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Abstract  
Cybersecurity solutions are critical for the protection of networks against constantly evolving threats. Traditional intrusion 

detection systems (IDS) struggle to adapt to the rapidly varying attack patterns, encouraging the exploration of advanced 

techniques such as deep learning. This study introduces a novel framework utilizing a Hybrid Convolutional-Attention 

Recurrent Network (HCARN) for identifying cybersecurity threat. Utilizing the CSE-CIC-IDS2018 dataset, the data 

preparation process includes data cleanup, feature extraction, and Information Gain-based feature choice. The HCARN 

architecture, integrates convolutional layers, attention mechanisms, and recurrent layers, is employed for categorization.  

Convolutional layers effectively capture spatial features in the dataset, attention mechanisms highlight critical features, and 

recurrent layers model temporal dependencies. This allows HCARN to process and analyze complex patterns in network 

traffic, leading to more accurate threat diagnosis. The proposed model proves significant efficacy in distinguishing between 

major, moderate, and minor threats, attaining high accuracy and robustness in threat recognition. The incorporation of 

attention mechanisms allows the model to emphasize on critical features, while the recurrent layers pay attention to temporal 

dependencies in the dataset. The HCARN architecture determines classification accuracy, achieving 94.7% in K-fold 

validation, 95.4% in model training, and 92.3% in model testing while classifying major, moderate, minor threats 

satisfactorily, confirming its effectiveness in cybersecurity threat detection. This novel attempt underscores the potential of 

hybrid deep learning models in enhancing cybersecurity defenses against sophisticated attacks, paving the way for adaptive 

security systems. 

 

Keywords: Intrusion Detection Systems; CSE-CIC-IDS2018; Deep Learning; Hybrid Convolutional-Attention Recurrent 

Network; Cybersecurity 

 

1- Introduction 

In today's cybersecurity landscape, Intrusion Detection 

Systems (IDS) hold significant importance by serving as a 

vital security measure against the continuously growing 

array of digital threats. An Intrusion Detection System 

(IDS) is an active security measure devised to detect and 

counteract unauthorized or malicious activities occurring 

within a network or system [1]. The principal objective of 

this system is to actively observe network traffic and 

analyze system behavior, with the purpose of promptly 

identifying any peculiar patterns or discrepancies that could 

potentially serve as indications of a security breach. In 

contemporary cybersecurity landscape, Intrusion Detection 

Systems (IDS) play a pivotal role in preserving the 

authenticity, secrecy, and accessibility of digital assets, thus 

imbuing them with utmost significance as a formidable 

deterrent against the ever-changing realm of security threats 

[2]. 

Conventional Intrusion Detection Systems (IDS) rely on 

pre-established rules and signatures in order to detect and 

classify recognized attack patterns. Nevertheless, it is 

frequently challenging for them to effectively adjust to the 

rapidly evolving risks and complex methods employed by 

potential assailants [3]. The aforementioned constraint has 

prompted researchers to investigate sophisticated 

methodologies, such as the amalgamation of artificial 

intelligence (AI), machine learning (ML), and deep learning 

(DL) approaches, with the intent of augmenting the 

precision and responsiveness of Intrusion Detection 

Systems (IDS). These approaches facilitate Intrusion 

Detection Systems (IDS) to acquire knowledge from data, 

identify novel attack patterns, and generate prompt 

decisions, rendering them indispensable instruments for 
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enterprises intending to enhance their cybersecurity 

safeguards. By utilizing these methodologies, Intrusion 

Detection Systems (IDS) can transcend rule-based 

methodologies, which encounter difficulties in 

accommodating emerging threats, and instead become 

adept in identifying innovative attack patterns. The 

utilization of artificial intelligence (AI), machine learning 

(ML), and deep learning (DL) methodologies in intrusion 

detection systems (IDS) improves their capacity to identify 

both familiar and novel threats, decrease instances of 

erroneous positive detections, and effectively react to 

security incidents in a timely manner. The CSE-CIC-

IDS2018 dataset offers researchers a significant opportunity 

to implement these methodologies in practical situations, 

enabling the training and evaluation of intrusion detection 

systems based on artificial intelligence, machine learning, 

and deep learning [4]. It also permits the assessment of their 

efficacy in tackling contemporary cybersecurity challenges, 

which are characterized by their dynamic and intricate 

nature.  

In their development of two deep neural network models for 

intrusion detection in cloud environments, Alzughaibi & El 

Khediri [5] achieve high accuracy rates on with 98.97% for 

binary classification and 98.41% for multi-class 

classification. Göcs & Johanyák [6] concentrate on feature 

selection for intrusion detection systems. They use six 

feature selection techniques and classification algorithms to 

find pertinent elements essential for differentiating between 

benign and malicious network traffic. In their comparison 

of bio-inspired optimization algorithms for cybersecurity 

attack detection, Najafi Mohsenabad & Tut [7] found that 

Ant Colony Optimization, Flower Pollination Algorithm, 

and Artificial Bee Colony feature-selection strategies 

produced detection accuracies of over 98.6%.  

On the CSE-CIC-IDS2018 dataset, Göcs & Johanyák [8] 

describe a novel ensemble feature-ranking strategy that 

improves on existing feature-ranking score combinations 

and achieves superior classification metrics, particularly for 

specific attack types. XGBoost, DT, and RF models are 

highlighted for their superior performance in terms of ROC 

values and CPU runtime by Songma, Sathuphan, and 

Pamutha [9] as they optimize intrusion detection systems 

using data preprocessing, dimensionality reduction with 

PCA and RF, and various machine learning techniques on 

the CSE-CIC-IDS-2018 dataset. Using 19 features chosen 

using the decision tree technique, Khan & Haroon [10] offer 

an Artificial Neural Network (ANN)-based intrusion 

detection system that achieves great performance on the 

CSE-CIC-IDS2018 dataset. Farhan & Jasim [11] use deep 

learning, namely LSTM, for intrusion detection. They 

achieve an impressive detection accuracy of up to 99%, 

demonstrating the usefulness of deep learning techniques 

for cybersecurity applications. The summary of literature 

review is organized in Table 1. Masoudi & Ghaffari [26] 

conducted a comprehensive investigation on Software 

Defined Networks (SDN), focusing on performance issues 

and solutions in SDN-based data centers. They grouped 

solutions into different clusters and identified key 

challenges and future research directions in the field. 

Further, Shirmarz & Ghaffari [27] focused on enhancing the 

performance of software defined network through an 

autonomic system based on deep neural networks. Their 

architecture demonstrates improved performance metrics 

such as blocking probability, delay, and packet loss rate. 

Shirmarz & Ghaffari [28] continued the research and 

presented improving DDoS attack detection in SDN using 

Self-Organizing Maps and Learning Vector Quantization. 

The approach significantly improves the detection rate, 

making SDN more resilient against cyber threats. 

Table 1: Summary of literature review 

Objectives Attacks Algorithms Authors 

IDS 
DoS, U2L 

R2L, Probe 

K-means + KNN 

Tsai et al. [12] 

Encrypted 

traffic 

classification 

Malicious 

instances 
Bar et al. [13] 

IDS 
DoS, U2L 

R2L, Probe 
Lin et al. [14] 

Malware 

detection 

High-risk 

malwares 
SVM + KNN 

Comar et al. 

[15] 

IDS 
DoS, U2L 

R2L, Probe 

SVM + kNN + 

PSO 

Aburomman et 

al. [16] 

Android 

malware 

detection 

- SVM + DT Li et al. [17] 

IDS All attacks K-Support Vector  
Bamakan et al. 

[18] 

IDS 
Anomalous 

connections 

PCA Filtering + 

Probabilistic SOM 
Hoz et al. [19] 

IDS DoS, U2R, 

R2L, probe 

K-Means + NB + 

BNN 

Dubey et al. 

[20] 

IDS   RF + AODE Jabbar et al. 

[21] 

IDS Botnet DT + NB + ANN Moustafa et al. 

[22] 

NADS DoS, U2R, 

R2L, probe 

NB + KNN Pajouh et al. 

[23] 

DoS attack 

detection 

DoS Multivariate 

Correlation + 

Triangle Area 

Tan et al. [24] 

Network 

forensics 

DDoS, 

DARPA  

FL + ES Liao et al. [25] 

IDS All attacks Hybrid 

Convolutional-

Attention 

Recurrent 

Network 

Present model 
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Fig. 1  Methodology 

In the context of a swiftly progressing digital environment, 

the significance of highly resilient intrusion detection 

systems holds substantial weight. This paper makes a 

contribution to the continuous endeavors in enhancing 

network security and protecting the digital realm against an 

increasingly wide range of threats by utilizing the CSE-

CIC-IDS2018 dataset and the capabilities of deep learning. 

The findings presented in this manuscript not only provide 

valuable insights into the effectiveness of deep learning-

based intrusion detection, but also elucidate the trajectory 

for developing intelligent, versatile, and proactive 

cybersecurity measures. The flow of the research is depicted 

in Figure 1. The core objective of this investigation is to 

develop and assess the HCARN for cybersecurity threat 

detection. It aims to:  

• improve the effectiveness of intrusion detection 

systems (IDS) by employing advanced deep learning 

method 

• integrate recurrent, attention, and convolutional 

mechanisms to efficiently capture network traffic with 

temporal, critical, and spatial patterns  

• evaluate the HCARN’s performance on the CSE-CIC-

IDS2018 dataset to categorize cybersecurity threats 

into major, moderate, and minor sets reliably. 

2- CSE-CIC-IDS2018 Dataset 

The dataset consists of a substantial amount of annotated 

network traffic data, which is indispensable in the process 

of training, testing, and validating the efficacy of intrusion 

detection systems. The CSE-CIC-IDS2018 dataset [29] 

exemplifies a meticulous emphasis on realism, effectively 

replicating the complex and ever-evolving characteristics of 

contemporary network environments. The current dataset 

encapsulates a wide array of network activities 

encompassing both legitimate and malicious traffic. Such 

inclusion permits researchers to evaluate the efficacy of 

Intrusion Detection Systems (IDS) in distinguishing 

between the two types of traffic within an environment that 

closely mimics real-world conditions. The CSE-CIC-

IDS2018 dataset presents a comprehensive range of 

characteristics, each augmenting the comprehension of 

network traffic patterns. The aforementioned characteristics 

encompass details regarding individual packets, aggregated 

data on network flows, and diverse metadata pertaining to 

the network traffic. The extensive amount of information 

available to enhance IDS that possess the capability to 

precisely identify security risks. 

 

Fig. 2  Comparison of features and data points 

• Number of observations: The dataset is acknowledged 

to encompass a considerable quantity of observations, 

frequently reaching in the millions. The precise 

quantity of observations may fluctuate contingent upon 

the particular iteration or subset of the dataset under 

consideration. Knowing the number of features and 

observations is essential for training the HCARN 

model as it helps in deciding the input shape and the 

convolution of the dataset and thus figure 2 represents 

comparison of features and data points. 

• Number of features and attributes: The dataset typically 

encompasses a multitude of features and attributes 

which serve to depict network traffic data. The range of 

features within the dataset's version can vary from tens 

to hundreds. Features often include data related to the 

contents of packets, patterns of network traffic, and a 

range of additional attributes that characterize the 

network. The output of the application is in CSV file 

format with six columns labeled for each flow, namely 

FlowID, SourceIP, DestinationIP, SourcePort, 

DestinationPort, and Protocol with more than 80 

network traffic features. Number of features and data 

points in each csv file as shown in Table 2 guides in 

setting applicable hyperparameters and design of 

architecture, confirming efficient training and 

optimization. Here, data points refer to individual 

instances or observations in a dataset and each row or 

entry in the dataset represents a single data point. Each 

row signifies a specific date in February and March 

2018, with the subsequent number of features in 
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various columns and the total number of data points 

logged for that date. 

Table 2: Number of features and data points in each csv file 

CSV Name      Features   Data Points  

 02-14-2018   79  1,048,574    

 02-15-2018   79  1,048,574    

 02-16-2018   79  1,048,574    

 02-20-2018   83  7,948,746    

 02-21-2018   79  1,048,574    

 02-22-2018   79  1,048,574    

 02-23-2018   79  1,048,574    

 02-28-2018   79    613,103    

 03-01-2018   79    331,124    

 03-02-2018   79  1,048,574    

 

• Number of attacks: The dataset known as CSE-CIC-

IDS2018 encompasses a diverse array of cyberattacks 

and network anomalies. The dataset typically 

encompasses various categories. 

❖ Denial of Service Attacks (DoS): The primary 

objective of these attacks is to inundate a targeted 

system or network, resulting in its unavailability to 

genuine users. Instances of these types of attacks 

incorporate SYN flood attacks and UDP flood attacks. 

❖ Port Scanning: Port scanning attacks encompass the 

practice of systematically investigating a target system 

to ascertain the availability of open ports with the aim 

of identifying potential security vulnerabilities or 

discerning the services currently active on the system. 

❖ Malware: The dataset potentially encompasses traffic 

affiliated with the propagation or transmission of 

malicious software, including botnets, worms, and 

viruses. 

❖ Intrusions: Intrusions refer to a multitude of 

unauthorized activities occurring within a network, 

such as unauthorized access, privilege escalation, or 

other forms of network exploitation. 

❖ Botnet Activity: The dataset may contain instances of 

Botnet activity, whereby the activities related to a 

network of compromised devices controlled by a 

malevolent individual are detected. 

Understanding category wise traffic distribution by 

respective shares (%) is vital as it presents insights into the 

prevalence and importance of different attacks (See Figure 

3). This helps in prioritizing the emphasis of feature 

engineering, training, and evaluation schemes, certifying 

model’s robustness to effectively classify and detect the 

most prevalent real-world threats. Furthermore, it helps in 

resource allocation and decision-making for mitigating 

specific types of attacks based on relative occurrence 

frequencies. These attacks are explained herewith.  

 

Fig. 3  Types of attacks and counts 

❖ HOIC: It has 686,012 samples, corresponds to 4.226% 

of the total traffic flow. HOIC (High Orbit Ion Cannon) 

is a common tool that launches DDoS attacks. 

❖ LOIC-HTTP: This category contains 576,191 samples, 

making up 3.550% of the total records. LOIC (Low 

Orbit Ion Cannon) is another DDoS tool, and the 

"HTTP" suffix suggests it targets web servers. 

❖ Hulk: With 461,912 samples, Hulk forms 2.846% of 

the total records. Hulk is a Python script employed to 

execute DDoS attacks by flooding web servers with 

HTTP demands. 

❖ Bot: This category incorporates 286,191 samples, 

representing 1.76% of the total records. Bots are 

automated program that executes several tasks, 

including detection of malicious behavior such as data 

theft, spamming, or DDoS. 

❖ FTP—BruteForce: There are 193,360 samples here, 

with 1.191% of the total records. FTP (File Transfer 

Protocol) Brute Force attack attempts to gain 

unauthorized access to FTP servers by methodically 

trying unique combinations of username/password. 

❖ SSH—BruteForce: This category has of 187,589 

samples, that takes 1.156% of the total records. SSH 

(Secure Shell) Brute Force attacks attempts guessing of 

SSH login credentials to secure unauthorized access. 

❖ Infiltration: With 161,934 samples, Infiltration denotes 

0.998% of the total records. Infiltration stand for to the 

unauthorized invasion of a system or network with the 

intentation of retrieving confidential data or causing 

destruction. 

❖ SlowHTTPTest: This category involves 139,890 

samples, with 0.862% of the total records. 

SlowHTTPTest is a tool employed for testing HTTP 

DoS exposures by launching slow HTTP POST or GET 

requests. 



    

Laddhad & Vaseer, A Novel Hybrid Convolutional-Attention Recurrent Network (HCARN) for Enhanced Cybersecurity Threat Detection 

 

 

54 

❖ GoldenEye: GoldenEye includes 41,508 samples, 

indicating 0.256% of the total records. GoldenEye is a 

DDoS tool that targets web servers by flooding them 

with TCP SYN packets. 

❖ Slowloris: With 10,990 samples, Slowloris takes 

0.068% of the total records. Slowloris is a DoS attack 

tool that targets web servers by multiple connections 

kept open for longest possible time, exhausting server 

resources. 

❖ LOIC-UDP: This category gets 1,730 samples, with 

0.011% of the total records. LOIC-UDP is a variation 

of the Low Orbit Ion Cannon tool that implements 

UDP-based DDoS attacks. 

❖ Brute Force—Web: There are 611 samples here, 

demonstrating 0.004% of the total records. Brute 

Force—Web indicates brute force attacks pursuing 

web apps. 

❖ Brute Force—XXS: This type consist of 230 samples, 

with 0.001% of the total records. Brute Force—XXS is 

a brute force attack focusing on cross-site scripting 

vulnerabilities in web apps. 

❖ SQL Injection: With 87 samples, SQL Injection 

signifies 0.0005% of the total records. SQL Injection is 

very usual attack responsible for exploitation of 

vulnerabilities in web apps for executing malicious 

SQL queries. 

In order to handle the imbalance a class-weighted 

categorical cross-entropy loss function was itself employed. 

It ensured that: 

• Under-represented attack categories supported 

considerably to model learning, targeting no bias 

towards frequent attack. 

• Over-represented attacks had lesser loss weights, 

guaranteeing the network did not overly favor them. 

3- Deep learning Pipeline 

3-1- Data pre-processing 

Data cleaning involves identifying and rectifying errors, 

inconsistencies, and inaccuracies in datasets to ensure their 

quality and reliability. This process greatly impacts the 

validity and credibility of research findings and statistical 

analyses. Consequently, it is essential to carefully and 

systematically perform data cleaning to enhance data 

integrity and minimize the potential for biased or 

misleading conclusions. Furthermore, adhering to best 

practices and employing appropriate software tools can 

streamline and facilitate the data cleaning process, leading 

to more robust and accurate research outcomes. Commence 

with the unprocessed data as the primary dataset. To initiate 

the preprocessing workflow, it is necessary to commence 

with the data cleaning process. The initial cleaning process 

facilitates dimensionality reduction, ultimately providing 

various benefits. In the current analytical study, the 

inclusion of the time parameter is deemed unnecessary, and 

any columns consisting solely of zero values are excluded 

due to their lack of influence on the final result. Following 

completion of the cleaning procedure, a total of 11 columns 

were excluded from the initial set of 80 columns, leaving 69 

columns remaining. A few fields were eliminated from the 

dataset before features were chosen. Metrics like 

‘Bwd_Avg_Bulk_Rate’, ‘Fwd_Avg_Bytes_Bulk’, 

‘Bwd_Avg_Packets_Bulk’, and ‘Fwd_Avg_Bulk_Rate’ 

are associated with bulk transfer rates and packet sizes. 

Furthermore, flags like ‘Bwd_PSH_Flags’ and 

‘Bwd_URG_Flags’ that indicated Push (PSH) and Urgent 

(URG) actions in forward and backward packets were 

removed. For simplifying the dataset and concentrating on 

features more pertinent to the current task, some fields were 

probably removed. This could increase the efficacy and 

efficiency of later feature selection algorithms and machine 

learning models. Eliminating these fields makes the 

information easier to handle and could improve the 

intrusion detection system's accuracy and interpretability. 

3-2- Feature Extraction 

The process of feature extraction plays a crucial role in the 

initial stages of our data preprocessing. During this phase, 

we meticulously curate and convert pertinent attributes 

from the extensive pool of 80 features present in the CSE-

CIC-IDS2018 dataset. This procedure plays a vital role in 

optimizing the dataset and identifying the most informative 

attributes for our analysis of intrusion detection. In this 

article, we present a succinct compilation of characteristics, 

each accompanied by a succinct explanation. The parameter 

"Flow Duration" (fl_dur) quantifies the length of time that 

a network flow persists, thereby offering valuable 

observations regarding the lifespan of network-based 

operations. The metric "Total Packets in the Forward 

Direction" (tot_fw_pk) denotes the aggregate count of 

transmitted packets in the forward direction, serving as a 

pivotal indicator for analysis of network traffic. The 

variable "Total Packets in the Backward Direction" 

(tot_bw_pk) corresponds to the number of packets that flow 

in the opposite direction. It bears resemblance to the 

previously discussed variable "Total Packets in the Forward 

Direction" (tot_fw_pk). The Average Time Between Flows 

(fl_iat_avg) parameter serves to measure the mean duration 

between consecutive network flows, contributing to the 

examination of flow timing. The fw_psh_flag metric 

quantifies the frequency at which the Push (PSH) flag in 

forward direction packets is enabled, thereby bearing 

significance in comprehending the dynamics of data 

transmission. The parameter "pkt_len_min" corresponds to 

the minimum length observed in a data flow, which serves 

as a significant metric in assessing the magnitude of data 

being transferred. The Download and Upload Ratio 



    

Journal of Information Systems and Telecommunication, Vol.13, No.1, January-March 2025 

  

  

 

 

55 

(down_up_ratio) is a measurement that quantifies the 

proportion of download activities to upload activities, 

providing insights into network usage patterns. The variable 

"atv_max" denotes the maximum duration of flow activity 

prior to transitioning into an idle state. This subset of 

carefully chosen features is a selection from the dataset's 

available 80 attributes, determined based on their relevance 

to the task of intrusion detection. The aforementioned 

feature extraction process plays an integral role in 

enhancing the performance of the model and enabling it to 

accurately differentiate between benign and malicious 

network traffic. The identified features are anticipated to 

make a substantial contribution to our analytical and 

categorization endeavors, ultimately bolstering the overall 

level of network security. 

3-3- Feature Selection 

Feature selection using Information Gain (IG) is a widely 

utilized method within the decision tree framework to 

discern and preserve the most informative features pertinent 

to classification or regression tasks. The concept of 

Information Gain pertains to quantifying the decrease in 

uncertainty, as represented by entropy, attained through the 

division of a dataset by a specific attribute. Features that 

result in a substantial decrease in entropy are regarded as 

possessing a higher degree of information. The subsequent 

step-by-step guide delineates the procedure in a systematic 

manner. To ascertain the Entropy of the Target Variable, 

rigorous calculations are required. To commence the 

process, it is pertinent to compute the entropy of the target 

variable, which refers to the variable under consideration 

that is sought to be predicted. Entropy is a quantitative 

metric used to quantify the degree of impurity or 

randomness present within the target variable. The entropy 

of the target variable should be calculated for each feature. 

The entropy of the target variable should be computed for 

each feature by partitioning the dataset according to that 

specific feature. This metric essentially quantifies the 

effectiveness of a feature in partitioning the data into 

distinct classes. The purpose of this exercise is to determine 

the value of information gain. Information Gain (IG) is 

determined by subtracting the entropy of the initial target 

variable from the weighted average of the entropies of the 

target variable for each partition based on the feature at 

hand. The information gain (IG) is calculated as the 

difference between the entropy before the splitting 

operation and the weighted average of the entropies after 

the splitting operation. Using a decision tree to choose 

features led to the selection of several feature sets for 

intrusion detection. Key characteristics found are ‘forward 

active data packets’, ‘forward segment size minimum’, 

‘backward packets per second’, ‘forward inter-arrival time 

minimum’, and ‘destination port’. A slightly different set of 

features, on the other hand, were given priority by 

calculating Gini index. These features included ‘destination 

port’, ‘forward packet length minimum’, ‘flow packets per 

second’, ‘backward packets per second’, ‘forward inter-

arrival time minimum’, ‘count of the ACK flag’, ‘count of 

the explicit congestion notification (ECE) flag’, ‘forward 

segment size minimum’, and ‘forward active data packets’. 

By efficiently reducing the feature space to the most 

pertinent characteristics for intrusion detection, these 

techniques may improve the precision and effectiveness of 

later machine learning models. 

3-4- Feature Classification using HCARN 

The Hybrid Convolutional-Attention Recurrent Network 

(HCARN) is an innovative architecture designed to 

improve threats detection. By incorporating convolutional 

layers, attention mechanisms, and recurrent neural 

networks, HCARN take advantage of the strengths of each 

component in delivering superior performance while 

diagnosing the attacks. This section explains the 

architecture, components, and the rationale behind the 

design choices of HCARN. 

 

Fig. 4  HCARN architecture 

Architecture Overview 

HCARN is designed to address the constraints of traditional 

CNNs in cybersecurity threat detection by utilizing 

advanced features like attention mechanisms and recurrent 

layers as shown in Figure 4.  The architecture is composed 

of the key components as stated herein. 

• Input Layer: The input layer receives dataset with 79 

features per sample, reshaped to meet the requirements 

of the convolutional layers. 

• Convolutional Layers: These layers are accountable for 

initial feature extraction. Convolutional layers with 

ReLU activation capture spatial patterns. The residual 

connections are then used to mitigate the vanishing 

gradient challenge and enhance learning. 
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• Attention Mechanism: The attention mechanism 

focuses on the most significant parts of the input 

sequence, improving the categorization accuracy by 

emphasizing on critical features. 

• Recurrent Layers: The Bidirectional Long Short-Term 

Memory (BiLSTM) layers capture temporal 

dependencies, making the architecture adept at 

recognizing sequences of events in network. 

• Fully Connected Layers: Dense layers incorporated 

with ReLU activation function then process the 

extracted features. Dropout layers take care of 

overfitting. 

• Output Layer: The final layer has softmax activation 

function to categorize the input into one of the three 

threat sets: major, moderate, and minor threats. 

• Weighted Loss Function: The dataset, particularly on 

20th February 2018, had a disproportionately highest 

samples, which could have directed the network to 

favor dominant category. Thus, to avoid this bias, a 

weighted categorical cross-entropy loss function is 

employed during training of HCARN which assigned 

higher weights to under-represented observations and 

lesser weights to over-represented ones. This class-

weighted loss function is an external training element 

applied to adjust the loss contribution of each category, 

guaranteeing that under-represented categories had a 

robust impact while model being training. 

 

Detailed Component Description 

• Convolutional Layers: The convolutional layers in 

HCARN are devised to extract local features from the 

input dataset. The network begins with a Conv1D layer 

with 64 filters and a kernel size of 3, batch 

normalization and max pooling one after the other. A 

residual connection is included to retain the original 

input, which stabilizes the learning process. 

Subsequent convolutional layers increase the number 

of filters, improves complex patterns recognition. 

• Attention Mechanism: The presence of a multi-head 

attention mechanism allows HCARN to dynamically 

weigh the position of several features in the input 

sequence. This mechanism focuses on the most critical 

parts of the data, which is principally effective in 

recognizing subtle yet substantial anomalies in network 

traffic.  

• Recurrent Layers: HCARN further incorporates 

BiLSTM layers to capture temporal dependencies. The 

bidirectional nature ensures that the network can learn 

from both past and future instances within the series, 

presenting a comprehensive interpretation of the 

temporal dynamics in network traffic. The detailed 

architecture of HCARN is stated in Table 3. 

Table 3: HCARN architecture designed 

Layer (Type) Output Parameters Description 

Input  
(None, 

79, 1) 
0 

Input data with 79 

features per sample. 

Reshape  
(None, 

79, 1) 
0 

Reshape input to fit 

Conv1D layers. 

Conv1D  
(None, 

79, 64) 
256 

64 filters, kernel size 3, 

ReLU activation. 

Batch Norm  
(None, 

79, 64) 
256 

Batch normalization for 

stability. 

MaxPooling1D 
(None, 

39, 64) 
0 

Max pooling with pool 

size 2. 

Residual Add 
(None, 

39, 64) 
0 

Residual connection to 

stabilize learning. 

Conv1D  
(None, 

39, 128) 
24,704 

128 filters, kernel size 3, 

ReLU activation. 

Batch Norm  
(None, 

39, 128) 
512 

Batch normalization for 

stability. 

MaxPooling1D 
(None, 

19, 128) 
0 

Max pooling with pool 

size 2. 

Attention  
(None, 

19, 128) 
0 

Multi-head attention 

mechanism. 

Residual Add 
(None, 

19, 128) 
0 

Residual connection for 

stability. 

Conv1D  
(None, 

19, 256) 
98,560 

256 filters, kernel size 3, 

ReLU activation. 

Batch Norm  
(None, 

19, 256) 
1,024 

Batch normalization for 

stability. 

MaxPooling1D 
(None, 

9, 256) 
0 

Max pooling with pool 

size 2. 

BiLSTM  
(None, 

9, 256) 
394,240 

Bidirectional LSTM 

with 128 units. 

Residual Add 
(None, 

9, 256) 
0 

Residual connection for 

stability. 

Flatten  
(None, 

2,304) 
0 

Flattening the data for 

dense layers. 

Dense  
(None, 

256) 
589,440 

Fully connected 256 

units, ReLU activation. 

Dropout  
(None, 

256) 
0 

Dropout with rate 0.5 to 

prevent overfitting. 

Dense  
(None, 

128) 
32,896 

Fully connected 128 

units, ReLU activation. 

Dropout  
(None, 

128) 
0 

Dropout with rate 0.5 to 

prevent overfitting. 

Output  
(None, 

3) 
387 

Fully connected layer 

with 3 units (for major, 

moderate, minor 

threats), Softmax 

activation. 

 

• Fully Connected Layers: After feature extraction and 

sequence modeling, the dataset is flattened and sent 

through fully connected dense layers. These layers 

perform classification with high-level reasoning. 

Dropout layers with a 0.5 dropout rate randomly 

deactivates neurons during training which are 

purposefully employed to reduce overfitting. 
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• Output Layer: The final layer of HCARN is a dense 

layer with softmax activation function, which outputs 

probabilities for each of the three threat categories – 

major, moderate, and minor. This probabilistic output 

helps in confident classification of threats.  

 

The pseudocode outlining the HCARN model’s pipeline 

into phases such as preprocessing, training, and 

classification is presented in Annexure I. 

 

Advantages of HCARN 

• Hybrid Architecture: The hybrid architecture of 

HCARN, which integrates convolutional layers, 

attention mechanisms, and recurrent layers, utilizes the 

strengths of each component. Convolutional layers 

effectively capture spatial features in the dataset, 

attention mechanisms highlight critical features, and 

recurrent layers model temporal dependencies. This 

allows HCARN to process and analyze complex 

patterns in network traffic, leading to more accurate 

threat diagnosis. 

• Scalability and Adaptability: HCARN is inherently 

scalable, thus, can be applied to large and complex 

datasets with no worries about significant performance 

degradation. Its adaptability to different types of threats 

and capability to maintain high performance across 

various metrics make it appropriate for a wider range 

of cybersecurity applications. 

• Enhanced Feature Representation: The employment of 

attention mechanisms enhances feature representation 

by focusing on the most relevant part. This is 

particularly beneficial in intrusion detection, where 

critical features might be sparse and dispersed 

throughout. By emphasizing these important features, 

HCARN can perform even better.  

4- Results & Discussion 

In this section, the performance of the Hybrid 

Convolutional-Attention Recurrent Network model on the 

CSE-CIC-IDS2018 dataset is presented and discussed. 

Figure 5 illustrate the distribution of threats in the CSE-

CIC-IDS2018 dataset, which groups threats into levels i.e., 

major (33.3%), moderate (13.3%), and minor (53.3%). 

Major level includes high impact attacks making the model 

to precisely distinguish between normal and malicious 

traffic to avoid significant disruptions. Moderate level has 

FTP and SSH brute force attacks, demand a balanced 

detection method to prevent false positives and negatives. 

Minor level has various denial of service (DoS) attacks and 

infiltration methods, though less severe individually, 

dominate the dataset and require the model to maintain high 

precision and recall in effectively manage the frequent 

occurrences. This distribution impacts the performance, 

demonstrating the HCARN model's robustness and success 

in handling a wider range of cybersecurity threats. 

 

Fig. 5  Distribution of traffic classes by threat level 

 

(a) K-fold cross validation 

 

(b) Training with 70% samples 
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(c) Testing with 30% samples 

Fig. 6  Confusion matrix depicting classification of different threats 

4-1- Observations & Discussion 

The performance parameter includes precision, recall, F1-

score, specificity, Matthews Correlation Coefficient 

(MCC), accuracy, ROC-AUC, average precision (AP) and 

confusion matrices for each threat category. The results are 

derived from splits for training on 70% dataset, testing 30% 

and k-fold cross-validation. The confusion matrices in 

Figure 6 provide a detailed view of the classification results 

across major, moderate, and minor threats. The relatively 

low misclassification in each phase underlines the model's 

accuracy and reliability. They also highlight areas where the 

model could potentially amend, such as cutting the number 

of moderate threats misclassified in major or minor levels. 

Table 4: Detailed performance of classification 

Split Class 

F1-

Scor

e 

Speci

ficity 

MC

C 

Accura

cy 

ROC-

AUC 
AP 

K-

Fold 
Major 0.90 0.95 0.81 94.7 0.93 0.92 

 Modera

te 
0.85 0.97 0.79  0.93 0.92 

 Minor 0.96 0.96 0.92  0.96 0.97 

Trai

n 
Major 0.92 0.95 0.81 95.4 0.93 0.93 

 Modera

te 
0.82 0.97 0.75  0.92 0.91 

 Minor 0.96 0.97 0.93  0.97 0.97 

Test Major 0.88 0.93 0.74 92.3 0.91 0.91 

 Modera

te 
0.85 0.97 0.78  0.91 0.91 

 Minor 0.94 0.94 0.88  0.95 0.95 

 

Table 5 summarizes the key performance metrics including 

precision, recall, F1-score, specificity, MCC, accuracy, 

ROC-AUC, and AP.  The HCARN model presents high 

precision and recall across major, moderate, and minor 

levels, indicating its ability to correctly identify and classify 

threats. High precision confirms that most identified threats 

are at actual level, lowering the incidence of false alarms 

which overwhelm security analysts. High recall confirms 

that the model catches most actual threats, reducing the 

risks of missed attacks which could lead to possible 

breaches. The F1-score balances precision and recall, is 

especially high for all threat classes, indicating that the 

HCARN model maintains an excellent trade-off between 

these two critical parameters. This balance is crucial for 

practical cybersecurity domain where both false positives 

and false negatives can have serious concerns. 

 

High specificity values indicate that the model is adept at 

appropriately identifying non-threats, reducing the 

probability of false positives. The Matthews Correlation 

Coefficient (MCC), a comprehensive measure of the quality 

of binary categorization, further supports the model's 

effectiveness. High MCC scores across all classes authorize 

that the model performs well across different types of 

threats, offering a balanced measure that reflects on all four 

confusion matrix possibilities (true positives, false 

positives, true negatives, and false negatives) as stated in 

Table 5. The ROC curves for each class shown in Figure 7 

illustrate the trade-off between the true positive rate and 

false positive rate. The area under the curve (AUC) value 

indicates strong discriminatory power for all classes. The 

Precision-Recall curves shown in Figure 8 highlight the 

balance amongst precision and recall for different 

thresholds.  

Table 5: Detailed parameters from confusion matrices 

Threats False 

Positive 

(%)  

False 

Negative 

(%)  

True 

Positive 

(%)   

True 

Negative 

(%)  

 K fold cross validation 

Major 300 33 33 634 

Moderate 110 23 15 852 

Minor 513 21 21 445 

 Training with 70% samples 

Major 210 23 15 452 

Moderate 70 18 13 599 

Minor 358 11 16 315 

 Testing with 30% samples 

Major 90 14 10 186 

Moderate 35 7 5 253 

Minor 151 9 9 131 
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Fig. 7  Receiver Operating Characteristic (ROC) Curves 

4-2- Comparative Performance  

When compared to conventional IDS models, HCARN 

extends several advantages as shown in Table 1. 

Conventional models often rely on hand-crafted features 

and shallow learning approaches, which may not 

successfully obtain the complex and evolving nature of 

modern cyber threats. In contrast, HCARN's deep learning 

method allows it to automatically learn and extract features 

from raw data, leading to superior execution. The results 

from the k-fold cross-validation, training, and testing 

phases indicate that HCARN consistently outperforms in 

terms of precision, recall, F1-score, specificity, and overall 

accuracy. This consistent execution across different data 

splits and threat levels underscores HCARN's reliability and 

robustness. 

 

Fig. 8  Precision-Recall Curves 

The table 6 summarizes the models used, their reported 

accuracies, and how they compare to the proposed HCARN 

model. Unlike traditional models that classify attacks based 

on specific types, the HCARN model categorizes threats 

into Major, Moderate, and Minor levels, improving 

generalization and scalability. It leverages a hybrid 

architecture combining CNN, Attention, and BiLSTM 

layers, which allows it to efficiently capture spatial, 

temporal, and contextual dependencies in network traffic. 

Additionally, it reduces computational complexity 

compared to high-dimensional multi-class models, making 

it more suitable for real-time intrusion detection. 

Table 6: Comparison of various ML models applied on CSE-CIC-

IDS2018 dataset 

Study Model(s) Used Accuracy  

R. I. Farhan et al. 

[30] 

DNN 90.25% 

A. Elhanashi et al. 

[31]  

Random Forest, GaussianNB, 

and multilayer perceptron 

85.70% 

J. Kim et al. [32]  CNN and RNN 93.00% 

M. Mayuranathan et 

al. [33] 

LSTM-SGDM 66.38% 

Proposed HCARN  Hybrid Convolutional-

Attention Recurrent Network 

95.40% 

4-3- Practical Implications 

The high performance of HCARN has significant practical 

implications for cybersecurity operations. By accurately 

detecting and diagnosing threats, HCARN can decrease the 

workload on security analysts, assisting them to emphasis 

on the most critical concerns. Its high precision and low 

false positive rate reduce the occurrence of false alarms, 

leading to efficient threat management. Moreover, 

HCARN's ability to adapt to diverse threats ensures that it 

remains effective in dynamic and evolving threat 

environments. This adaptability is crucial for modern 

cybersecurity conditions, where new and sophisticated 

attack vectors are constantly arising. 

5- Conclusions 

This study introduced the hybrid convolutional-attention 

recurrent network, a novel architecture that leverages a 

combination of convolutional layers, attention mechanisms, 

and recurrent layers to effectively addresses the limitations 

of traditional CNN-based models. The proposed HCARN 

model demonstrated significant efficacy in distinguishing 

between major, moderate, and minor threats, achieving high 

accuracy and robustness in threat diagnosis. The attention 

mechanism enabled the model to prioritize relevant 

features, enhancing its ability to identify subtle yet 

substantial anomalies. Meanwhile, the recurrent layer 

ensured the model comprehends the temporal dynamics of 

network events, providing a widespread threat diagnosis 

framework. Extensive assessment through k-fold cross-

validation, training, and testing phases showed the model's 

consistent performance and low false positive rates. The 

combination of residual connections and dropout layers 

further strengthened the model by mitigating overfitting and 
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steadying the training process. Overall, HCARN represents 

a considerable advancement in cybersecurity threat 

diagnosis. The novel combination of convolutional, 

attention, and recurrent layers within a single framework 

underscored the capability of hybrid deep learning 

algorithms in designing adaptive security systems. This 

investigation not only demonstrated the efficacy of 

HCARN in enhancing cybersecurity defenses but also 

paves the way for future research and development in this 

critical area. While the current findings are promising, there 

are several opportunities for future work to further enhance 

performance and applicability. Optimization of the 

HCARN architecture by experimenting with different 

configurations of convolutional, attention, and recurrent 

layers can be undertaken. Implementing data augmentation 

techniques to synthetically expand the dataset can aid the 

model generalize better to blind data. Developing real-time 

execution framework for HCARN could enable its 

operation in live cybersecurity environments. This involves 

optimizing the model for low-latency predictions and 

incorporating it with present cybersecurity infrastructure. 

Future research can be directed towards detecting multi-

stage attacks for understanding how minor attacks escalate 

into critical ones for strategies aimed at early mitigation. In 

addition, the adaptive learning will allow the network to 

update dynamically on its own and increase its capacity to 

identify zero-day threats exclusive of full retraining. 

Furthermore, federated learning will be investigated to 

assist collaborative training while guaranteeing data privacy 

in distributed security circumstances. To boost real-time 

efficiency, efforts to be made for optimizing latency and 

computational cost in high-speed networks. 

 

Annexure I 

 

Pseudocode: Hybrid Convolutional-Attention Recurrent 

Network (HCARN) 

Start 

Input: Network traffic dataset 𝒟 (CSE-CIC-IDS2018) 

Output: Predicted threat category 𝒞 ∈ {Major, Moderate, 

Minor} 

Step 1: Data Preprocessing 

    𝒟 ← Load dataset 

    ∀ 𝑥 ∈ 𝒟: If 𝑥 contains NaN, remove or impute missing 

values 

    ∀ 𝑥 ∈ 𝒟: Normalize features → 𝑥' = (𝑥 - min(𝑥)) / 

(max(𝑥) - min(𝑥)) 

    𝒦 ← Select top k features using Information Gain 

    {𝑋ₜᵣ, 𝑦ₜᵣ}, {𝑋ᵥₐₗ, 𝑦ᵥₐₗ}, {𝑋ₜₑₛₜ, 𝑦ₜₑₛₜ} ← Split dataset (70%-

Training, 30%-Testing) 

Step 2: Define HCARN Model ℳ 

    ℳ ← Initialize input layer 𝐼 ∈ ℝ⁷⁹ 

    # Convolutional Feature Extraction 

    𝐶₁ ← Conv1D(𝐼, 𝐹₁=64, 𝐾₁=3, activation=ReLU) 

    𝐶₁ ← BatchNorm(𝐶₁), MaxPool(𝐶₁, 𝑃₁=2) 

    𝑅₁ ← Add(𝐼, 𝐶₁)  # Residual Connection 

    𝐶₂ ← Conv1D(𝑅₁, 𝐹₂=128, 𝐾₂=3, activation=ReLU) 

    𝐶₂ ← BatchNorm(𝐶₂), MaxPool(𝐶₂, 𝑃₂=2) 

    𝑅₂ ← Add(𝑅₁, 𝐶₂)  # Residual Connection 

    𝐶₃ ← Conv1D(𝑅₂, 𝐹₃=256, 𝐾₃=3, activation=ReLU) 

    𝐶₃ ← BatchNorm(𝐶₃), MaxPool(𝐶₃, 𝑃₃=2) 

    # Attention Mechanism 

    𝐴 ← MultiHeadAttention(𝐶₃, ℎ=4, 𝑘ₑ𝑦=64) 

    𝑅₃ ← Add(𝐶₃, 𝐴)  # Residual Connection 

    # Temporal Dependency Learning 

    𝐻 ← BiLSTM(𝑅₃, 𝑢=128, bidirectional=True) 

    # Fully Connected Layers 

    𝐻' ← Flatten(𝐻) 

    𝐷₁ ← Dense(𝐻', 𝑢₁=256, activation=ReLU) 

    𝐷₁ ← Dropout(𝐷₁, 𝑝=0.5) 

    𝐷₂ ← Dense(𝐷₁, 𝑢₂=128, activation=ReLU) 

    𝐷₂ ← Dropout(𝐷₂, 𝑝=0.5) 

    # Output Layer 

    𝒞 ← Softmax(𝐷₂, 𝑢=3) 

Step 3: Model Compilation and Training 

    𝐿 ← Weighted Categorical Cross-Entropy Loss 

    𝑂 ← Adam(learning rate=0.001) 

    ∀ 𝑒 ∈ [1, 𝑁]:  # Training for N epochs 

        ∀ 𝐵 ∈ 𝑋ₜᵣ:  # Mini-batch training 

            𝐵' ← Forward(𝐵, ℳ) 

            𝑙 ← 𝐿(𝐵', 𝑦ₜᵣ) 

            Backpropagate(𝑙, 𝑂) 

            Update(ℳ, 𝑂) 

        If Validation Loss Converges: 

            Break training 

Step 4: Model Evaluation 

    �̂�ₜₑₛₜ ← Predict(𝑋ₜₑₛₜ, ℳ) 

    Compute: 

        𝒜𝒸𝒸 = Accuracy(�̂�ₜₑₛₜ, 𝑦ₜₑₛₜ) 

        𝒫 = Precision(�̂�ₜₑₛₜ, 𝑦ₜₑₛₜ) 

        𝑅 = Recall(�̂�ₜₑₛₜ, 𝑦ₜₑₛₜ) 

        𝐹₁ = F1-score(�̂�ₜₑₛₜ, 𝑦ₜₑₛₜ) 

        𝑅𝒪𝒞 = ROC-AUC(�̂�ₜₑₛₜ, 𝑦ₜₑₛₜ) 

    Generate Confusion Matrix 

Step 5: Deployment for Real-Time Threat Detection 

    ∀ 𝑥 ∈ Incoming_Network_Traffic: 

        𝑥' ← Normalize(𝑥) 

        �̂� ← Predict(𝑥', ℳ) 

        Output Threat Class: �̂� ∈ {Major, Moderate, Minor} 

End  

 

Abbreviations and symbols 

𝒟 = Input dataset 

𝑋ₜᵣ, 𝑋ₜₑₛₜ, 𝑋ᵥₐₗ = Training, Testing, Validation Sets 

𝐼 = Input Layer (79 features) 

𝐶₁, 𝐶₂, 𝐶₃ = Convolutional Layers 

𝑅₁, 𝑅₂, 𝑅₃ = Residual Connections 

𝐴 = Multi-Head Attention Layer 

𝐻 = BiLSTM Layer 
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𝐷₁, 𝐷₂ = Fully Connected Layers 

𝒞 = Softmax Output (Threat Classes) 

𝐿 = Loss Function 

𝑂 = Optimizer (Adam) 

𝑙 = Computed Loss 

𝒜𝒸𝒸, 𝒫, 𝑅, 𝐹₁, 𝑅𝒪𝒞 = Performance Metrics 
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