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Abstract  
The expansion of touch-screen devices has provided the possibility of human-machine interactions in the form of free-hand 

drawings. In sketch-based image retrieval (SBIR) systems, the query image is a simple binary design that represents the 

mental image of a person with the rough shape of an object. A simple sketch is convenient and efficient for recording ideas 

visually, and can outdo hundreds of words. The objective is to retrieve a natural image with the same label as the query sketch. 

This article presents a multi-step training method. Regression functions are used in the deep network structure to improve 

system performance, and various loss functions are employed for a better convergence of the retrieval system. The 

convolutional neural network used has two branches, one related to the sketch and the other related to the image, and these 

two branches can have the same or different architecture. After four training steps, a 56.48% MAP was achieved, indicating 

the desirable performance of the network.  
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1- Introduction 

The advances in multimedia technologies and the 

widespread use of the Internet have fundamentally changed 

human life. Audio, video, and images are known as 

multimedia data and can be useful in various fields, including 

military, medical, legal, and commercial [1]. Any system that 

can analyze and recover these data can be efficient and 

valuable. Among these, images are the most popular 

multimedia data [2]. 

The issue of image retrieval can be done in different ways, 

for example, content-based image retrieval or (CBIR) can be 

mentioned, which has been of interest in the past [3]. But 

here, discussed issue is sketch-based image retrieval. As 

stated, this issue involves retrieving a natural image with the 

same label as the query sketch. It mainly focuses on 

extracting representative and shared features from simple 

sketches and natural images [4]. Scale-invariant feature 

transform (SIFT) is one of the most common matching 

methods previously used in the remote sensing image 

registration[5]. The challenge in SBIR is that free-hand 

sketches are inherently abstract and symbolic, which 

magnifies the cross-domain discrepancy between sketches 

and the real image. Deep learning methods are used to 

alleviate this problem [6].  

For a better understanding of the subject, a description could 

be provided about the differences between sketches and real 

images. Sketches solely have the holistic shape and salient 

local shapes (and sometimes symbolic colors), while real 

images have details on shape, color, and texture. Most 

sketches contain no background, while real images can have 

cluttered and complex backgrounds. Even when a sketch and 

an edge map depict the same object or scene, their abstraction 

levels are dramatically different. This difference is due to the 

randomness of the sketch lines, simplification and missing 

details, disproportion, and unrealistic objects (several parts 

of objects are drawn unrealistically) in sketches [2]. In 

general, sketches represent the shape and spatial position, 

while real images include other useful information, such as 

color and texture [1]. Sketches are considered a highly 

scattered signal compared to real images, and their analysis 

is challenging due to the low input information and the 

abstractness of sketches. Therefore, comparing low-detail 

images with pixel-dense real images is difficult [7]. 

A method of collecting sketch data is edge detection 

techniques and algorithms, such as the fuzzy-based ACO 

algorithm [8] or using fuzzy cognitive map [9]. This paper, 

presents a comprehensive investigation of triplet embedding 

strategies evaluating on three databases (Quick-Draw, TU-
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Berlin, and Sketchy). Similar to papers on deep networks for 

object recognition [10], the present study explores 

appropriate CNN architectures, weight-sharing schemes, and 

training methodologies to learn a low-dimensional 

embedding for the representation of both sketches and 

photographs in practical terms as a space amenable for a fast 

approximation of the nearest neighbor (ANN) search (e.g., 

L2 norm) for SBIR. Also, a novel triplet architecture and 

training methodology is proposed that is capable of 

generalizing across hundreds of object categories, and its 

performance is demonstrated in comparison to existing SBIR 

methods by a significant margin on leading benchmarks. 

We propose a multi-step training methodology and 

investigate several network designs, comparing the Siamese 

architecture with the Heterogeneous and Hybrid ones. we 

aimed to develop a training strategy for partial sharing 

networks. 

2- Related works 

Sketch-based image retrieval (SBIR) has been studied since 

the early 1990s, and content-based retrieval (CBIR) were the 

subject of discussions from 1990 to 1994 [2]. This field 

remains attractive to researchers. For example, one 

researcher on CBIR has presented a method based on the 

combination of Hadamard matrix, discrete wavelet transform 

(HDWT2), and discrete cosine transform of DCT [11]. From 

1994 onwards, studies on sketch-based image retrieval 

(SBIR) began [2]. Del Bimbo and et al. [12] introduced a 

module called the object localization, which separated and 

selected the main areas of an image with the help of 

rectangles, normalized these windows to be the same size, 

and then coded their spatial relationships. In this method, 

only the main subjects of the image were selected and 

compared. So far, all the reviewed works have employed 

pixel-based similarity metrics, but these metrics usually 

require costly computations costly and have little flexibility. 

Later, the feature extraction module was introduced to 

extract various feature types, which were robust to edge 

variations. Chans et al. [13] believed that users tended to 

ignore details when drawing the sketches and proposed a 

curvelet model to extract and encode the prominent edge 

segments of images. Rajendra and Cheng [14] used a multi-

scale representation of edge maps to indicate changes in the 

level of detail in human-drawn sketches. They believed that 

the combination of scales preserved the details of the sketch. 

In another method, a binary mask was used for objects that 

spatially matched the real image. Another method is gallery 

displaying module, which uses K-means tree and best-bin-

first strategy in combination. The combination of these two 

algorithms accelerated the recovery speed by several times 

[2, 15]. 

Another pixel-based method is OCM, which seeks the 

closest edge pixel in the sketch that is related to the image. 

More recently, with the introduction of deep learning and the 

use of deep neural networks, research in the field of SBIR 

took a new form [16, 17]. Convolution networks are 

comprehensive and efficient in image processing and 

alleviate numerous deficiencies and ambiguities of data. 

Neural network-based methods are generally robust in 

identifying data patterns, superior in speed, flexible against 

environmental changes, and provide better performance than 

classic statistical models [18]. Recently, custom 

architectures such as Alex-Net, Google-Net [19] combined 

CNN models, and multi-objective ranking networks [20] 

have been used to rank and predict features. Sketch-A-Net is 

a deep networks designed for sketch-based image retrieval 

problem [6].  

It explores recognition (rather than search) using a single-

branch network resembling a short-form Alex-Net [10]. 

Sketch-A-Net is a component of the works of Bhattacharjee 

et al. [21] and Sain et al. [7]. Sketch-A-Net is also explored 

in the present study and compared with several other 

contemporary architectures. 

An early work on multi-branch networks for sketch retrieval 

(of 3D objects) was the contrastive loss network by Wang et 

al. [22], which independently learned branch weights to 

bridge the domains of sketch and 2D renderings of silhouette 

edges. In a recent short paper, Qi et al. [23] propose a two-

branch Siamese network with contrastive loss. Their results, 

although comparable with other methods using shallow 

features, are still far behind state-of-the-art by a large margin. 

As we show later, learning a single function to map disparate 

domains to the search space appears to underperform designs 

where branch weights are learned independently or semi-

independently. 

Triplet CNNs employ three branches [24, 25]: (i) an anchor 

branch, which models the reference object, (ii) one branch 

representing positive examples (which should be similar to 

the anchor) and (iii) another modeling negative examples 

(which should differ from the anchor). The triplet loss 

function is responsible for guiding the training stage 

considering the relationship between the three models. 

Triplet CNNs have recently been explored for face 

identification [26], tracking [27], photographic visual search 

[28], and sketched queries to refine search within a single 

object class (e. g. fine-grain search within a dataset of shoes) 

[7]. Similarly, a fine-grained approach to SBIR was adopted 

by the recent Sketchy system of Sangkloy et al. [29] in which 

careful reproduction of stroke detail is invited for object 

instance search. Researchers report that using a fully-shared 

network was better than using two branches without weight 

sharing. However, the authors in [29] suggest it is more 

beneficial to avoid sharing any layers in a cross-category 

retrieval context. Also, a hybrid design was explored by Bui 

et al. [30] using the same architecture on both branches but 

sharing certain layers. However, as their model learns a 

mapping between sketch and edge map (rather than image 

directly) its performance is limited. Furthermore, it is still 

unclear whether triplet loss works better than contrastive loss.  
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This paper uses a generic multi-step training methodology 

for cross-domain learning that leverages several loss 

functions in training shared networks as illustrated in Figures 

1, 2 and 3. Also an extensive evaluation of ConvNet 

architectures and weight-sharing strategies is carried out. 

3- Proposed Method  

The present study proposes a multi-step training method  

and examines several network architectures. This method, 

training the network independently at first (without sharing 

the weights) and then training in shared manner to modify 

and improve the performance. Lastly other data sets are 

applied to modify the weights of the training system. Two 

functions are used in this training process: contrast loss and 

triple loss. 

 

Fig. 1 Block diagram of the multi-step training SBIR system 

 

Figure 1 shows the block diagram of the proposed multi-step 

training sketch-based image retrieval method. Datasets were 

collected in the first block. In the upcoming research, three 

well-known and extensive datasets in sketch-based image 

retrieval are used:  Sketchy, TU-Berlin, and Quick-Draw. In 

the second block, some pre-processing is done on datasets 

for equalization before entering into the networks for training. 

First, all the images were set to 256×256. Since the datasets 

contained sketches with different thicknesses, they were all 

equalized via the thinning method used in [10]. The data 

augmentation process was done (fully explained in Section 

3.3. later). After pre-processing the data, the training phase 

began. The third block involved the unshared training step, 

which is the first step of the proposed training. At this step, 

the training was done independently without sharing the 

weights of the layers. That is, the sketch branch and the 

image branch were trained separately using Soft-max loss for 

a simple classification. The fourth block involved shared 

training, the second step of the proposed method. In this step, 

a two-branch network was formed, and the unshared layers 

of the previous step were frozen. Soft-max loss and contrast 

loss (Eq. 3) functions were used to train shared layers in this 

step. In the next block, the third step of the proposed method, 

all the layers were defrosted. The training then continued by 

forming a triplet network and triplet loss and soft-max loss 

functions. After these steps, the image of the sketch was 

finally retrieved. 

Table 1 shows the summary of the literature. 

Table 1. The summery of the literature 

step explanation 

1 Collecting datasets: (Sketchy, Tu-Berlin, Quick-
Draw) 

2 Pre-processing images: (resize all datasets to 
256*256, equalizing, and …) 

3 Unshared training: (for sketch branch training 
was done independently without sharing the 
weights of the layers, and for image branch 

training was done separately using soft-max loss 
for simple classification.)  

4 Shared training: (we have two-branch network. 
unshared layers of the previous step were frozen. 
Soft-max and contrast loss functions were used) 

5 Training triplet network: (all the layers were 
defrosted. Training continued by forming a triplet 
network and triplet and soft-max loss functions.) 

6 Retrieval: (the image of the sketch was retrieved) 

3-1- Architecture 

Investigating a sketch-based image retrieval problem, 

requires at least one deep convolution bifurcation network. 

The branch architecture related to sketch and image can be 

the same or different. This paper, investigated Sketch-A-Net, 

Alex-Net, VGG-16 and InceptionV1 (Google-Net) for the 

sketch branch and Alex-Net, VGG-16, and InceptionV1 for 

the image branch. Low-level features are often learned in the 

lower layers of the convolutional network, while semantic 

features are obtained by training the upper layers. Therefore, 

in this process, the upper layers are trained jointly and the 

lower layers independently. All possible permutations with 

the mentioned architectures are explored for the sketch and 

image branches. When the architectures of the sketch and 

image branches are completely different, one or more fully 

connected layers are required to unify the branches. 

Here, the loss functions used in the training process are 

described. Let 𝑋𝑠 = {𝑥𝑠}  and 𝑋𝐼 = {𝑥𝐼}  be collections of 

training sketches and images, respectively. The contrastive 

loss function accepts a pair of input examples (𝑥𝑠; 𝑥𝐼) and 

regresses their embedding closer or pushes them away, 

depending on whether 𝑥𝑠  and 𝑥𝐼  are similar [10]. Let Y 

represents the label of a training pair (𝑥𝑠; 𝑥𝐼) so that: 

𝑌 = {
0                 𝑖𝑓 (𝑥𝑠, 𝑥𝐼)𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟

1           𝑖𝑓 (𝑥𝑠, 𝑥𝐼)𝑎𝑟𝑒 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟
              (1) 

The cross-domain Euclidean distance between the outputs of 

the two branches is calculated as: 

𝐷(𝑥𝑠, 𝑥𝐼) =  ‖𝐹𝜃𝑠 ,𝜃𝑐

𝑆 (𝑥𝑠) − 𝐹𝜃𝐼 ,𝜃𝑐

𝐼 (𝑥𝐼)‖
2
             (2) 

Provide dataset

Data augmentation & resize

Train unshared layers

Train shared layers

Train the whole triplet network

Retrieve image from sketch
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Where parameters 𝜃𝑠  and 𝜃𝐼 represent domain-specific 

layers, 𝜃𝑐  is the shared part, and 𝐹𝜃𝑠 ,𝜃𝑐

𝑆 (𝑥𝑠) and 𝐹𝜃𝐼 ,𝜃𝑐

𝐼 (𝑥𝐼) 

are the embedding functions for sketch and image domains, 

respectively. 

The contrastive loss is thus defined as: 

ℒ𝑐(𝑌, 𝑋𝑆, 𝑋𝐼) =
1

2
(1 − 𝑌)𝐷2(𝑋𝑆, 𝑋𝐼) +

1

2
𝑌{𝑚 −

𝐷2(𝑋𝑆, 𝑋𝐼)}+                (3) 

In which {. }+  is hinge loss function, and m is a defining 

margin and acceptable threshold for the dissimilarity of the 

sketch and image. 

Triplet loss [7] maintains a relative distance between the 

anchoring example and both a similar and a dissimilar 

example. For the triplet input (𝑋𝑆, 𝑋+
𝐼 , 𝑋−

𝐼 ), where 𝑋𝑆 is an 

anchor sketch, and 𝑋+
𝐼  is a similar and 𝑋−

𝐼  is a dissimilar 

image, the triplet loss defined as: 

ℒ𝑐(𝑋𝑆, 𝑋+
𝐼 , 𝑋−

𝐼 ) =
1

2
{𝑚 + 𝐷2(𝑋𝑆, 𝑋+

𝐼 ) − 𝐷2(𝑋𝑆, 𝑋−
𝐼 )}+      

(4) 

The CNN network consists of three branches to 

accommodate the triplet input (𝑋𝑆, 𝑋+
𝐼 , 𝑋−

𝐼 ): a sketch branch 

(anchor) and two identical image branches (positive and 

negative). The value of margin m is set as 0.2 in all 

experiments Suggested in reference [10]. 

An intermediate, fully-connected (FC) layer is added without 

post-activation to learn the dimensionality reduction during 

the training steps. An embedding layer lower-dim is added 

between layer FC7 (D= 4096) and the output layer FC8 (D = 

250) without activation ReLU (fig.1). The connection from 

FC7 to FC8 is linear. The presence of the domain reduction 

layer does not affect the performance of the classification 

layer. 

3-2- Training 

The proposed multi-step training has four steps: 

- Step 1 

In this step, the unshared layers learn the features distinctive 

to their domain without being mixed with other domains 

(figure 2). 

 

Fig. 2 Training the unshared layers 

ℒ𝐸  and ℒ𝑅  denote the cross entropy and regularization 

losses: 

ℒ𝐸(𝑍) = − log (
𝑒𝑧𝑦

∑ 𝑒𝑧𝑖𝑖
)                (5) 

ℒ𝑅(𝜃) =
1

2
∑ 𝜃𝑖

2
𝑖                 (6) 

So, in step 1, equations 7 and 8 show the representative 

model for each domain: 
arg 𝑚𝑖𝑛

𝜃𝑆, 𝜃𝐶
∑ ℒ𝐸𝐼 (𝐹𝑆(𝑋𝑖

𝑆)) + 𝜆ℒ𝑅(𝜃𝑆, 𝜃𝐶)             (7) 

arg 𝑚𝑖𝑛
𝜃𝐼 , 𝜃𝐶

∑ ℒ𝐸𝑖 (𝐹𝐼(𝑋𝑖
𝐼)) + 𝜆ℒ𝑅(𝜃𝐼, 𝜃𝐶)               

(8) 

Where λ is the weight decay term, and 𝜃𝐶  was learned 

independently. 

- Step 2 

In this step, the shared layers learn the high-level 

common features between the two domains by 

comparing and contrasting the low-level features from 

both domains (figure 3). 
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Fig. 3 Training the shared layers 

Equation 9 shows the model for the two domains together: 
arg 𝑚𝑖𝑛

𝜃𝑐
∑ ℒ𝐸 (𝐹𝑆(𝑋𝑖

𝑆)) + ∑ ℒ𝐸(𝐹𝐼(𝑋𝑖
𝐼)) +𝑖𝑖

𝛼 ∑ ℒ𝐶(𝑌𝑖 , 𝑋𝑖
𝑆, 𝑋𝑖

𝐼) + 𝜆ℒ𝑅(𝜃𝐶)𝑖                (9) 

In which 𝛼  is the weight of the regression term. As [10] 

suggests, 𝛼 = 2.0 in all experiments.  

- Step 3 

In this step, at the beginning of training, two loss functions 

are applied equally, and then the weight of the triple loss is 

increased (𝛼 = 2.0). Figure 3 and Equation 10 display the 

learning regression in this step. 

arg 𝑚𝑖𝑛
𝜃𝑆, 𝜃𝐼 , 𝜃𝐶

∑ ℒ𝐸 (𝐹𝑆(𝑋𝑖
𝑆)) + ∑ ℒ𝐸(𝐹𝐼(𝑋𝑖+

𝐼 )) +𝑖𝑖

∑ ℒ𝐸(𝐹𝐼(𝑋𝑖−
𝐼 ))  +  𝛼 ∑ ℒ𝑇(𝑋𝑖

𝑆, 𝑋𝑖+
𝐼 , 𝑋𝑖−

𝐼 )  +𝑖𝑖

 𝜆 ℒ𝑅(𝜃𝑆, 𝜃𝐼 , 𝜃𝐶)                                                      (10) 

- Step 4 

In this step, the model is modified further by repeating Step 

3 on another dataset (figure 4). This training method allows 

shared and unshared layers to be trained independently in 

separate steps. In this method, the possibility of partial 

sharing across the branches is provided, which further 

reduces overfitting due to the significant reduction of 

training parameters. At the same time, learning flexibility is 

maintained for each domain. 

 

Fig. 4 Training the whole triplet network 

It appears that triple and contrast loss functions are important 

in the training process, but they are not enough to adjust the 

training. Therefore, the soft-max loss function was also used 

in all training steps. Past research has also shown that the 
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soft-max loss function plays an important role in the 

convergence of training [10].  

3-3- Data Augmentation 

Data augmentation is essential in preventing overfitting, 

especially when the training data is limited. In the proposed 

method, the following procedures were used to increase the 

data. 

1. A random cut with a dimension of 225×225 as input for 

Sketch-A-Net network, 227×227 for Alex-net network, and 

224×224 for VGG and Inception networks. 

2. A random rotation in the range of [−5,5] degrees; 

3. A random scaling in the range of [0.9 − 1.1]; 
4. A random horizontal rotation; 

5. The method used only for sketches is called line ranking 

[10].  

This method, is applicable for sketches with at least ten lines. 

The lines of the sketch are divided into four equal groups 

based on their importance so that the lines of the first group 

are the primary lines (the most important lines that related to 

the more coarse structure of the object) this group of lines is 

always kept, and the lines of the following groups decrease 

in importance each time. When one of the groups (except 

group one) is removed, a new sketch image is obtained every 

time [10].  

4- Exprimental Results 

The proposed multi-step training process was tested on 

several architectures of convolutional networks with sketch 

and image input. The impact of data augmentation operations 

on the training process was also evaluated.  

4-1- Evaluation Ceriteria 

4.1.1 Percision 

Precision is one of the most common evaluation criteria used 

in classification problems. It is based on the ratio of the 

correctly classified samples to the total number of identified 

samples (samples that are incorrectly and correctly classified) 

[31]. The formula for calculating precision is as follows. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
×100             (11) 

 

Where TP shows the correctly identified samples and FP 

shows the misidentified samples.  

4.1.2 Recall 

The recall is a measure obtained from the ratio of correctly 

classified samples to the sum of samples that are correctly 

identified and samples that are incorrectly rejected [32]. It is 

expressed as the below formula. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (12) 

4.1.3 Mean Average Precision 

Average precision is calculated as the weighted mean of 

precisions at each threshold. The weight is the increase in 

recall from the prior threshold. The mean average 

precision is the average of AP of each class [33]. 

𝐴𝑃 =
1

𝑁
∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)𝑟              (13) 

Where 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) is precision in point recall (r), and MAP is 

the average AP in each dataset class. 

 

4.1.4 Kendall’s Correlation Coefficient (𝝉𝒃) 

Let (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) be a set of observations of the joint 

random variables X and Y, such that all the values of (𝑥𝑖) 

and (𝑦𝑖) are unique (ties are neglected for simplicity). Any 

pair of observations ( 𝑥𝑖 , 𝑦𝑖 ) and ( 𝑥𝑗 , 𝑦𝑗 ), where i<j, are 

considered concordant if the sorting order 

of ( 𝑥𝑖 , 𝑥𝑗 ) and ( 𝑦𝑖 , 𝑦𝑗 ) agrees. That is if either 

both  𝑥𝑖 >𝑥𝑗  and 𝑦𝑖 >𝑦𝑗  or both 𝑥𝑖 <𝑥𝑗  and 𝑦𝑖 <𝑦𝑗  are true. 

Otherwise, they are discordant [10]. 

The Kendall τ coefficient is defined as: 

𝜏 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)−(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠
=

1 −
2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

(𝑛
2)

            (14) 

In which (𝑛
2
) =

𝑛(𝑛−1)

2
  is the binomial coefficient for the 

number of ways to choose two from n items. 

4-2- Datasets 

The proposed networks were evaluated using three datasets. 

1) Tu-Berlin: 

 It is one of the most famous datasets in sketch-

based image retrieval and includes 250 classes with 

80 images in each, providing a total of 20,000 PNG 

images of hand-drawn sketches with a size of 

128×128 (Figure 6(a)) [34, 35]. This dataset was 

used for training and testing the first three training 

steps. 

2) Quick-Draw: This dataset has highly simple 

sketches. It contains 330,000 sketches and 204,000 

images with a size of 256×256, divided into 110 

classes (Figure 6(b)). It was used to adjust and 

modify the training model in the fourth step. 

3) Sketchy: It is a large dataset of sketches and original 

images. It contains 75471 hand-drawn images with 

125 classes. Of these, 100 classes are shared with 

the Tu-Berlin dataset, and 25 classes are new 

https://en.wikipedia.org/wiki/Concordant_pair
https://en.wikipedia.org/wiki/Binomial_coefficient
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(Figure 6(c)) [36]. This dataset was used to evaluate 

the proposed model. 

Since the Tu-Berlin dataset includes only sketches, Internet 

databases such as Creative Commons [10] and older datasets 

such as Flickr-15 [37] or Google search engine were also 

searched to obtain the original images. 

 

4-3- Training and Testing  

A total of 25% of the Tu-Berlin images were selected 

randomly as the training set, and the remaining 75% were 

used as the test set. For simplicity, Sketch-A-Net architecture 

was used for the sketch branch, and Alex-Net architecture for 

the image branch. Slight changes were made in the Sketch-

A-Net architecture to share the weights between the two 

networks in such a way that layers 6-7 were taken from the 

Alex-net network, and layers 4-5 were modified as a 

combination of the two networks. The sketch branch was 

trained from the beginning, while the image branch was 

trained using the pre-trained weights from ImageNet. Figure 

5 shows the results of these steps for the proposed multi-step 

training process. 

 

Fig. 5 4 step training of the Sketch-A-Net –and Alex-Net model  
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Figure 6. Examples of the three datasets used in the multi-steps training 

SBIR 

4-4- Testing Different Architectures  

Four different examples of convolution-based network 

architectures were tested for the sketch and image branches. 

Different sharing layers were applied for each possible 

combination according to their architecture and network 

structure.  

The investigations, showed that partial sharing always 

worked better than full sharing or no sharing at all. However, 

the layer of each network with the best performance in 

sharing could only be determined by testing. For example, 

for Alex-Net - Alex-Net mode, the best performance was 

achieved when Conv 5 layer was shared. In AlexNet-VGG16, 

the best performance sharing belonged to sharing the layer 

FC 7, and in Sketch-A-Net – Alex-Net, sharing layer FC-6 

sharing achieved the best performance. In VGG 16-VGG 16, 

sharing block 5 performed better, and in Inception V1-

Inception V1, sharing insept.4e achieved better performance. 

Subsequently, all possible permutations and sharing were 

tested to determine the optimal performance of the reviewed 

architectures. Figure7 shows the results of this review. As the 

Sketch-A-Net architecture can only be applied to the sketch-

edge map mode and does not work on natural images. 

Therefore, this architecture was not used for the image 

branches except for one where the images were turned into 

edge maps.  

As the diagram results show, the sketch branch architecture 

should not be more complicated than the image branch 

architecture. As can be seen, the designs of VGG16-AlexNet, 

Inception V1-AlexNet, and Inception V1-VGG16 are better 

than their counterparts. Also, if Inception V1 architecture is 

selected for the image branch, Sketch-A-Net would be more 

suitable for the sketch branch than Alex-Net or VGG-16, 

even though it has a simpler architecture. 

 

Figure 7. The best performance of different combinations of networks on 

Sketchy dataset  

It can also be seen that using the same architecture for sketch 

and image branches leads to better performance. 

Subsequently, the best performance belongs to the design of 

Inception V1-Inception V1. This architecture was applied to 

the Sketchy dataset, and the increased output in the range of 

64 to 1024 was examined. It was observed that as the 

dimensions increased, the MAP improved continuously. 

However, this also led to an increase in the retrieval speed. 

Therefore, the MAP evaluation criteria and retrieval speed 

were balanced by selecting a dimension of 256 with a 56.32 

map and a recovery time of 6.2 ms for the final model. 

4-5- Evaluation the Final Model   

The proposed model, using Inception V1-Inception V1, 

Inception e4 block sharing, and the output dimension of 256 

on the Sketchy dataset, was compared with other works. 

Table 2 shows the comparison of the proposed multistep 

method with several other research based on the MAP 

criteria. 
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Table 2. SBIR comparison based on MAP criteria   

method Dim. mAP 

(%) 

Siamese with contrastive loss[23] 64 19.54 
Rst-SP-SHELO[31] 3060 20.05 

Triplet sketch-edgemap[30] 100 24.45 
Query-adaptive re-ranking CNN[21]  5120 32.30 

Sketchy triplet[29] 1024 35.91 
proposed Step 2 256 42.12 

sketret [38] 256 43.70 
proposed Step 3 256 48.53 

cross modal (binary) [39] 64 50.60 
cross modal [39] 64 52.30 

SBTKNet[40] 512 55.30 
hybrid cnn (without shape feature)[41] 64 55.30 

proposed Step 4 256 56.48 

 

The Siamese method (Table 2) uses contrastive loss, and 

introduces. A novel convolutional neural network for SBIR 

based on the Siamese network [23]. This method primarily 

draws output feature vectors for input sketch-image pairs 

with similar labels closer and pushes irrelevant pairs away. 

This is achieved by jointly tuning two convolutional neural 

networks which linked by one loss function. As can be seen, 

the results of this method are lower than all the presented 

research.  

Another method is the Rst-SP-SHELO (Table 2). This 

method includes RST-SHELO and improved version of 

SHELO (Soft Histogram of Edge Local Orientations), which 

is an advanced, efficient method for describing sketches. In 

this research, the sketch token approach is used to detect 

image contours utilizing mid-level features. The square root 

normalization is used for a better normalization of SHELO 

and improved performance of the retrieval system. The result 

of this research is marginally better than the Siamese method 

with contrastive loss but is yet to be desirable.  

In the triplet sketch-edge map method [30], convolutional 

neural networks and triplet loss are used. The SBIR problem 

is proposed as a cross-domain modeling problem where a 

depiction invariant embedding of sketch and photo data is 

learned by regression over a Siamese CNN architecture with 

half-shared weights and modified triplet loss function. The 

results of this method are better than the previous two 

methods but are still insufficient. 

Another method shown in Table 2 is the Query-adaptive re-

ranking CNN, which uses the localization technique. It also 

uses the Sketch-A-Net architecture to locate the candidate 

object proposals, exploit appearance information to resolve 

the ambiguities in object proposals and refine the search 

results. In this research, adaptive search is formulated as a 

subgraph selection problem and solved by the maximum 

flow algorithm. The results of this method are better than the 

previous ones (approx. 32.30). 

The Sketchy triplet method is used in [29]. This method 

trains the Sketchy dataset by cross-domain convolutional 

networks that embed sketches and photos in a common 

feature space. The results are similar to that of the GN-

Triplet network (Google-Net) with triplet loss. 

Another example is the SKETRET, which is a ZS-SBIR 

retrieval method. In this research, a new framework is 

introduced, which adapts the bi-level domain of sketch and 

image features using adversarial learning. This framework 

alleviates the mentioned problems by providing modality-

independent features and a class-discriminative latent space. 

This research achieves slightly better results than the 

proposed method in the second step. 

Binary and non-binary cross-modal methods [39] also 

involve a ZS-SBIR problem. The study [39] proposes a novel 

progressive cross-modal semantic network, which first, 

explicitly aligns the sketch and image features to semantic 

features and then projects the aligned features to a common 

space for subsequent retrieval. Cross-reconstruction loss 

functions are often used to improve the alignment features, 

and multi-modal Euclidean loss is used for the similarity 

between the image-sketch pair retrieval features. The results 

for the binary and non-binary modes (Table 2) are higher 

than the proposed method in the third step. 

SBTK-Net and hybrid CNN (without shape feature) methods 

achieve similar results (Table 2). In the SBTK-Net method, 

a simple and efficient framework is proposed that does not 

require large computational training resources. In the 

training and inference steps, only one CNN has been used. A 

pre-trained Image Net CNN (i.e., Res-Net 50) has been set 

with three learning objectives: Domain balanced quadruplet 

loss for learning distinctive features; semantic classification 

loss to preserve the learned semantic knowledge; semantic 

knowledge preservation loss to reduce the computational 

cost and increase the accuracy of the process. In the hybrid 

CNN method (without the shape feature), sketch recognition 

supposedly benefits from learning the appearance and shape 

representation. Therefore, a new architecture called hybrid 

CNN is proposed, that consists of A-NET and S-NET, 

describing the appearance and shape information, 

respectively. 

As Table 2 shows, the proposed method of the present study 

achieves higher results after finishing all four steps than 

other methods. 

Table 3 compares the performance of the proposed multi-

step training system with other studies based on the 

percentage of precision criterion. 
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Table 3. SBIR comparison based on the precision criterion 

method precision (%) 

Sketchy triplet[29] 53.42 
cross modal (binary)[39] 61.50 

cross modal[39] 61.60 
proposed Step 2 63.21 
proposed Step 3 69.35 

fine-grained sbir[42] 78.02 
semi supervised learning[16] 76.22 

proposed Step 3 78.36 

The results show that the Sketchy triplet and binary and non-

binary cross-modal methods have a lower precision than the 

proposed method. The fine-grained SBIR method in [42] 

investigates the FG-SBIR problem. The introduced [42], FG-

SBIR framework [42] starts retrieving as soon as the user 

starts drawing. Also, a mutual retrieval framework based on 

reinforcement learning is developed that directly optimizes 

the rank of the ground-truth photo over a complete sketch 

drawing episode. In addition, in the semi-supervised learning 

method, (FG-SBIR), a novel semi-supervised framework for 

cross-modal retrieval has been introduced, along with a 

discriminator-guided mechanism to guide against unfaithful 

generation and a distillation loss-based regularizer to provide 

tolerance against noisy training samples. In this research, 

generation and retrieval are considered two conjugate 

problems, and a common learning method is devised for each 

module to benefit mutually. These two methods have 

acceptable precision, but the proposed method achieves 

better result. After completing the four steps.  

Table 4 shows the performance of the proposed multi-step 

training system using Kendall’s correlation coefficient (𝜏𝑏) 

[10]. 

Kendall’s correlation coefficient is used in limited studies on 

SBIR, but it is a suitable evaluation criterion. As Table 3 

shows, the proposed multi-step training method performs 

better in terms of Kendall’s correlation coefficient criterion 

than methods such as Triplet sketch-edge map and Sketchy 

triplet. 

Table 4. The comparison based on Kendall’s correlation coefficient (𝜏𝑏) 

method Dim. 𝝉𝒃  

Triplet sketch-edgemap[30] 100 0.22 
proposed Step 2 256 0.33 
proposed Step 3 256 0.36 

Sketchy triplet[29] 1024 0.37 
proposed Step 4 256 0.48 

In this article, we investigated the performance of four CNN 

network architectures and evaluated all possible 

permutations for the image branch and sketch in order to find 

the best combination of the network as well as the 

appropriate loss function with it, in order to optimize and 

increase the accuracy of retrieve. Our simultaneous attention 

to the network architecture, different methods of data 

augmentation and its impact on the training process and 

finding the appropriate loss function with the help of training 

weighting for each network combination has made this 

research unique. On the other hand, we have tried to use 

datasets that includes different image styles due to the 

breadth and diversity of the subject, so that we could 

investigate and cover the challenges related to the dataset . 

5- Conclusions 

This paper proposed a hybrid convolutional neural network 

that uses dual and triple architectures for sketch-based image 

learning and retrieval. Various experiments and 

examinations of different convolutional neural networks 

(e.g., Sketch-A-Net, Alex-Net, VGG-16 and Inception V1), 

determined the best network architecture combination model 

for the proposed retrieval system. Regression functions were 

used in the deep neural network structure to improve system 

performance. Different layers were tested for weight sharing, 

and investigations and methods suggestions were carried out 

for preprocessing the training data. Various Loss functions 

were used for better convergence of the retrieval system. 

Three large, well-known datasets (Sketchy, TU-Berlin and 

Quick-Draw) were used in the training, testing, and 

evaluation process. Lastly, the final model was examined 

based on three evaluation criteria: MAP=56.48%, 

Precision=78.36%, and 𝝉𝒃=0.48. The entire training process 

of the proposed model was carried out on Pytorch platform.  

Further research on this topic could continue by exploring 

multi-domain learning, for example sketch-photo 3D models 

mapping or multi-style artwork retrieval. Recently, deep 

convolutional generative adversarial networks (DC-GANs) 

have shown great potential for sketch-based issues and so 

might offer an interesting alternative to SBIR for sketch-

photo matching. Currently DC-GANs suffer limitations in 

variety of object classes that can be explored when trained.  
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