
 

 Kaebeh Yaeghoobi 

yaeghoobi@kntu.ac.ir   

Journal of Information Systems and Telecommunication 
Vol.13, No.3, July-September 2025, 243-255 

 
 

http://jist.acecr.org 
ISSN 2322-1437 / EISSN:2345-2773 

 

Enhancing Computational Offloading for Sustainable Smart 
Cities: A Deep Belief Network Approach 

Kaebeh Yaeghoobi1*, Mahsa Bakhshandeh N.2 

 
1.Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran Iran  
2.Faculty of Engineering, Ale-Taha Institute of Higher Education, Tehran, Iran 
 

Received: 12 Nov 2024/ Revised: 11 Sep 2025/ Accepted: 13 Oct 2025 

 
 

Abstract  
The use of mobile devices with limited processing power has surged in recent years, alongside the expansion of cloud and 

fog computing across various sectors. These devices can handle small to medium computing tasks, but they fall short when 

it comes to large-scale processes, making computational offloading a crucial solution. Cloud computing and fog computing 

provide an effective platform for offloading tasks from mobile devices. However, critical real-time applications necessitate a 

near-edge approach to managing the computational load. Significant challenges exist in optimizing response times for 

effective offloading in cloud computing. This research introduces a framework for predicting response times using Deep 

Belief Network (DBN) learning to enhance offloading performance. Implementing a DBN aims to minimize response times 

and resource consumption, thereby improving the overall efficiency of offloading processes. The framework is designed to 

predict response times accurately, ensuring timely completion of tasks and efficient use of resources. Simulation results using 

multiple models show that the use of DBN significantly reduces processing, response, and offloading times compared to other 

algorithms. Consequently, the DBN algorithm proves to be more efficient in predicting response times and enhancing 

offloading performance. By leveraging the capabilities of DBN, this framework provides a promising solution for optimizing 

computational offloading in cloud computing environments. This enhances the performance of mobile devices and ensures 

the reliability and efficiency of real-time applications, direct the way for more advanced and responsive computing 

technologies. 
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1- Introduction 

The proliferation of mobile devices has substantially 

increased computing demands, introducing new challenges 

in communication networks and resource provisioning. Due 

to their limited resources, mobile devices struggle with 

large-scale image processing and real-time conversion 

services [1]. Cloud computing technology helps mitigate 

these limitations; however, it is not applicable for real-time 

applications considering latency issues. Consequently, 

offloading computational tasks to independent platforms 

becomes a practical solution. For instance, the mobile cloud 

can provide maximum advantage for mobile video gaming 

and streaming [2]. 

Nevertheless, mobile cloud computing encounters 

challenges such as limited network bandwidth and 

offloading latency. Transmitting data from mobile devices 

to distant clouds consumes significant bandwidth, leading 

to traffic congestion and increased latency. Latency-

sensitive applications require offloading to nearby 

locations, such as the nearest edge or mobile fog, to address 

these issues [3]. 

Cisco Systems introduced fog computing as an extension of 

cloud computing, bringing its capabilities to the network’s 

edge. This extension benefits IoT services by supporting 

latency-intolerant mobile services. Numerous studies have 

focused on standardizing the computational offloading 

process at the edge or mobile fog, particularly in selecting 

mobile application units. Challenges related to offloading at 
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the mobile edge or fog include mobility, heterogeneity, and 

geographic distribution of devices. 

As the digital world expands and network technologies 

evolve, complex services are emerging [4]. The generation 

of online applications featuring computing, 

communication, and intelligent capabilities continues to 

grow. Despite the growing power of current devices, they 

still struggle with tasks required for smart healthcare, 

augmented reality, intelligent car communication, and 

many smart city services. These applications often require 

another individual to execute tasks as a representative of the 

user's device, a technique known as process offloading [5]. 

Task disburdening is especially advantageous for Internet 

of Things and cloud computing requisition, facilitating 

interactions between edge devices or fog nodes and sensors 

and IoT nodes. Load shedding can be established on 

computational requirements, load balancing, energy 

management, and latency management [6]. 

In a data-rich world, mobile devices with limited resources 

can handle small-to-medium computations but struggle 

with high-level computations. Processing offloading is an 

effective solution to overcome this limitation. Recently, 

cloud computing has been recognized as a suitable platform 

for offloading tasks from mobile devices. However, the 

distance of cloud data centers from mobile devices 

increases network latency and affects the performance of 

real-time IoT applications. 

For essential real-time applications, employing a near-edge 

network approach for computing offload is vital. 

Additionally, the primary controls for distributed mobile 

devices are heterogeneous in the offloading process of 

mobile computing. To overwhelm these contests, a deep 

learning-based response time prediction framework has 

been implemented to optimize offloading decisions near 

fog/edge or cloud nodes. 

The objectives of this research are: 

• Enhance Offloading Performance: Develop a deep 

learning-based framework to improve 

computational offloading efficiency. 

• Minimize Prediction Error: Achieve the lowest 

discrepancy between actual and predicted 

response times using deep learning techniques. 

• Boost Prediction Accuracy: Enhance the accuracy 

of response time predictions with the proposed 

deep learning method. 

The paper is structured as follows: Section 2 covers related 

concepts and foundational research. Section 3 outlines the 

technical methodology, including the proposed method and 

framework. Section 4 analyses the proposed framework, 

presents results, and evaluates their theoretical implications. 

The final section discusses the results' implications and 

concludes with future trends and perspectives. 

 

2- Background 

This section explores concepts and metrics used in 

computational offloading, IoT middleware technologies, 

technologies that enhance fog computing tasks, and 

offloading methods in fog and cloud computing. The 

interplay between cloud, fog, and mobile computing 

models, concerning large computing resources, is analyzed. 

The literature review also covers computing resource 

allocation methods and achievements in cloud computing 

offloading. 

Cloud computing resources are managed using 

virtualization technology. For example,[7] explains optimal 

virtual machine placement, examining distribution methods 

in cloud data centers. Most resource allocation mechanisms 

are designed for green computing. The DPRA allocation 

mechanism, discussed in [8], considers energy consumption 

of virtual and physical machines and data center air 

conditioning. A comparison of three schemes with DPRA 

shows energy savings, PM shutdowns, and reduced VM 

migrations. 

In [9], a multi-objective optimization algorithm balances 

availability, costs, and performance for running big data 

applications in the cloud, outperforming conventional 

methods by reducing costs and achieving higher 

performance. However, the study focuses on big data 

applications. 

In critical real-time applications, for example, patient 

control systems and intelligent transportation, mobile cloud 

computing offloads large tasks while maintaining quality 

standards [10]. A mobility-aware resource allocation 

architecture, Mobihat, provides efficient scheduling but 

does not study the impact of mobility on delay and response 

times for real-time mobile services. 

Offloading mobile edge computing with multiple users, 

based on TDMA and OFDMA, is introduced in [11]. The 

TDMA-based method reduces mobile energy consumption, 

while the OFDMA hybrid model transforms into TDMA, 

defining a discharge priority function for optimal resource 

allocation. 

The optimal computational offloading framework for 

DNNs is presented in [12], considering mobile batteries and 

cloud resources. This method evaluates energy 

consumption and execution time. 

In [13], battery life of nearby mobile devices is used to 

select discharge positions. A non-interactive game model, 

maximizing player payoffs, reduces response times. The 

Nash equilibrium is obtained through the game model and 

indirect induction method, evaluated for response time, 

end-user benefit, and memory usage. Yang et al. [14] 

address high implementation delays among mobile devices 

and fog nodes using queuing theory. Data rate and power 

consumption are selected as decision parameters, 

formulating a multi-objective optimization problem to 

decrease transmission energy consumption, power, and 
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cost, determining the probability of discharge for all mobile 

devices. 

A survey on stochastic-based offloading methods in 

different computing environments, including mobile cloud, 

edge, and fog computing, is proposed in [15]. The 

classification is divided into Markov chain, Markov 

process, and hidden Markov models, discussing open issues 

and future challenges. 

In [16], a multi-objective optimization model addresses 

time and energy consumption of mobile users and edge 

server resource utilization. An edge-cloud joint offloading 

method, based on the evolved Strength Pareto algorithm, is 

effective and efficient for scenarios with multiple mobile 

users and heterogeneous edge servers. 

An offloading architecture, combining intelligent 

computing with AI, is presented in [17]. Considering 

mobile task data size and edge node performance, a load 

shedding and task transfer algorithm optimize edge 

computing offloading. Experiments show reduced task 

delay by increasing data and subtask execution. 

Du et al. [18] address offloading in a cloud-cloud 

environment, supporting a heterogeneous model to consider 

task communication cost asymmetry. They prove the NP-

hard nature of the problem and design an efficient algorithm 

for an optimal solution, evaluated through a PageRank-

based program in a controlled cloud edge setting. 

An adaptive wireless resource allocation strategy for 

computational offloading, under a three-layer edge cloud 

framework, is studied in [19]. Modeling the offloading 

process at the minimum block level of allocable wireless 

resources adapts to vehicular scenarios and evolves in the 

5G network. The proposed value density function measures 

cost-effectiveness and energy saving. Numerical results 

show the designed algorithm achieves significant running 

time and energy savings, with superior performance 

compared to benchmark solutions. 

An autonomous computational offloading framework is 

presented in [20] for time-consuming programs, addressing 

control model challenges for managing computing load. 

Various simulations, including deep neural networks and 

hidden Markov models, are performed. Results show the 

hybrid model fits the problem with near-optimal accuracy 

for discharge decisions, delay, and energy consumption 

predictions. MAPE is used for discharge, collection, and 

processing for decision making. The proposed method 

outperforms local computing and offloading in latency, 

energy consumption, network utilization, and execution 

cost. 

In [21], minimizing average task execution time in edge 

systems, considering job request heterogeneity, application 

data pre-storage, and base station cooperation, is addressed. 

A mixed integer nonlinear programming (MINLP) problem 

is formulated and addressed using decomposition theory. 

The GenCOSCO algorithm improves service quality and 

computational complexity. For fixed service cache 

configurations, the FixSC algorithm derives evacuation 

strategies, with simulations showing significant task 

execution time reductions. 

Peng et al. [22] propose three multi-objective evolutionary 

algorithms to tackle the computing offloading challenges in 

IoT for edge and cloud networks. They developed a 

constrained multi-objective load calculation model that 

accounts for time and energy consumption in mobile 

environments. Drawing inspiration from the push and pull 

search (PPS) framework, they introduced three algorithms 

(PPS-NSGA-II, PPS-SPEA2, and PPS-SPEA2-SDE) that 

integrate population-based search with flexible constraint 

control. These algorithms were tested using multi-task, 

multi-user scenarios across various IoT devices. The results 

demonstrated their effectiveness and superiority. 

Other research presents a user-centered joint optimization 

offloading scheme designed to minimize the weighted costs 

of time delay and energy consumption. The mixed-integer 

nonlinear programming problem is addressed using a 

particle swarm optimization algorithm that incorporates 0-

1 and weight improvement techniques. Simulation results 

indicate higher performance in delay, energy consumption, 

and cost [23]. 

In [24], a computation offloading scheme via mobile 

vehicles in a cloud-IoT network is proposed. Sensing 

devices generate tasks and transmit them to vehicles, which 

then decide whether to compute the tasks locally, on a MEC 

server, or at a cloud hub. The offloading decision is based 

on a utility function that considers energy consumption and 

transmission delay, using a learning-based approach. 

Experimental results show that this solution maximizes 

rewards and reduces delay. 

Based on the research discussed, various techniques can be 

adopted for cloud computing offloading, depending on 

priorities. This research proposes using a response time 

prediction model based on deep learning to determine the 

optimal offloading position. The impact on delay and 

energy efficiency will be evaluated to improve offloading 

performance by minimizing the error between actual and 

predicted response times. 

3- Methodology 

A mobile fog node expands the capabilities of fog and 

mobile cloud computing models by offering a localized 

system to minimize potential delays and execution times 

while maintaining continuous and direct communication in 

conjunction with the cloud data center. The proposed 

model, depicted in Figure 1, encompasses three offloading 

positions: the cloud data center, adjacent mobile station, and 

mobile fog. This setup is supported by the LTE hierarchical 

architecture and the Wi-Fi intra-network reference model, 

situating the mobile fog at the network's edge. Access points 

and access point controllers operate as mobile fog nodes. 
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Fig. 1 Mobile Fog System Model for Computational Offloading - 

Verification and confirmation of Mobile Stations is Achieved by 3GPP 

AAA via Extensible Authentication Protocol-Authentication and Key 

Agreement(EAP-AKA) over Internet Key Exchange version 2 (IKEv2) 

Within this architecture, the mobile edge/fog is represented 

by the fog-1 node, the mobile fog by the fog-2 node, and the 

public cloud serves as the third offloading position, referred 

to as the cloud node. Communication within the fog is 

enabled by the Evolved Packet Core, which provides the 

Evolved Packet Data Gateway. 

Access points not only facilitate communication between 

mobile stations but also offer cloud services such as, 

Network as a Service (NaaS), Platform as a Service (PaaS), 

and Infrastructure as a Service (IaaS). IEEE Ethernet 

interfaces connect access points to access point controllers, 

while IEEE 802.11 WLAN interfaces link mobile stations 

to access points. The access point controller manages block 

code migration, overseeing memory, processing, I/O, and 

networking capabilities to sustain mobile cloud services. 

Hence, the access point controller similarly serves as a fog 

network controller. In Figure 1, fog-enabled access points 

are labeled as "fog-access points," and access point 

controllers are designated as "fog-access point controllers." 

Mobile station authentication is conducted by the 3GPP 

AAA via EAP-AKA over IKEv2, with the verification and 

validation vector derive through the shared home server unit 

in the LTE network. The data network gateway, which 

handles access to user equipment or mobile stations and 

virtual machines (VMs), has evolved into a packet data 

gateway. The top module, the public cloud, functions as a 

traditional delivery network, providing pervasive and 

scalable services accessible via the web using both mobile 

and static devices. 

 

 

 

3-1- Unloading Node Process 

This section details the offloading process based on the 

previously described model, with a focus on the fog/mobile 

edge. In critical real-time applications, nodes such as public 

cloud and mobile fog and mobile edge are physically 

dispersed to deliver services to mobile cloudlets, which are 

resource-limited mobile stations. Due to the dynamic nature 

of these applications, request times are unknown and 

random, with variable response times, making it 

challenging to identify the optimal offloading node. 

To tackle this issue, a deep learning-based approach is 

recommended. This approach learns from the request 

history and response times of nodes to predict future 

response times. The node with the lowest predicted 

response time is then selected for offloading. The 

relationship between the computing requirements of cloud 

or fog nodes and the response time of virtual machines is 

complex. 

Predicting workload data patterns is challenging due to their 

non-consecutive nature. Therefore, aggregated workload 

data characteristics of VMs are used instead of single VM 

data for prediction purposes. A deep learning model can 

better determine workload data dispersions based on 

inherent data characteristics, outperforming simpler 

models. This preference is due to the deep model's ability to 

learn complex relationships between workload data 

features. Although structurally similar to a Multi-Layer 

Perceptron (MLP), a Deep Belief Network (DBN) has a 

diverse training method, allowing it to address gradient 

fading effectively. 

 
Fig. 2 Flowchart of the DBN-based offloading decision process, 

integrating predictive modelling, fallback selection via p-model, and 

feedback-driven model updates for sustainable smart city applications. 
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Figure 2 illustrates the complete workflow of the proposed 

DBN-based computational offloading system for smart city 

environments. The process begins with data collection from 

mobile devices and virtual machines, including historical 

request patterns and aggregated workload characteristics. 

After preprocessing and feature extraction, the data be used 

for DBN step, which performs multi-layer encoding and 

pattern recognition to predict future response times of 

candidate nodes. Based on these predictions, the system 

attempts to select the node with the lowest latency for 

offloading. If due to unpredictable workload patterns or 

insufficient confidence no suitable node is identified, the 

system activates a fallback mechanism using the p-model, 

which randomly selects a server based on predefined 

probability. The final stage involves task execution and 

feedback logging, which continuously refines the DBN 

model for future decisions. 

3-2- Deep Belief Network (DBN) 

A Restricted Boltzmann Machine (RBM) can extract 

features and recreate data entry, in spite of that, it struggles 

with gradient blurring. To address this, multiple RBMs can 

be combined with a classifier to form a Deep Belief 

Network (DBN). This method, known as greedy layer-by-

layer unsupervised pretraining, involves training the DBN 

two layers at a time, treating each pair of layers as an RBM. 

In this architecture, the hidden layer of one RBM acts as the 

input layer for the subsequent RBM. The training process 

starts with the initial RBM, whose outputs are fed into the 

next RBM, and this sequence continues until the output 

layer is reached. Through this process, the DBN identifies 

inherent data patterns, functioning as an advanced multi-

layer feature extractor. A unique aspect of this network is 

its ability to learn the complete structure of the input at each 

layer, similar to a camera gradually focusing an image. 

Finally, labels are applied to the resulting patterns in the 

DBN. The DBN is subsequently fine-tuned through 

supervised learning using a small set of labeled samples, 

with minor changes to weights and biases leading to a 

marginal increase in accuracy. 

The proposed approach includes a deep belief network with 

one-layer neural network. This method employs an 

unsupervised approach to extract more robust and helpful 

features from VM workload data. By increasing the hidden 

layers in the DBN, the error gradient is significantly 

amplified before being minimized. Training is conducted 

using an unsupervised greedy layer-wise method. To further 

optimize, the DBN's top layer utilizes a standard sigmoid 

regression. Future request predictions are generated by 

analyzing response times in terms of bandwidth (B), 

memory (M), and processing capability (P). 

As presented in Figure 3, inputs to the DBN model include 

the bandwidth, memory and processing capability of entire 

requests, along with the recent workload of all VMs. These 

data cover actual response times discovered over various 

time spans. For each node, the trained DBN models predict 

response times, with input values normalized between 0 and 

1. The core layer's units equal the sum of the VMs in the 

cloud and the time slots.  

Number of Units=VM×TI  (1) 

Where: 

VM represents the number of virtual machines. 

TI represents the number of time intervals. 

This simple yet effective formula helps determine the total 

number of units required based on the given parameters. 

Alternatively, a supervised approach with a precisely 

configured logistic regression layer can be employed to 

label the data and predict the workload of a VM. 

 
Fig. 3 Stacks before RBM Training 

Initially, the standard binary RBM is modified to a 

Gaussian-Bernoulli RBM. The visible unit biases in the 

RBM energy function are adjusted to include quadratic bias 

terms [3]. An example of a load shedding decision session 

is shown in Table 1. The Energy function and Conditional 

Probability Distribution are conveyed in following way:  

E(x, h|θ) = ∑
(𝑥𝑖−𝑎𝑖)2

2𝜎𝑖
2

𝑋
𝑖=1 − ∑ 𝑏𝑗ℎ𝑗

𝐻
𝑗= − ∑ ∑

𝑣𝑖

𝜎𝑖
ℎ𝑗𝑤𝑖𝑗

𝐻
𝑗=1

𝑋
𝑖=1

     (2) 

𝑃(ℎ𝑖|𝑥; 𝜃) = 𝛿(∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑏𝑗)  (3) 

𝑃(𝑥𝑖|𝑥; 𝜃) = 𝑁(𝜎𝑖 ∑ 𝑤𝑖𝑗𝑥𝑖
𝑋
𝑖=1 + 𝑎𝑗 , 𝜎𝑖

2) (4) 

Table 1: Description of symbols 

Symbol Description 

𝜇 mean 

𝜎2 variance 

𝜎 standard deviation 

P probability 

E expectancy 

X observable variables 

H common hidden space of variables 

W linear mapping coefficient 

B bias 

In this context, the Gaussian distribution's probability 

distribution function is represented by N(μ,σ2), where μ is 

the mean, and σ2 is the variance vector. Hinton’s training 

method outlines the prediction process as follows: 

Unsupervised Training: The RBN visible and hidden 

layer are trained. The RBM input comprises a request 

section and a response time dataset. θ  is the only non-

continuous parameter in the RBM. 

 
 
 

 

Input Value Output Value 
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Layer Inheritance: Each visible layer in RBM inherits and 

utilizes the extracted features of the preceding RBM as its 

input. This process is repeated for subsequent RBMs, with 

the parameter θ retained for the next and initial RBM. 

Input to Logistic Regression: The regression layer is 

trained using labelled data in a supervised manner; and 

input of that is the output of the final RBM.  

Supervised Training: The θ parameters are trained and 

adjusted using the backpropagation (BP) algorithm. 

The deep belief network-based response time prediction 

method leverages edge/cloud computing to accurately 

determine whether to offload computations to a 

neighbouring node, an edge/fog node, or a cloud node. To 

handle the unpredictability of resource availability in 

edge/fog and cloud nodes, the proposed offloading 

procedure leverages the technique of RBM learning. 

To begin the substantial data volumes and the demand for 

real-time applications, particularly in the e-health sector, a 

near-edge network approach for offloading computations is 

recommended. This strategy addresses the primary controls 

for distributed mobile devices, easing the offloading 

process in mobile and heterogeneous computing 

environments. A deep learning-based response time 

prediction framework has been developed to enhance 

computational offloading performance, determining the 

optimal offloading target, whether it's a nearby fog/edge 

node, an adjacent fog/edge node, or a cloud node. 

Additionally, the Restricted Boltzmann Machine (RBM) 

learning technique is utilized to handle the variability of 

resource availability. 

In this study, the DBN model was trained using aggregated 

workload data collected from simulated virtual machines 

operating under diverse conditions. The training process 

involved unsupervised pre-training of Restricted 

Boltzmann Machines (RBMs) followed by supervised fine-

tuning using labeled response time data. Training was 

conducted on a standard CPU-based computing 

environment, which, was sufficient for the scale and 

complexity of the dataset used. The total training time 

varied depending on the configuration, typically ranging 

from 30 minutes to 2 hours. Once trained, the model was 

deployed for inference on edge servers, where its 

lightweight architecture enabled real-time prediction 

without significant computational overhead. This setup 

demonstrates that even without specialized hardware, the 

DBN-based offloading strategy remains practical and 

effective for mobile and fog-based environments. 

4- Result and Analysis 

This section examines the performance of the proposed 

models. The simulation results integrate real mobility 

tracking, server datasets, and model implementation on 

actual machines. Subsequent sections will explore the 

performance benefits of DBN-based models using three 

probability distributions (uniform, normal, and exponential) 

to achieve accurate results. 

4-1- Data Collection 

To simulate mobile node movements, a dataset of vehicle 

movements in Rome was utilized, as referenced in [25]. 

This dataset comprises coordinates of 320 taxis collected 

over 30 days, including their coordinates, date, time, and 

GPS location. Mobility tracking treats any movement as a 

point in time to check server or dump time, rather than 

studying user mobility. Each movement is modeled as an 

interaction with a mobile edge computing server. 

Processing times are obtained from real servers (CPU 

usage), involving around 150 data servers (over 1 billion 

rows). With e very movement, a server is selected from the 

dataset, its utilization is checked, and an unloading decision 

is made based on the model's recommendation. 

The evaluation spans more than five days (5000 rows of 

movements). An evacuation decision is made every minute, 

resulting in over 1000 evacuation decisions, ensuring the 

proposed models' behavior is observed over an extended 

period. The DBN-based response time prediction method 

leverages edge/cloud computing to determine whether to 

offload computations to a neighboring node, an edge/fog 

node, or a cloud node.  

Given the challenges posed by large data volumes and real-

time applications, particularly in the e-health sector, a near-

edge network approach was recommended for offloading 

computations. The proposed RBM learning technique 

addresses the randomness of resource availability. 

Figure 4 distribution of server usage probabilities across all 

servers in the dataset. The data generally follows a normal 

distribution, illustrating typical CPU utilization patterns 

observed during simulation. 

 
Fig. 4. CPU usage distribution of servers (CPU unit is percentage and 

Density is J) 
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Table 2 sample load shedding decision session, showing 

CPU consumption values for selected mobile edge 

computing servers at specific geographic positions and time 

intervals. 

Table 2: Dataset Sample Used in the Experiment. (ID: xx6, Motion Time 
Interval: 10 Seconds) 

Position Machine CPU Consumption 

X=41.8911, 

Y=12.49073 
M_xx39 51 

X=41.89905, 

Y=12.4899 
M_xx36 47 

X=41.8994, 

Y=12.48940 
M_xx41 20 

X=41.8994, 

Y=12.489401 
M_xx41 37 

4-2- Evaluation 

This section focuses on simulating and evaluating the 

proposed evacuation rules across various variables. The 

primary aim is to observe the models' behavior under 

different conditions, allowing generalization to parameters 

such as quality of service and response time concerning 

computational load. 

MATLAB software is chosen for the simulation, which can 

perform process-based discrete event simulation. The 

“Advance Mode” is selected for the probability distribution 

of the random variable X, including time (processing). In 

the simulation, a resource actually is a mobile edge 

computing server k that is modelled and can advertises its 

processing time Xk. A process is a mobile node that 

modelled to traverses the mobile edge computing servers 

and checks latency of each server based on the processing 

time. Initially, we consider n=5, means having five mobile 

edge computing servers. The processing time X follows a 

normal distribution (50 ms to 10 ms), a uniform distribution 

in the interval [0-1], and a binominal distribution of 50 

J/mol. MATLAB has generated incidental variables 

following the determined apportionment. 

At every initiation, a node begins polling the mobile edge 

computing servers consecutively, starts with server one. At 

this step, the proposed approaches are utilized to choose a 

mobile edge computing server. The important parameters in 

processing time are waiting time, delay and total delay. 

Additionally, based on the program types, the range of 

processing time differs from 100 milliseconds to 800 

seconds, and in intervals of 10 milliseconds to 30 

milliseconds. Therefore, various ranges for parameter X can 

be considered derived from the proposed models, which 

producing similar outcomes as observed in the experiment 

dataset. Table 3 shows the values and range of parameters 

in the simulation test. 

The main approach used in the simulation involves 

comparing values obtained from other studies, random 

values, the nearest server (immediate loading), and a 

method from the same family of algorithms proposed in this 

work. This evaluation is limited to comparisons between 

different models, including the random and probabilistic 

model (p). These approaches are compared to the superior 

option, where the server or time with the minimum value is 

chosen. 

Table 3: Simulation Parameters Values for all Methods 

Parameters Value / Range of Values 

X N(10, 50) & U(0, 1) 

No. of mobile nodes  1000 

N {3, 5, 10} 

P for p-model 0.8 

R {0, 0.25, 0.5, 1} 

𝜃 
{30, 40, 50, 60} 

{0.3, 0.4, 0.5, 0.6} 

{20, 30, 40, 50, 60} 

C 
{1, 2, 3, 4, 5, 20, 30} 

{0.1, 0.2, 0.3, 0.4} 

{1, 10, 15, 20, 30, 40} 

The reasons for adopting this approach are as follows: 

Primarily, this research emphasizes data decision-making 

and task offloading. Additionally, deep learning algorithms 

inherently differ from traditional algorithms, especially 

when the decision maker lacks complete information. Thus, 

the approach to optimality is the main analysis for 

evaluating these algorithms. Optimization is suitable when 

all server information is available to the decision maker, 

facilitating the mobile node in determining the ideal 

offloading location. Ultimately, these algorithms are 

implemented in sequence, complicating direct comparisons 

with other algorithms. 

In this setting, in the absence of offloading rules, the mobile 

node will likely choose the first available mobile edge 

computing server. For edge computing load, such an 

offloading method is optimal for task offloading. So, the p-

model method is utilized as a fallback technique. In the p-

model, each server is assigned a loading probability, set to 

p=0.8. During each user move, each server has a probability 

p=0.8 of being selected to load the job. In this experiment, 

increasing p intensively the probability of selecting the first 

server for loading. Consequently, the p-model replicates the 

scenario where the mobile node chooses the nearest servers 

that is closest edge servers due to the higher probability 

p=0.8. 

When evaluating the actual dataset, if a server is preferred 

(server is chosen for loading) the process stops; if no server 

is preferred, the last server is chosen. A server is randomly 

preferred for each user to offload the work in the random 

selection model. 

The results of all models are compared with values obtained 

from the proposed model, where the server with the shortest 

processing time is chosen for each unloading session. 

Models that are closer to the optimal value demonstrate 

superior performance in offloading decisions. The optimal 
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model is achieved by choosing the server with the shortest 

processing time for each load sequence. 

4-3- Results 

The simulation results evaluate the performance of the 

proposed DBN-based offloading model across multiple 

dimensions, including execution time, server usage, energy 

efficiency, and successful offloads. The evaluation spans 

three distinct probability distributions for the processing 

time variable X: normal, uniform, and exponential. Each 

distribution reflects different real-world workload scenarios 

in mobile edge computing environments. 

Across all simulations, the DBN-based model consistently 

demonstrates superior performance compared to 

benchmark algorithms such as Delay Tolerant Offloading 

(DTO), Best Choice Problem (BCP), Cost-based Optimal 

Task (COT), Quality-Aware Odds, Random selection, and 

the p-model. The proposed method achieves lower average 

execution times, reduced CPU usage, and higher rates of 

successful offloads under varying resource constraints. 

Figures 5 through 13 present comparative results for each 

distribution scenario. These include average processing 

times, server utilization, and the number of effective 

offloads under different CPU thresholds. The DBN model 

shows strong alignment with the optimal model, 

particularly in scenarios where resource availability is 

dynamic and unpredictable. This confirms the model’s 

ability to make accurate offloading decisions and maintain 

system efficiency under diverse conditions. 

Performance Analysis with Normal Distribution 

As illustrated in Figure 5, when the processing time X 

follows a normal distribution, the proposed DBN-based 

algorithm achieves the shortest execution time among all 

evaluated methods. The average execution time for 

computational discharge is approximately 40 milliseconds, 

outperforming DTO, BCP, COT, and the p-model 

algorithms. 

 
Fig. 5 Simulation Results for All Models in Case of X Normal 

Distribution. 

The figure also reveals a significant overlap between the 

DBN model and the optimal model, indicating that the 

DBN’s predictions closely approximate ideal offloading 

decisions. In contrast, models such as the p-model and 

random selection exhibit higher variance and longer 

processing times. The BCP model achieves a processing 

time of 46 milliseconds, which is lower than the p-model 

and random approaches but still less efficient than the DBN. 

These results validate the effectiveness of the DBN-based 

offloading strategy in minimizing latency and optimizing 

resource allocation in mobile edge computing. The model’s 

ability to learn from historical workload patterns and predict 

response times contributes to its superior performance 

across varying conditions. 

The results in Figure 6 reveal that the variation between the 

optimal model and DBN model is significantly smaller than 

the variation detected with other models. Notably, for 

models other than the DBN, the optimal threshold for each 

experiment k is generally close to the average processing 

time of 50 milliseconds. For example, in the DTO model 

and COT model, the thresholds generated for n=5 are {40, 

42, 43, 46, 50}, all near the average processing time. 

 
Fig. 6 Average Processing Time for Different Models with X Normal 

Distribution. 

Using these optimal thresholds as a reference, the initial 

threshold value for the Odds method is set to 50, with 

performance evaluated for various values. The results, 

indicate the effective performance of the Odds method. This 

performance can be credited to the high likelihood of 

choosing a server with a processing time under 50 

milliseconds. Thus, by setting a threshold value close to the 

average processing time, a shorter processing time is 

achieved for unloading the computational load. 

Furthermore, the results demonstrate better performance for 

the BCP method compared to the p-models and Random 

method. The BCP evacuation policy is more likely to 

achieve the shortest processing time, leading to a lower 

average processing time than other models. This increased 

likelihood results in a lower expected processing time 

compared to the random and p models 

Significantly, while the probability of selecting the best 

server is assumed to be similar in the BCP and Odds 

models, the defined threshold in the Odds model enhances 

performance by ensuring quality-aware decisions when 
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examining mobile edge computing servers. The main 

conclusion from these results is that the proposed method, 

referred to as the optimal model, achieves a shorter 

processing time than other methods, thereby reducing 

response time and improving the performance of 

computational offloading in cloud computing. 

Performance Analysis with Uniform Distribution 

In the initial results, the random variable X followed a 

normal distribution. To achieve more accurate findings, we 

conducted an additional simulation with X uniformly 

distributed within the interval [0-1] (Figure 7). This range 

represents server usage, such as CPU utilization, where a 

value of 0.5 indicates 50% CPU usage. We applied similar 

steps to all models, as in previous experiments. 

In the DTO model, the delay coefficient initially began at 

r=0, with results for other r values presented subsequently. 

For the cost-based optimal task model, an ideal threshold 

was identified for each cost value in the second set. 

Specifically, for c = 0.2, evaluations determined the optimal 

threshold to be 0.3. The cost interpretation is similar to the 

normal distribution scenario: a higher cost (smaller 

threshold V) signifies a greater need for shorter processing 

times. 

 
Fig. 7 Simulation Results for All Models in Case of X Uniformly 

Distribution. 

In the quality-aware Odds model, the threshold was set to 

0.5, yielding a 42% probability of selecting a server with 

X=0.5. Though the BCP model shares this probability, 

setting the threshold notably improved the Odds model's 

performance. Figures 7 and 8 show that model performance 

aligns closely with results from the normal distribution 

scenario. DTO and COT models remain top performers, 

with deep belief network-based models coming closer to 

optimality compared to random and p models. 

As illustrated in Figure 8, the average execution time for 

various algorithms, including the proposed method based 

on the deep belief network, has been evaluated. The results 

demonstrate that the proposed method achieves a shorter 

execution time compared to other methods, indicating a 

more efficient response to computational offloading in 

mobile edge computing. 

 
Fig. 8 Average Processing Time for Different Models with Uniform X 

Distribution. 

Performance Analysis with Exponential 

Distribution 

Figure 8 demonstrates that the proposed algorithm achieves 

an execution time of approximately 0.15 milliseconds, 

which is shorter compared to other methods. On the other 

hand, the p-model algorithm exhibits the longest execution 

time due to the consideration of a threshold value for 

selecting servers. These results suggest that the deep belief 

network (DBN) method provides superior response times 

for computational offloading in mobile edge computing, 

attributed to its layered approach. 

Besides normal and uniform distributions, this experiment 

also included an exponential distribution with a mean of 50. 

The same procedural steps were followed as in the previous 

distributions. Initially, the delay coefficient in the DTO 

method was set to r=0, with results for other r values 

subsequently presented. The results under these conditions 

are shown in Figures 9. 

In the Cost-based Optimal Task model, the figures depict 

the optimal threshold values V corresponding to each cost 

value. For this simulation, the cost was initially set to 20, 

with the optimal threshold determined to be 45.81, resulting 

in the lowest simulated expectation of X among other 

values. Performance across various cost values is also 

demonstrated. The cost interpretation aligns with scenarios 

where X follows normal and uniform distributions: a higher 

cost (smaller threshold V) indicates an increased demand for 

shorter processing times. 

In the quality-aware Odds method, the threshold was set to 

50, resulting in a 44% probability of selecting a server with 

X=50. The results in Figures 9 and 10 indicate that the 

proposed model's performance is consistent with the results 

obtained when X follows normal and uniform distributions. 

The DBN-based method consistently outperforms other 

algorithms, demonstrating the best performance and closest 
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proximity to optimality compared to the random and p-

models. 

Figure 9 demonstrates that the proposed method with 

exponential distribution achieves a lower execution time 

compared to other methods. This distribution effectively 

guides server selection for mobile edge calculations, 

showing that the deep belief network-based method 

provides a faster response for computational offloading in 

mobile edge computing than other algorithms. 

 
 Fig. 9 Simulation Results for All Models in Case of X Exponential 

Distribution. 

Figure 10 illustrates the average response time for different 

methods with exponential distribution. The proposed 

method has a significantly lower response time, 

approximately 10 milliseconds, compared to other 

algorithms. This demonstrates that the proposed method 

surpasses other approaches in reducing response time for 

computational offloading in mobile edge computing. 

 

Fig. 10 Average Processing Time for Different Models With X 

Exponential Distribution. 

Server Usage and Energy Efficiency 

Figure 11 illustrates the average server usage recommended 

by each model. The DTO and COT models show results 

closest to the proposed method, with DTO performing 

better than the others by an absolute difference of 23 units 

compared to the proposed method. The findings indicate 

that the proposed method has a lower average server 

consumption than the other methods, meaning it consumes 

less energy for mobile edge calculations. 

Additionally, the proposed method, based on the deep belief 

network, demonstrates a shorter average unloading time 

compared to other algorithms. Consequently, this suggests 

that the response time for computational offloading in 

mobile edge computing is more efficient with the proposed 

method than with others. 

 
Fig. 11 Average CPU Usage and Average Computational Drain Time by 

each Model 

Server Consumption and Successful Offloads 

Figure 12 illustrates the average server consumption for the 

proposed method compared to other solutions. The 

proposed deep belief network method demonstrates a lower 

average server consumption, indicating that it not only 

reduces the response time for computational offloading but 

also optimizes server usage. This results in lower overall 

server consumption compared to other algorithms. 

 
Fig. 12 Average Usage of Servers for Different Algorithms. 

Result presented the average server consumption for the 

proposed method compared to other solutions. The 

proposed deep belief network method demonstrates lower 

average server consumption, indicating that it not only 
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reduces response time for computational offloading but also 

optimizes server usage, resulting in lower overall server 

consumption compared to other algorithms. 

Beyond average server utilization, we compare 

performance based on the number of effective offloads for 

each model. An effective offload refers to unloading 

decisions that meet specific requirements set by each 

model. To assess this, we assume three different mobile 

edge computing programs (x, y, and z) each with distinct 

needs. For example: 

• Program x requires less than 10% CPU utilization. 

• Program y requires less than 20% CPU utilization. 

• Program z requires a server with less than 30% 

CPU utilization. 

If an offload occurs for a server with usage less than 10%, 

it is considered a successful offload for program x. 

Figure 13 illustrates the effective offloads for various 

resource demands across entire methods. The proposed 

deep belief network-based method achieves the highest 

number of successful offloads in these three cases, with 

values of 102, 463, and 1887 successful offloads, 

respectively. 

 
Fig. 13  Number of Effective Discharges for each Model Based on 

Various Threshold Values. 

4-4- Discussion 

The simulation results for various methods indicate that the 

presented models generally exhibit a time complexity of 

O(n) at worst, both in terms of time and space. If each 

model's condition is met on server number n, the mobile 

node will visit server n. For the DTO, COT, and Quality-

aware Odds models, a pre-observation step involves 

generating thresholds. This step is presumed to be executed 

a single time by the service provider, external to the mobile 

node, although it can be implemented within the mobile 

node if necessary. For example, computing the threshold at 

the mobile node in the Odds and DTO methods requires 

O(n) time complexity. The COT method requires more time 

to calculate the threshold, depending on the likelihood 

distribution. Merely a sole operation is essential for a 

(uniform) distribution, while a normal distribution requires 

integration estimation with a time complexity no greater 

than O(n2). 

Regarding space complexity, the BCP model does not 

require additional space for data storage, resulting in a space 

complexity of O(n). This also applies to other models, 

provided the training step is performed outside the mobile 

node. If the training step is conducted locally at the mobile 

node, only the probability distribution parameters need to 

be stored. For a uniformly distributed X, the maximum and 

minimum values are stored, while for exponentially 

distributed X, the 𝜇 mean and 𝜎2 standard deviation are 

required. Previous results showed that the time complexity 

of the proposed method based on a deep belief network 

(DBN) is O(1), the lowest complexity for predicting time 

and improving computational offloading performance in 

mobile edge computing. 

Analyzing the execution time and server consumption 

across different algorithms reveals that the proposed 

method is more efficient in performing the computational 

offloading process. The results indicate that the proposed 

model is completely independent and lightweight for 

implementation in the mobile node, outperforming other 

compared solutions. The DBN-based method requires less 

processing time for computational offloading and task 

execution, with lower CPU consumption than other 

solutions. This makes it suitable for managing 

computational offloading of resources, compressing, or 

delaying limited tasks. 

A practical scenario that highlights the effectiveness of the 

proposed DBN-based offloading mechanism involves a 

mobile user engaged in augmented reality (AR) navigation 

within a smart city. AR applications are latency-sensitive 

and require rapid processing of environmental data, user 

location, and graphical overlays. In such a context, the DBN 

model predicts the response times of available fog and cloud 

nodes based on historical workload patterns and real-time 

system conditions. By selecting the node with the lowest 

predicted latency, the system ensures that AR content is 

rendered and delivered with minimal delay, thereby 

preserving user experience and application responsiveness. 

In cases where no optimal node is identified, the fallback 

mechanism ensures continuity by probabilistically selecting 

a viable server. This dynamic and adaptive offloading 

strategy demonstrates the model’s potential to support real-

time, resource-intensive mobile applications in complex 

urban environments. 
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5- Conclusion  

The principal aim of this research is to enhance 

computational offloading performance in mobile edge 

computing. To achieve this, we have employed a 

computational analysis method based on the deep belief 

network (DBN), incorporating various deep learning 

features to improve the evacuation process. By adding 

specific steps to the computational evacuation process, we 

aim to reduce server consumption, increase process speed, 

and decrease response time to computational requests. 

In this study, the deep belief network algorithm has been 

utilized to further optimize computational offloading, 

making it suitable for various cloud computing applications, 

including mobile edge computing. The proposed algorithm 

focuses on reducing execution time for requests and 

increasing the number of successful offloads within the 

mobile edge computing system. By combining different 

distribution functions and the core features of the DBN 

algorithm, our method seeks to enhance efficiency and the 

volume of computational offloading. 

Our approach to computational offloading on the server side 

is designed to provide a solution with low response time, 

ultimately reducing time complexity and energy 

consumption. It is crucial to employ the appropriate method 

to perform this process efficiently. Incorrect algorithms for 

computational offloading in cloud computing can lead to 

increased energy consumption and decreased successful 

offloads. Timely offloading reduces server-side energy 

consumption and increases efficiency, highlighting the 

importance of an accurate response time prediction solution 

to improve computational offloading performance in 

mobile edge computing. 

A detailed examination of our results indicates that the 

proposed algorithm effectively improves computational 

offloading in mobile edge computing. This algorithm 

requires less time to execute offloading processes and 

respond to requests from mobile nodes. The number of 

requests handled by the servers does not increase response 

time, thereby reducing the duration of computational 

offloading. Compared to Delay Tolerant Offloading (DTO), 

Best Choice Problem (BCP), Cost-based Optimal Task 

(COT), and p-model algorithms, our method demonstrates 

shorter average processing times for computational 

offloading and request responses, achieving optimal results 

for the evaluated dataset. The proposed method outperforms 

other methods in terms of time complexity, energy 

consumption, processing time, CPU usage, average offload 

time, and the number of successful offloads. 

While the proposed algorithm sometimes exhibits longer 

processing times for specific requests, overall performance 

in processing time, resource utilization, average server 

usage, successful offloads, and computational offload time 

is superior in improving computational offloading in mobile 

edge computing. By balancing accuracy and speed, our 

method effectively reduces response time and increases the 

number of successful offloads. 

Future research should evaluate the proposed method across 

various cloud computing systems, applications, and datasets 

to fully explore its efficiency and applicability. 

Additionally, further studies can investigate other neural 

network algorithms, such as long short-term memory and 

convolutional neural networks, to enhance offloading 

performance in mobile edge computing. Meta-heuristic 

algorithms may also be considered to address the NP-hard 

nature of computational offloading problems, aiming to 

reduce complexity and increase successful offloads. 

Finally, developing solutions that require minimal 

processing and computing resources, while considering 

available resource consumption, will lead to more efficient 

computational offloading and increased successful offloads. 
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