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Abstract 
Optimization plays a crucial ro le in enhancing productivity within the industry. Employing this technique can lead to a 

reduction in system costs. There exist various efficient methods for optimization, each with its own set of advantages and 

disadvantages. Meanwhile, meta-heuristic algorithms offer a viable solution for achieving the optimal working point. These 

algorithms draw insp iration from nature, physical relationships, and other sources. The dist inguish ing factors between these 

methods lie in the accuracy of the final optimal solution and the speed of algorithm execution. The superior algorithm 

provides both precise and rapid optimal solutions. Th is paper introduces a novel agricultural-insp ired algorithm named 

Elymus Repens Optimization (ERO). This optimization algorithm operates based on the behavioral patterns of Elymus 

Repens under cultivation conditions. Elymus repens is inclined to move to areas with more suitable conditions. In ERO, 

exploration and exploitation are carried out through Rhizome Optimization Operator and Stolon Optimization Operators. 

These two supplementary activities are used to explore the problem space. The potent combination of these operators, as 

presented in this paper, resolves the challenges encountered in previous research related to speed and accuracy in 

optimization issues. After the introduction and simulation of ERO, it is compared with popular search algorithms such as 

Gravitational Search Algorithm (GSA), Grey Wolf Optim izer (GWO), Particle Swarm Optimization (PSO), and Firefly  

Algorithm (FA). The solution of 23 benchmark functions demonstrates that the proposed algorithm is h ighly efficient in  

terms of accuracy and speed. 

 

Keywords: Elymus Repens Optimization; Meta-Heuristic Algorithms; Rhizome Optimization Operator; Stolon Optimization 

Operator. 
 

1- Introduction 

Today, the industry faces various pressing problems that 

require urgent so lutions and optimal answers. Contributing 

to the resolution of these issues can greatly enhance 

efficiency across multiple fields. There exist d iverse 

approaches to solving optimization problems, including 

one-by-one counting methods, classical mathematical 

methods, and optimization methods. 

The one-by-one method involves a significant amount of 

time to solve problems, rendering it practical only for 

small-scale issues. However, its advantages encompass 

very high accuracy and zero error. 

Conversely, classical mathematical methods, such as 

derivation methods, require adherence to specific 

principles and rules for continuous problems. These 

limitations can make it challenging to employ these 

methods for solving optimization problems. Nonetheless, 

classical mathematical methods offer high accuracy, 

making them an appealing option. 

In optimization methods, algorithms begin in an initial 

space and move intelligently towards an optimal solution. 

With effective gu iding operators, these algorithms conduct 

smarter searches in  problem spaces, ult imately 

accelerating the process of reaching a final answer. Several 

desirable features of optimization methods include: 

➢ No limitation in problem modeling 

➢ Universality in covering a wide range of issues 

➢ High speed in determining the optimal answer 

In this paper, a  powerful method is introduced for 

optimizing problems by harnessing the posit ive features of 

nature to address challenges. One such valuable feature is 

the growth mechanism of Elymus repens in agricu ltural 

land, which provides an innovative approach to problem -

solving. 

The paper proceeds as follows: Sect ion 2 provides an 

overview of optimization algorithms. Section 3 introduces 

the Elymus repens mechanism, and Section 4 presents the 

new algorithm called Elymus repens optimization. Finally, 

in Sect ion 5, the performance of this new algorithm is 

evaluated using 23 sample functions. 
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2- Literature review 

Today, optimization algorithms are used as a method for 

obtaining the optimal solutions to optimization 

problems[1]. Unlike classical mathematical methods, these 

algorithms are much more efficient in solv ing optimization 

problems. The basis of optimization algorithms is usually  

nature, physics, and swarm. The final answer obtained 

from them has high accuracy and suitable speed. 

Optimization algorithms use two basic components of 

exploration and exploitation to search the problem space. 

These two features are very helpful in finding the optimal 

answer. Exploration provides the algorithm with the ability 

to search freely without paying attention to the accuracy of 

the results. On the other hand, paying attention to the 

information obtained in the previous loops is the basis of 

exploitation. With an increase of exploration, the 

algorithm finds random and unpredictable directions, and 

on the opposite side, with an increase of exploitation, the 

performance of the algorithm becomes cautious. By the 

exploration and exploitation, the algorithm will move 

towards the smart answer. 

In the following, some of the popular optimization 

algorithms are reviewed [2]: 

Genetic Algorithm [3], Genetic programming [4], Tabu 

Search [5], Evolution Strategy [6], Memetic Algorithm 

[7], Cultural Algorithm [8], Simulated Annealing [9], 

Differential Evolution [10], Evolutionary Programming 

[11], Co Evolutionary Algorithm [12], Gradient Evolution 

Algorithm [13], Imperialistic Competitive Algorithm [14], 

Biogeography-Based Optimization [15], States of Matter 

Search [16], Sine Cosine Algorithm [17], Mult i-level 

Cross Entropy Optimizer [18]. These algorithms are 

modeled on Darwin's theories. 

Some algorithms are physics-based optimization 

algorithms such as: Small-World Optimization Algorithm 

[19], Central Force Optimization [20], Magnetic 

Optimization Algorithm [21], Gravitational Search 

Algorithm [22], Charged System Search [23], Chemical-

Reaction Optimization [24], Black Hole [25], Curved 

Space Optimization [26], Water Evaporation Optimization 

[27], Ideal Gas Molecular Movement [28], Multi-Verse 

Optimizer [29], Vibrating Particles System [30]. 

Some optimizers are swarm-based algorithms: Particle 

Swarm Optimization [31], Grasshopper Optimization 

Algorithm [32], Moth–flame Optimization [33], Art ificial 

Fish Swarm Algorithm [34], Honey Bee Optimization 

[35], Termite Colony Optimization [36], Ant Colony 

Optimization [37], Shuffled Frog-Leaping [38], Monkey 

Search [39], Dolphin Partner Optimization [40], Firefly  

Algorithm [41], Bat Algorithm [1], Bird  Mating Optimizer 

[42], Fruit Fly Optimization [43], Lion Pride Optimizer 

[44], Krill Herd  [45], Grey Wolf Optimizer [46], Cuckoo 

Search [47], Soccer League Competition Algorithm [48], 

Dragonfly Algorithm [49], Whale Optimization Algorithm 

[50], Salp Swarm Algorithm [51], Harris Hawks 

Optimization [52], Fly ing Squirrel Optimizer [53], Ant 

Lion Optimizer [54] 

In addition to these algorithms, some intelligence may be 

found in nature that can form the basis of other 

optimization algorithms. One of these is the Elymus 

Repens behavior. 

The introduced algorithms are very effective in industry, 

energy, medicine and etc. References [55-59] in science, 

[60-64] in engineering and [65-69] in medical show part of 

the research conducted with these algorithms in the field of 

optimization. 

3- Elymus Repens  

Elymus repens (ER) is a high ly competitive, allelopathic, 

perennial grass. This p lant is considered  one of the world's 

most troublesome weeds, reproducing both sexually 

through seeds and asexually through rhizomes. It is found 

in temperate regions worldwide, with the exception of 

Antarctica [70, 71, 72]. The structure and appearance of 

this plant are depicted in Fig. 1 and Fig. 2. 

In Northern Europe, Elymus repens is a common and 

aggressive grass species favored by cereal-dominated crop 

rotations and nitrogen fertilization [73, 74]. Th is species 

can become a pernicious weed, spreading rapidly by 

underground rhizomes[72] and quickly forming a dense 

mat of roots in the soil. Even the smallest fragment of the 

root can regenerate into a new plant[75]. 

Elymus repens is propagated by seeds, rhizomes, or 

stolons. The creeping stems on the ground surface and the 

wire-shaped underground stems have numerous short 

branches and scaly leaves. New aerial organs are formed 

from the nodes of rhizomes and stolons. 

This p lant is highly  resilient and can thrive in  fa vorable 

conditions on the ground. These conditions include water, 

organic, and biological materials. Where these conditions 

are optimal, the growth of this plant flourishes. On the 

other hand, this plant can be considered as a "search 

engine" as it moves towards favorable agricu ltural 

positions and covers them using propagation tools such as 

rhizomes or stolons. Once introduced to an area, it swiftly  

moves to better conditions and occupies the desired area. 

The power and speed of occupying fertile areas by this 

plant is so high that it prevents the growth of any other 

type of plant, thus making it one of the most destructive 

weeds. 
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Fig. 1. Elymus Repens [76] 

 

Fig. 2. Elymus Repens in the agricultural land 

4- Elymus Repens Optimization 

This study is centered around the behavior patterns of 

Elymus Repens within their cu ltivation environment. In 

terms of growth and reproduction, this plant initially  

progresses through seeds and subsequently through 

rhizomes and stolons (illustrated in Fig.  3) within the 

cultivation environment. Elymus repens tends to move 

towards any part of the soil that provides more favorable 

conditions. 

 

Fig. 3.Rhizomes and Stolons in Elymus Repens 

In this paper, this process is modeled as a  optimization 

search algorithm that is named Elymus Repens 

Optimization (ERO). In the ERO model, the cultivation 

land of the plant serves as the search space for the 

problem, with every posit ion within  this space being a 

candidate answer - representing a posit ion of the land with 

the best cultivation conditions, i.e., the optimal answer. 

The rhizomes and stolons act as the ERO optimization 

operators. 

To init iate the algorithm, Elymus repens is assumed to be 

spread across the environment. Any posit ion in  the 

cultivation environment where the reproductive parts of 

the plant are placed becomes an initial candidate answer. 

These positions are evaluated using the objective function. 

Subsequently, the Elymus repens will move towards the 

optimal answer through the use of rhizomes and stolons. 

4-1- Stolon Optimization Operator 

Among the reproducible parts of Elymus repens, the part 

that is in a better environmental condition will spread to its 

neighboring parts through stolons. The number of 

neighbors for each position will increase with the 

improved environmental conditions. Consequently, a  part 

of the plant that is in unfavorable conditions will not be 

reproduced. This process guides the init ial so lution 

towards better alternatives. Equation 1 and Equation 2 

demonstrate the new candidate solutions with the stolon 

operator. 

(1 )
it

T
 = −

 (1) 

, 1 ( , )k it it
i neighbor k best

X X unifrnd  −
 

= + − +
  

(2) 

where, it indicates iteration, T the maximum of iteration, 

Xineighbor
k,it  show i-th neighbor from k-th best position, 

Xkbest
it-1  the k-th best choice posit ion, unifrnd, a  uniform 
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random number  between [-α,+α] and  is the relationship 

coefficient. 

The best position (Xibest) for reproduction is selected using 

the roulette wheel. This method ensures that better 

positions have a higher chance of reproducing. This 

selection process is repeated for all positions, and the 

resulting new neighbors are generated from the best ones. 

4-2- Rhizome Optimization Operator 

In 4-1, the k-best position of population generate a number 

of neighbors. The neighbors related to each k-best position 

form a group. At this step, in each group, the best neighbor 

is selected from among the neighbors created by each 

previous k-best position, and the other neighbors move 

towards it. Equations 3 to 6 show the new candidate 

solutions using the rhizome operator. 

A rand  =   −  (3) 

C rand=    (4) 

, 1 , 1(C )k k it k it
i best neighbor i other neighbor

D abs X X− −


=  −
  

(5) 

, 1it k it k
i ibest neighbor

X X A D−= − 
  (6) 

where, Xi
it is new candidate answer, rand shows the 

random value between [0,1] and Xbest neighbor
k,it-1 and Xiother 

neihbor
k,it-1, are the best neighbor and other neighbors for k-th 

neighborhood group. Fig. 4 shows the visual performance 

of rhizomes and stolons operators in ER optimization. 

 

  

Fig. 4. The stolon and rhizome operators view 

The flowchart and the pseudo code of ERO algorithm are 

presented in Fig. 5 and Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

Fig. 5. Flowchart of the Proposed ERO Algorithm 

 

 

 

 

 
 

 

 

Fig. 6. The pseudo code of ERO algorithm 

5- Validation and Computational Experiment 

To demonstrate the effectiveness and power of Elymus 

Repens Optimization as proposed in this paper, it has been 

evaluated for minimizing 23 case study functions [77]. 

Table 2 depicts these well-known functions. For the 

computational testing, the simulations were run on a PC 

with a 2.30GHz Intel Core i5  processor and 6 gigabytes of 

RAM. 

The aim of the algorithm presented is to minimize the 

functions listed in the first and second columns of Table 2 

in the shortest possible time. The number of variables and 

function constraints are provided in the fourth and fifth 

Start 

Planting and Spreading ER  

Evaluation of the 

cultivation environment 

Propagation by rhizomes 

Stopping 

Criterion 

Result 

Propagation by stolons 

No 

Yes 

Step 1: Planting the elymus repen and spreading it in the 

cultivation environment 

Step 2: Evaluation of the cultivation environment 
Step 3: Propagation of the elymus repen by stolons 

Step 4: Propagation of the elymus repen by rhizomes 

Step 5: if stop criteria has not been reached, Go to step 2. 
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columns, establishing upper and lower bounds for the 

function variables. The two-dimensional representations of 

these functions can be seen in Fig.7 and Fig. 8. 

The evaluation of computational algorithms is typically  

gauged using two criteria: 1- The accuracy of the final 

solution 2- The computational speed. In this section, 

following the determination of these criteria for the 

aforementioned functions, the performance of ERO will be 

compared with Gray Wolf Optimization (GWO), 

Gravitational Search Algorithm (GSA), Particle Swarm 

Optimization (PSO), and Firefly Algorithm (FA). 

The Gray Wolf Optimizer (GWO), introduced in 2014, is a  

novel meta-heuristic inspired  by the hunting behavior of 

gray wolves. Th is algorithm emulates the hierarchical 

structure of gray wolf packs, utilizing four dist inct types of 

wolves - alpha, beta, delta, and omega - in its simulation. 

The process involves three primary hunting stages: 

searching for prey, surrounding the prey, and ultimately 

attacking the prey [47]. 

 

 

Table 2. The 23 Benchmark Functions used in experimental study [77] 

Name Function Function n Range 

Sphere Model 
2

1

1

( )
n

i

i

F x x
=

=
 

30 [-100,100] 

Schwefel’s problem 2.22 1 12 ( ) n n
i ii iF x x x= = == +

 30 [-10,10] 

Schwefel’s problem 1.2 3

1 1

( ) ( )
n i

j

i j

F x x
= =

=   30 [-100,100] 

Schwefel’s problem 2.21  4( ) max , 1i iF x x i n=  
 

30 [-100,100] 

Generalized Rosenbrock’s function 
1

2 2 2

5 1

1

( ) [100( ) ( 1) ]
n

i i i

i

F x x x x
−

+

=

= − + −
 

30 [-30,30] 

Step function 
2

6
1

( ) [x 0.5]
n

i
i

F x 
=

= +  30 [-100,100] 

Quartic function with noise 4
7

1

( ) ([0,1])
n

i
i

F x ix random
=

= +  30 [-1.28,1.28] 

Generalized Schwefel’s problem 2.26 8
1

( ) sin( )
n

i i
i

F x x x
=

= −  30 [-500,500] 

Generalized Rastrigin’s Function ( )( )2

9

1

( ) 10cos cos 2 10
n

i i

i

F x x x
=

= − +
 

30 [-5.12,5.12] 
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Ackley’s function 
2

10
1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20

n n

i i
i i

f x x x e
n n


= =
 = − − − + +

 

30 [-32,32] 

Table 2. The 23 Benchmark Functions used in experimental study [77] (continues) 

Name Function Function n Range 

Generalized Griewank Function ( ) 2

11

1 1

1
coscos 1

4000

n n

i i

i
i

x
F x x

i= =

 
= − + 

 
 

 
30 [-600,600] 

Generalized Penalized Functions 





2

12 1

1
2 2

1

1

1

( ) 10sin ( )

( 1) (1 10sin ( ) ( 1)

( ,10,100, 4)

1
1 ( 1)

4

( )

( , , , ) 0

( )

n

i i n

i

n

i

i

i i

m

i i

i i

m

i i

F x y
n

y y y

u x

y x

k x a x a

u x a k m a x a

k x a x a





−

+

=

=

=  +

− + + − +

= + +

 −


= −  


− − −





 

30 [-50,50] 

Generalized Penalized Functions 





2

13 1

1
2 2

1

1

2 2

1

( ) 0.1 sin (3 )

( 1) (1 sin (3 )

( 1) (1 sin (2 )) ( ,5,100, 4)

( )

( , , , ) 0

( )

n

i i

i

n

n n i

i

m

i i

i i

m

i i

F x x

x x

x x u x

k x a x a

u x a k m a x a

k x a x a







−

+

=

=

= +

− + +

− + +

 − 


= −  


− −  −





 

30 [-50,50] 

Shekel’s Foxholes function 25 1
14 2 61

1

1 1
( ) [ ]

500
(x )j

i ij
i

F x

j 

−

= 

=

= +

+ −

 

2 [-65.536,65.536] 

Kowalik’s function 
211 21 2

15 2
1 3 4

( )
( ) [ ]i i

i
i i i

x b b x
F x a

b b x x

=

+
= −

+ +

 

4 [-5,5] 
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Six-hump camel back function 
2 4 6

16 1 1 1

2 4
1 2 2 2

1
( ) 4 2.1

3

4 4

F x x x x

x x x x

= − + +

− +

 

4 [-5,5] 

 

Table 2. The 23 Benchmark Functions used in experimental study [77] (continues) 

Name Function Function n Range 

Branin function 

2 2
17 2 1 12

1

5.1 5
( ) ( 6)

4

1
10(1 )cos 10

8

F x x x x

x





= − + − +

− +

 

2 [-5,5]×[0,10] 

Goldstein-Price function 

2 2
18 1 2 1 1 2

2 2
1 2 2 1 2 1

2 2 2
1 1 2 2

( ) [1 ( 1) (19 14 3 14

6 3 )] [30 (2 3 ) (18 32

12 48 36 27 )]

F x x x x x x

x x x x x x

x x x x x

= + + + − + −

+ +  + − −

+ + − +

 

2 [-2,2] 

Hartman’s family 
4 3 2

19
1 1

( ) exp[ ( ) ]i ij j ij
i j

F x c a x p 
= =

= − − −

 

3 [0,1] 

Hartman’s family 
4 6 2

20
1 1

( ) exp[ ( ) ]i ij j ij
i j

F x c a x p 
= =

= − − −

 

6 [0,1] 

Shekel’s family 
5 1

21
1

( ) [( )( ) ]T
i i i

i

F x x a x a c −

=

= − − − +

 

4 [0,10] 

Shekel’s family 
7 1

22
1

( ) [( )( ) ]T
i i i

i

F x x a x a c −

=

= − − − +

 

4 [0,10] 

Shekel’s family 
10 1

23
1

( ) [( )( ) ]T
i i i

i

F x x a x a c −

=

= − − − +

 

4 [0,10] 
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Fig. 7. Graphs of functions (F1- F12) for n=2 
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Fig. 8. Graphs of functions (F13- F23) for n=2 
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Another algorithm discussed in this paper is the 

Gravitational Search Algorithm (GSA), which  operates 

based on physical laws such as gravity. In GSA, a 

collection of masses follows ru les of movement that affect 

each other and lead to an improved final optimal answer. 

GSA was developed in 2009 [78]. 

The Firefly Algorithm (FA) was introduced by Xinshe 

Yang, a scholar from Cambridge, in 2008 [79]. FA is a 

random search algorithm inspired by swarm intelligence, 

simulating the attraction mechanism between individual 

fireflies in nature [80]. 

In 1995, an algorithm based on the intelligent collective 

behavior of animals in nature was discovered for 

stochastic optimization. This algorithm, called Particle 

Swarm Optimization (PSO), has seen advanced versions 

published. Numerous studies have been conducted and 

published regarding the effects of its parameters [81]. 

Table 3 presents the simulation results of the algorithm 

introduced in this paper (ERO) and compares it with PSO, 

GSA, FA, and GWO. The results include the mean run 

time and mean fitness of the best values found in 30 

independent runs with separate seeds. The best accuracy of 

the algorithms is highlighted in green in Table 3, while 

yellow indicates that ERO is the second-most accurate. 

 
Table 3. The average of final best fitness and the mean running time for 

30 runs of minimizing benchmark functions, number of iterations=100 

Algorithm PSO GSA FA GWO ERO 

F1(x) 

Mean 
Fitnes

s 
2.75 59137 0.26 1.61×10

-5
 6.23×10

-6 

Mean 
Time 

3.29 11.89 17.6 0.65 0.086 

F2(x) 

Mean 
Fitness 

0.55 2.22 2.37 6.92×10
-4

 0.01 

Mean 
Time 

3.73 12.43 15.72 0.79 0.09 

F3(x) 

Mean 
Fitness 

1035 99701 1278 17.85 4.6×10
-3

 

Mean 
Time 

3.27 21.8 13.37 0.64 0.089 

F4(x) 

Mean 
Fitness 

4.75 82.65 6.25 0.19 3.07×10
-4

 

Mean 
Time 

3.56 14.63 13.16 0.44 0.09 

F5(x) 

Mean 

Fitness 
252 3.85×107 294 28.23 9.2×10-3 

Mean 
Time 

3.4 13.42 13.37 0.49 0.09 

F6(x) 

Mean 

Fitness 
6.67 5.96×10

4
 0.87 0.03 0 

Mean 
Time 

3.49 23.9 11.74 0.63 0.087 

F7(x) 

Mean 

Fitness 
0.029 0.27 0.046 0.005 0.0098 

Mean 
Time 

2.97 22.9 14.09 0.77 0.10 

F8(x) 

Mean 

Fitness 
-67993 -2546 -2705 -6003 -10727 

Mean 2.96 13.97 12.85 0.87 0.01 

Time 

 

Algorithm PSO GSA FA GWO ERO 

F9(x) 

Mean 
Fitness 

37.54 62 97 21.16 0.0027 

Mean 
Time 

2.91 21.63 12.21 0.6548 0.09 

F10(x) 

Mean 
Fitness 

1.42 19 0.91 0.001 0.0014 

Mean 

Time 
3.03 24.83 6.43 1.138 0.1 

F11(x) 

Mean 
Fitness 

0.97 563 0.21 0.018 5.8×10
-7

 

Mean 

Time 
3.43 24.9 11.26 0.5157 0.09 

F12(x) 

Mean 
Fitness 

0.54 2.52×10
8
 0.29 0.071 3.08×10

-7
 

Mean 

Time 
4.49 22.82 13.5 1.912 0.14 

F13(x) 

Mean 
Fitness 

0.5 4.91×10
8
 1.17 0.79 2.6×10

-7 

Mean 

Time 
4.88 18.91 12.55 1.69 0.13 

F14(x) 

Mean 
Fitness 

1.75 1.77 3.91 2.18 6.14 

Mean 
Time 

3.88 6.62 12.73 0.72 0.11 

F15(x) 

Mean 
Fitness 

0.001 0.001 0.001 0.0032 7.3×10-7 

Mean 
Time 

0.99 15.99 12.49 0.4846 0.09 

F16(x) 

Mean 
Fitness 

-1.03 -1.03 -1.03 -1.03 -1.00 

Mean 
Time 

3.45 15.2 5.89 0.33 0.08 

F17(x) 

Mean 
Fitness 

0.4 0.4 0.4 0.4 2.29 

Mean 
Time 

3.44 12.58 13.25 0.37 0.08 

F18(x) 

Mean 

Fitness 
-592103 -576415 -592103 -529210 -591830 

Mean 
Time 

3.96 13.92 12.29 0.3452 0.08 

F19(x) 

Mean 

Fitness 
-3.89 -3.85 -3.86 -3.86 -3.67 

Mean 
Time 

3.35 14.68 12.06 0.45 0.09 

F20(x) 

Mean 

Fitness 
-3.27 -3.03 -3.22 -3.23 -2.40 

Mean 
Time 

4.02 15.28 13.22 0.53 0.09 

F21(x) 

Mean 

Fitness 
-6.97 -6.24 -7.81 -9.54 -9.86 

Mean 
Time 

5.05 14.31 12.72 0.97 0.13 

F22(x) 

Mean 
Fitness 

-7.88 -8.82 -10.14 -10.12 -10.37 

Mean 
Time 

5.24 14.39 13.9 1.21 0.13 

F23(x) 

Mean 
Fitness 

-6.6 -8.82 -10.53 -10.24 -10.45 

Mean 
Time 

5.57 17.1 14.37 1.68 0.14 

 

To obtain the performance rating for these 5  algorithms 

(ERO, PSO, GSA, FA and GWO), the Eq. (7) is suggested: 
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where Mean R indicates the average weighted rank and 

#Rank i represents the number of rank i in all test  

functions. Tables 4 and 5 disp lay the results of the number 

of ranks for each algorithm across all test functions, as 

well as the final rank among the algorithms based on Eq. 

(7). In these tables, #Ri denotes the number of rank i in  all 

test functions. The green color in  Tables 4 and 5 highlights 

the best performance of the algorithms. 

 
Table 4. The results of the number of accuracy ranks for each algorithm 

in the all test functions and the final rank among the algorithms 

 #R1 #R2 #R3 #R4 #R5 Mean R 
Final 

Rank 

ERO 15 2 1 0 5 2.93 1 

GWO 1 14 5 1 2 3.86 2 

PSO 6 3 6 6 2 4.27 3 

FA 1 3 10 7 2 5 4 

GSA 0 1 1 9 12 6.73 5 

 
Table 5. The results of the number of running time ranks for each 

algorithm in the all test functions and the final rank among the algorithms 

 #R1 #R2 #R3 #R4 #R5 Mean R 
Final 

Rank 

ERO 23 0 0 0 0 1.53 1 

GWO 0 23 0 0 0 3.06 2 

PSO 0 0 23 0 0 4.6 3 

GSA 0 0 19 4 0 4.86 4 

FA 0 0 4 19 0 5.86 5 

 

When comparing algorithms to determine the best 

performance, both speed and accuracy should be 

considered together. Therefore, based on the results, it is 

evident that Elymus Repens Optimization (ERO) 

demonstrates the best overall performance in terms of 

accuracy and speed indexes. 

6- Conclusions and Future Work 

Optimization is one of the most important processes in  the 

industry. Among the various methods, meta -heuristic 

algorithms are the most powerful for optimization. This 

paper introduces a new algorithm called Elymus Repens 

Optimization (ERO) based on the behavior of Elymus 

Repens in agricultural land. The effectiveness and power 

of ERO are then evaluated using 23 well-known 

benchmark functions to demonstrate its capabilit ies. 

Following this simulation, the performance of ERO is 

compared with other optimization algorithms such as Gray 

Wolf Optimization (GWO), Firefly  Algorithm (FA), 

Particle Swarm Optimization (PSO), and Gravitational 

Search Algorithm (GSA). Resu lts indicate that the 

proposed algorithm is highly efficient in  terms of accuracy 

and speed. 

Based on the desirable result  of the algorithm, presented in  

this paper (ERO), it is recommended that this be 

implemented for optimization problems in the industry. 
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