,” Sustainable Computing:

Informatics and Systems, vol. 21, pp. 154–164, Mar. 2019,

doi: 10.1016/J.SUSCOM.2019.01.007.

[13] S. C. Ghoshal et al., “VESBELT: An energy-efficient and

low-latency aware task offloading in Maritime Internet-of-

Things networks using ensemble neural networks,” Future

Generation Computer Systems, vol. 161, pp. 572–585, Dec.

2024, doi: 10.1016/J.FUTURE.2024.07.034.

[14] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek,

“Techniques to Minimize State Transfer Costs for Dynamic

Execution Offloading in Mobile Cloud Computing,” IEEE

Trans Mob Comput, vol. 13, no. 11, pp. 2648–2660, 2014, doi:

10.1109/TMC.2014.2307293.

[15] X. Xu, Q. Huang, X. Yin, M. Abbasi, M. R. Khosravi, and L.

Qi, “Intelligent Offloading for Collaborative Smart City

Services in Edge Computing,” IEEE Internet Things J, vol. 7,

no. 9, pp. 7919–7927, Sep. 2020, doi:

10.1109/JIOT.2020.3000871.

[16] T. Tang, C. Li, and F. Liu, “Collaborative cloud-edge-end

task offloading with task dependency based on deep

reinforcement learning,” Comput Commun, vol. 209, pp. 78–

90, Sep. 2023, doi: 10.1016/J.COMCOM.2023.06.021.

[17] Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, and M.

S. Hossain, “Intelligent task prediction and computation

offloading based on mobile-edge cloud computing,” Future

Generation Computer Systems, vol. 102, pp. 925–931, Jan.

2020, doi: 10.1016/J.FUTURE.2019.09.035.

[18] M. Du, Y. Wang, K. Ye, and C. Xu, “Algorithmics of Cost-

Driven Computation Offloading in the Edge-Cloud

Environment,” IEEE Transactions on Computers, vol. 69, no.

10, pp. 1519–1532, 2020, doi: 10.1109/TC.2020.2976996.

[19] L. Tan, Z. Kuang, J. Gao, and L. Zhao, “Energy-Efficient

Collaborative Multi-Access Edge Computing via Deep

Reinforcement Learning,” IEEE Trans Industr Inform, vol.

19, no. 6, pp. 7689–7699, Jun. 2023, doi:

10.1109/TII.2022.3213603.

[20] A. Shakarami, A. Shahidinejad, and M. Ghobaei-Arani, “An

autonomous computation offloading strategy in Mobile Edge

Computing: A deep learning-based hybrid approach,” Journal

of Network and Computer Applications, vol. 178, p. 102974,

Mar. 2021, doi: 10.1016/J.JNCA.2021.102974.

[21] S. Zhong, S. Guo, H. Yu, and Q. Wang, “Cooperative service

caching and computation offloading in multi-access edge

computing,” Computer Networks, vol. 189, p. 107916, Apr.

2021, doi: 10.1016/J.COMNET.2021.107916.

[22] G. Peng, H. Wu, H. Wu, and K. Wolter, “Constrained

Multiobjective Optimization for IoT-Enabled Computation

Offloading in Collaborative Edge and Cloud Computing,”

IEEE Internet Things J, vol. 8, no. 17, pp. 13723–13736,

2021, doi: 10.1109/JIOT.2021.3067732.

[23] Z. N. Samani and M. R. Khayyambashi, “Reliable resource

allocation and fault tolerance in mobile cloud computing,”

Journal of Information Systems and Telecommunication

(JIST), vol. 7, no. 2, pp. 96–109, 2019.

[24] J. Long, Y. Luo, X. Zhu, E. Luo, and M. Huang,

“Computation offloading through mobile vehicles in IoT-

edge-cloud network,” EURASIP J Wirel Commun Netw, vol.

2020, no. 1, p. 244, 2020, doi: 10.1186/s13638-020-01848-5.

[25] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and

A. Rabuffi, “CRAWDAD dataset roma/taxi (v. 2014-07-17),”

2014.

