

 Mustafa Alzaidi

mustafa.alzaidi@inf.unideb.hu

Journal of Information Systems and Telecommunication
Vol.11, No.3, July-September 2023, 260-268

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

1
.Department of Information Technology Faculty of Informatics University of Debrecen, Hungary

2
.Department of Information Technology Faculty of Informatics University of Debrecen, Hungary

Received: 05 May 2022/ Revised: 04 Dec 2022/ Accepted: 09 Jan 2023

Abstract
Accessing public transport plays an essential role in the daily life productivity of people in urban regions. Therefore, it is

necessary to represent the spatiotemporal diversity of transit services to evaluate public transit accessibility appropriately.

That can be accomplished by determining the shortest path or shortest travel time trip plan. Many applications like ArcGIS

provide tools to estimate the trip time using GTFS data. They can perform well in finding travel time. Still, they can be

computationally inefficient and impractical with increasing the data dimensions like searching all day time or in case of

huge data. Some research proposed recently provides more computationally efficient algorithms to solve the problem. This

paper presents a new algorithm to find the timing information for a trip plan between two start and destination points. Also,

we introduce RMH (Range Mapping Hash) as a new approach using Redis NoSQL to find and calculate the accessibility of

a trip plan with fixed time complexity of O(2) regardless of the city size (GTFS size). We experimented with the

performance of this approach and compared it with the traditional run-time algorithm using GTFS data of Debrecen and

Budapest. This Redis model can be applied to similar problems where input can be divided into ranges with the same output.

Keywords: Author Guide; Article; Camera-Ready Format; Paper Specifications; Paper Submission.

1- Introduction

For two key reasons, public transportation accessibility has

become a hot topic for scholars and transit organizations.

First, improved transit accessibility promotes active

transportation (such as walking and bicycling) while

decreasing private vehicle use. As a result, it will enhance

public health and reduce GHG emissions [1]–[4]. Second,

transit-dependent people primarily rely on public

transportation to reach key services (e.g., workplace,

university, and shopping center). Thus, transit accessibility

is crucial to attaining socioeconomic fairness[5], [6]. Also,

transit accessibility research may help guide decisions

about transportation investment and land use

development[7].

GTFS stands for General Transit Feed Specification. It

was developed by TriMet and Google in Portland [8].

Google announced transit feed specs in 2007, enabling

transit agencies to develop and publish transit data online

as open sources using the GTFS format. The feed rapidly

became the most extensively used standard for exchanging

static transit data in Canada and the United States [9] [10].

Additionally, the transit sector has embraced the GTFS

format as a standard for communicating schedule data due

to its expanding popularity. Subsequently, software such

as OpenTripPlanner, GoogleMaps, and Bing Maps was

developed and updated to use GTFS and provide services

like, stop locations, timetables, and route planning. The

trip (or route) planner is essential to these applications

since it examines GTFS data for possible routes between

two places, which is the most demanded service.

Handling a user trip planning request requires two actions

or steps. First, identifying all feasible pathways or routes

between two places as candidate solutions; second,

filtering and validating these solutions according to the

user's schedule and start time. Route planning is more

complex than identifying a path or route in a graph since it

considers journeys, directions, and intermediate transfers

between bus stops or stations. The shortest path of a graph

is a frequent issue; various algorithms have been

developed to solve it [11]–[14]. Depending on the factors

used to calculate the weight of graph edges, the algorithm

may be bi- or multi-criteria. For instance, if the graph

edges depict roads, the road weight may be a bi-criterion,

taking distance and cost into account, or a multi-criterion,

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

261

taking other parameters into account. Numerous

techniques attempt to solve the shortest path issue by

decreasing the considered factors to a single value; these

algorithms fall into types like two-phases algorithms [15],

kth shortest-path [16], label correction, and setting

algorithms[17]–[23], and others [23]–[28]. A subset of

these techniques is used in certain studies [29][30] to

locate pathways in local transportation networks. We have

already introduced a trip planning algorithm variation[31]

this algorithm ignores the weight criteria while checking

for all possible next transitions from the current and uses a

limit for the number of made transitions to find the best

route (trip plan). This trip planning algorithm can find the

possible trip plans without considering the timing factor.

However, some plans may be rejected due to time conflict

between the plan trips and the GTFS trips timetable or trip

unavailability at the time the user determines to start the

journey. Therefore, we must calculate and find the trips

time and transit accessibility as a next step.

 To calculate transit accessibility in spatiotemporal

dimensions, trip time for station pairs must be calculated at

any particular time of day, which is practically impossible

with a standard computer as it is time-consuming and

needs high computation power[32]Although previous

studies [33] introduce algorithms that try to calculate the

trip time and transit accessibility while reducing the time

complexity and computational power, there is still a need

to find an approach to simplify the complexity of such

problems solution and reduce the required time and

resources, what is the aim of this paper. Algorithms

enhancement is a common research topic[34]–[36]. The

contribution of this paper has two parts. First, we introduce

a new time validation algorithm that can find the timing

information for a trip plan or reject the plan if there is a

time conflict according to the trips timetable in the GTFS.

Second, we go beyond the algorithm enhancement and

propose RMH (Range Mapping Hash), which is a new

method that can find and extract the timing information for

any trip using GTFS data with O(2) time complexity. Our

new approach (RMH) eliminates the need for an algorithm

to search the GTFS timing records. We use Redis NoSQL

Hash to create RMH. Thus we provide a solution by

turning the problem of simplifying the existing algorithms

into a simple database interaction that can run even on a

stander computer. The idea is that for a route going

through a station, at any minute between the last going bus

and the next bus, the answer for the question "when is the

next bus time" will be the time of the next bus. The RMH

is applicable not only for the GTFS timing data but also

for improving the performance of similar problems, as we

describe later. We experiment with the performance of

RMH and compare it to run-time search algorithm

performance using arbitrary search input for 30 pairs of

origin and destination stops using the GTFS data of

Debrecen and Budapest. We implement the algorithm and

RMH as an open-source project using C# and Redis

available on https://github.com/mustafamajid/GTFS-

csharp. The project also includes our published trip

planning algorithm[31].

Next, we review our route planning algorithm and its

output data structure[31]. Then we introduce the time

validation algorithm, which will use this output to provide

the trip's timing information. Later, we introduce the RMH

approach and the Redis implementation. Finally, we list

our experiment's results and performance evaluation.

2- GTFS and Trip Planning

The GTFS data is a set of tables, usually in CSV file

format. There are three main objects in the GTFS: route,

trips, and stop [37]. The routes represent the pathway used

by the vehicle, a bus, tram, train, etc., and are usually

denoted by the vehicle name. The route visits a set of stops

in a specific sequence where the stop can be a bus or tram

stop or a train or subway station.

Planning a trip between two locations (the start and

destination) requires finding all possible single or

combinations of trips that can take the passenger from start

to destination points. Finding trip plans can be divided into

two steps. First, find all possible routes that can connect

the start to the destination point, and these will be the

candidate solutions list. Then find the trip's timing

information and check for any time conflict in the

candidate's plans. To understand the problem, we use

Figure 1 as an example of the GTFS data. The figure

shows three routes, A, B, and C going through a set of

stops denoted by circles with numbers. We consider that

the user wants to start the trip from stop 7 at 11:10:00

going to stop 6. Therefore, the candidate solutions will be

as follows: first, the user takes route C to stop 9 and then

takes route A from stop 9 to stop 6. The second solution is

that the user walks from stop 7 to stop 3 and then takes

route B to stop 6 if the distance is walkable [38]. The next

step is to validate the solution according to the timetable.

For the first solution, as in the figure, if the user starts at

11:07:00, 11:17:00, or 11:27:00, he will arrive to stop nine

at 11:35:00, 11:35:00, or 11:45:00, respectively. Thus, the

user will take the trip at 11:17:00 because it is the earlier

trip and then arrive at stop 9 at 11:35:00, where the next

trip using route A will be at 11:45:00 and reach the

destination at 12:05:00. In the same way, we can find the

time information for the second solution. As we mentioned

earlier, a solution can be rejected if there is a time conflict;

for example, the first solution may be rejected if there is

no outgoing trip using route A from stop 9 any time after

11:35:00.

Alzaidi & Vagner, Trip Timing Algorithm for GTFS Data with Redis Model to Improve the Performance

262

Fig 1. GTFS routes and stops example.

3- Find Trip Time Information

3-1- Data Structure

Finding trip plans according to the time is a complex

problem and needs computation power that is not provided

by standard computers [33]. For this work, we use the

output structure (the candidate solutions) provided by our

previously proposed trip routes planning algorithm [31] as

an input to introduce our new trip timing algorithm. Figure

2 shows the UML design of the trip routes planning

algorithm output with additional fields to store the time

data. The structure contains three main objects

Solution_LIST, PATH, and MOVE. Each MOVE

represents a single transition from a start-stop to an end-

stop using a route (e.g., a bus), and PATH denotes a trip

plan or solution containing at least one or more transitions

(MOVE) stored in a list called Way. The algorithm's final

output is a list of PATH called the Solution_List. The

MOVE_WITH_TIME class was inherited from the MOVE

class and contained the arrival and departure time fields.

Finally, a list of MOVE_WITH_TIME is added to the

PATH class called Way_With_Time. The task of the next

trip timing algorithm is to validate the PATH by checking

every MOVE object in its Way list. If time conflict is

found in any MOVE, the whole PATH will be rejected;

Otherwise, a new MOVE_WITH_TIME object will be

created from the current MOVE by adding the timing

fields. The newly created list of MOVE_WITH_TIME

objects will form the Way_With_Time list.

Fig 2. Algorithm data structure.

3-2- Algorithm

The stoptimes.txt file list a set of records for each trip;

each record contains stop ID, trip ID, trip arrival, and

departure time at that stops. The set of trips records is

present in the file ordered by trip ID and the arrival time.

Thus, if the file starts to list a trip that visits ten stops at

row number N, then the row N contains timing data about

the first stop, row N + 9 shows the data about the last stop

that the trip visits, and row N + 10 will list data for the

first stop of another new trip if any. Every PATH must be

checked by examining the MOVEs in its WAY list using

T's time. The stoptimes.txt file record is checked

sequentially to find the trip with the closest time to T.

Initially, T is set to the time determined by the user

(USER_TIME) to start the trip, and during the next

MOVEs check, T is set to the arrival time at the last

checked MOVE end stop. The check starts from the first

record in the stoptimes.txt until finding the first record (i)

with stop_id equal to the MOVE start_stop_id and with

the same route used by the MOVE and the departure time

is greater than T and one of the next record (i + j) in the

same trip with stop_id equal to the MOVE end_stop_id.

Where j is the number of intermediate stops, if such

records are found, a MOVE_WITH_TIME object is

created using the examined MOVE and record (i)

departure time as Start_time and record (i + j) arrival_time

as arrive time for the new MOVE_WITH_TIME object

and as the new T value for the next MOVE check. If no

such record is found in the stoptimes.txt file, then the

whole PATH is rejected and mentioned as an unacceptable

solution. The new resulting MOVE_WITH_TIME objects

are used to form a WAY_WITH_TIME list. Figure 3

shows the Trim timing algorithm that validates the MOVE

according to the trip's timing information. The algorithm

input is the start-stop from which the MOVE starts, the

end-stop where the MOVE ends, the route used to make

that MOVE, and the user's time. The algorithm output

must be the trip on that route with the nearest time to T.

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

263

Fig 3. Trip timing algorithm.

3-3- Time Complexity

Searching the stoptimes.txt file record is a time-consuming

process as any linear search, the algorithm performs a

linear search for timing information. Let N is the number

of records present in the stoptimes file. Then, the best case

is if the stop with time greater than T is at the stoptimes

file's first record. The worst case is O (N-1), and the

average case is O((N-1)/2). Thus, the algorithm time is

increased by increasing the number of records. We ignore

the number of records between the start and the end stops,

as this number is minimal compared to N.

4- Redis

Redis is a high-performance in-memory NoSQL database

written with C and worked on most POSIX platforms [39].

Redis is a message broker and session manager that stores

data in key-value pairs. An HTML page including its

resources may be serialized to a string and saved in a

Redis to enable a high-speed page load. Thus, software

organizations prefer Redis for its fast performance and

scalability. Strings, Lists, Sets, Hashes, and Sorted Sets are

the five data structures available in Redis. In this research,

we will depend only on the Hash structure. All our object

data will be converted to a string and concatenated before

being stored in the Redis Hashes. A wide range of

programming languages supports Redis. Each language

has its libraries and packages for communicating with and

manipulating the Redis server. In this project, we utilized

StackExchange.Redis, which can be installed using NuGet

Package Manager.

5- Range Mapping Hash (RMH)

We propose the RMH as a Redis model to avoid the time-

consuming liner data scanning by mapping the input

parameters to the output directly without any liner search

or scan using the power of hash structure in Redis. For

each route between any two stops, we need to map a route

and two stops ID and time T to the ID of the trip with the

nearest time to T on that route, the trip departure time at

the start-stop, and trip arrival time at the end stop. The

RMH consists of two structures. Both structures querying

results are combined to form the timing answer. We use a

Redis Hash structure for the implementation. The Hash

structure syntax has three-part, the KEY, which refers to

the Hash name, the FIELD that uniquely identifies a row

in the hash; and the VALUE. The HGET and HSET

commands are used to retrieve and insert data into Redis

Hash [39].

5-1- RMH Trip Departure Time Structure

The first structure is used to map the start-stop ID, route

ID, and Time (T) into the next trip's ID and time at this

stop using that route. For this structure, we create a Redis

hash for each stop route pair to store all trip visiting time

at the stop. The Hash KEY part will mention the stop ID

and the route ID separated by the "__" string. The FIELD

will contain the time to be examined and denote it as T.

The hash VALUE part holds the time of the next coming

trip according to T, and the trip ID, separated by the "__"

string. Figure 4 shows the trip time structure.

All this information is available in the stoptimes file

except the time (T). Any possible T value belongs to the

set of sharp minutes in the day. Thus a maximum of 1440

entries is needed to cover all the possibilities. For each

stop ID, route ID pair from the stoptimes data, and a time

T entry, the value field contains the time of the next

coming trip and the trip ID separated by "___". For

example, in Figure 4, we take route 10 and stop 1100905.

Three trips, 208,209, and 210 are listed in the stoptimes

file with departure times 11:44:00, 11:54:00, and 12:04:00.

At the first hash entry, where the T value is 11:43:00, the

answer (the Hash value field) shows the time 11:44:00 and

trip ID 208. For any value of T equal to or greater than

11:44:00, the answer will be trip 209 as its time is

11:54:00. When T is greater or equal to 11:54:00, the

answer will be trip 210 and its time 12:04:00.

Input: WAY a List of MOVE, USER_TIME.

OutPut: WAY_WITH_TIME as List of MOVE_WITH_TIME objects

Step1: T=USER_TIME , WAY_WITH_TIME = empty

Step2: ForEach MOVE M in WAY

Do Step4 To Step5

Step3: Set M_WITH_TIME =NULL,

Step4: For (i=0 ; i< Stoptimes.Length-2 ; i++)

IF(Stoptimes[i].stop_id == M.start_stop_id && Stoptimes[i].Route ==
M.route_id && Stoptimes[i].Departure_time >T) Then:

For (j=i+1 ; i< Stoptimes.Length-1 ; j++)

IF (Stoptimes[j].stop_id == M. end_stop_id)

M_WITH_TIME = MOVE_WITH_TIME (
M,Stoptimes[i].Derparture_time
Stoptimes[j].Arraival_time).

ADD M_WITH_TIME to WAY_WITH_TIME,

T= Stoptimes[j].Arrival_time

Goto Step2 check the next MOVE

Step5: IF M_WITH_TIME ==NULL Then:

Return FALS and Exit Else

Step6: Return WAY_WITH_TIME

Alzaidi & Vagner, Trip Timing Algorithm for GTFS Data with Redis Model to Improve the Performance

264

Fig 4. RMH trip departure time structure.

5-2- RHM Arrival Time Structure

After using the trip departure time structure, we have the

departure time from the start-stop and the trip ID. Finally,

we can find the end stop's arrival time using the end-stop

ID and the trip ID using the arrival time structure. Figure 5

shows the arrival time structure, a single Redis Hash for

each stop, to list all the trip arrival time combinations. The

KEY part of the Redis Hash is used to refer to stop using

the stop ID; the FIELD is used to refer to the trip ID,

where the VALUE stores the arrival time.

For example, in Figure 5, the trip planning algorithm

results in a MOVE with start-stop 1100905, end stop

1002315, and route 10. If the T value is 11:45:00, the

timing validation will work as follow: HGET statement

using the trip departure time structure is used to retrieve

the trip ID and the departure time from the start-stop. The

HGET KEY will be "1100905__10" (start-stop ID and the

route ID); the FIELD part is "11:45:00" (T). the returned

value from this HGET statement will be "11:54:00__209"

(the departure time and the trip ID), as shown in figure 8.

Now, the trip is known, and the end stop's arrival time is

the only missing part. Another HGET statement with KEY

is "1002315", and FIELD "209" is used with the arrival

time structure; the return value from this statement will be

"12:02:00 (the arrival time at the end stop) as shown in

Figure 9. If any of the two structures did not return a

match for the HGET command, the MOVE is rejected and

the whole PATH (path). Thus the total time complexity of

RMH formed by two Hash table read operations only. As

the time complexity for reading from a Hash structure is

O(1)[40], then RMH total complexity is O(2).

Fig 5. RHM arrival time structure.

6- Experiment and Results

6-1- Experiment Tool

We implement the trip timing algorithm as a C# project.

The project is a WinForm application (GUI) containing a

set of classes: GTFSData for loading and preprocessing

the GTFS data, Algorithm class contains the

implementation of our previously published trip planning

algorithm, TimeCalculator class contains the

implementation of the trip timing algorithm (trip timing),

Redis action class include the code for connecting to Redis

database load the data to Redis and retrieve the solution

and other classes. Figure 6 shows the UML design of the

main classes in the project.

We used the GetMovesWithTime() function from the

TimeCalculator class for this experiment, which takes a

MOVE list and start-time as a parameter and returns a

MOVE_WITH_TIME list. We calculate the execution

time for this function and compare it with the execution

time for reviving the timing information using the RMH

using the GetSolFromRedis() function from the

RedisAction class.

The GetMovesWithTime() illustrates the implementation

of the trip timing algorithm given earlier, whereas the

GetSolFromRedis() represents the interaction with the

Redis RMH model, which is implemented as mentioned

before. This function will retrive the same result returned

by the GetMovesWithTime() function (for the same

parameters). The Redis RMH serves in a similar way to a

data warehouse model where redundant data is stored and

utilized to serve the application purpose.

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

265

Fig 6.Test tool UML design.

6-2- Result

We experiment using RMH (Redis model) with Budapest

and Debrecen cities GTFS data for 30 random start and

end stop combinations. Each experiment finds the timing

data with and without using Redis (the RMH) and records

the time (in milliseconds) that the computer takes to

retrieve the result for each combination. Table 1 shows the

recorded results.

Table 1. Experiments results.

NO

Budapest

Without

Redis

Budapest

Using

Redis

Debrecen

Without

Redis

Debrecen

Using Redis

1 1202.4 8.368 1204.6 8.559

2 1305.4 8.238 1106.7 8.278

3 1105.2 8.38 908.2 8.48

4 1409.3 8.749 907.3 7.237

5 1408.4 8.198 904.1 8.107

6 1206.3 8.558 1008.1 7.848

7 1201.9 7.387 906.7 8.298

8 1106.3 7.938 909.4 6.897

9 1002.6 8.638 907.5 8.318

10 1402.3 8.727 906.3 8.278

11 1404.2 8.648 1009.8 8.67

12 1103.2 7.018 908.7 6.917

13 1107.1 7.449 1105.7 7.53

14 1303.4 7.418 1009.2 7.227

15 1324.1 8.027 1205.4 7.887

16 909.7 8.199 1204.2 8.509

17 1213 8.73 1004.5 7.488

18 908.5 8.319 1003.3 6.809

20 1308.7 7.679 1202.9 8.037

22 1408.4 6.829 1103.2 7.748

23 1203.8 6.839 1208.9 7.05

24 1304.8 8.307 1009.1 7.807

25 1303.5 8.678 907.7 6.909

26 1204.3 8.098 908.5 7.677

27 1305.1 7.099 1101.8 8.3

28 1001.1 7.697 901.8 8.437

29 1003.9 7.158 1001.2 8.047

30 1421.4 7.758 1202.4 6.849

Average 1219.89 7.985 1025.94 7.808

Figure 7 visualize the execution time difference between

the time taken for finding the timing information for a trip

using the run-time algorithm without Redis and the

execution time for retrieving the exact data for the same

pair of start and end stops using Redis. We can notice that

the run-time performance varies during the experiments,

around an average of 1219.89 milliseconds. Conversely,

Redis's execution time is more stable. It has ignorable

variation during the experiments, with an average of 7.985

Alzaidi & Vagner, Trip Timing Algorithm for GTFS Data with Redis Model to Improve the Performance

266

milliseconds forming a straight line in the chart close to

zero compared to the run-time performance.

Fig 7.Budapest data experiments result.

With Debrecen data, the experiment shows a similar

performance compared to Budapest experiments. The

average execution time is 7.808 milliseconds which is very

close to the execution time for Redis with Budapest data.

However, again, the experiments show notifiable variation

in the performance using the run-time algorithm. Figure 8

shows Debrecen data experiments' performance using

Redis and the run-time algorithm (without Redis).

Fig 8.Debrecen experiments result.

The experiments also show that the difference between

GTFS data size for the cities (Debrecen 1483 KB and

Budapest 42128 KB) affects the performance in the case

of run-time algorithm use. This effect can be clear if we

compare the average execution time with both cities' data,

as shown in Figure 9. We can notice that the average run-

time execution time increases with larger cities (in this

case, Budapest), while the data size has no effect in the

case of using Redis.

Fig 9.Experiments results average comparison.

7- Conclusions

In contemporary and Smart Cities, sharing transportation

data is crucial for a successful transportation system. As a

result, the necessity for a uniform format for

communicating transportation data has grown.

Transportation authority’s extensively use GTFS (General

Transit Feed Specification) across the globe as a standard

format for sharing and publishing data. In addition, trip

planning and computing transit accessibility are common

topics between researchers and transit organizations as

they can affect society's life and productivity. However,

computing transit accessibility and finding a trip plan with

timing information is complex and requires more

computation than a standard computer can provide.

Find a trip plan and transit accessibility consist of two

steps. First, find all possible routes that can lead from the

start to the destination, mark them as candidate solutions,

and then validate them according to the user time to start

the trip(start time) and the trip timetable in the GTFS. The

first part is done using the trip route planning algorithm,

and the second part is accomplished using the trip timing

algorithm. Also, they can be combined in one algorithm.

This work uses our already published trip planning

algorithm output as input to introduce a new trip timing

algorithm. The trip planning algorithm output is a set of

trip plans; each has one or more transitions. The trip

timing algorithm in this paper validates these transitions

by searching the trips to find the trip with the closest

departure time to the time T (where T initially is specified

by the user to start the trip) on the specified route.

Some researchers try to improve the time complexity of

trip planning and trip timing algorithms. We introduced

the Range Mapping Hash RMH as a Redis model that

provides fast access to the timing data and eliminates the

need to run the trip timing algorithm as it does the same

task with better performance.

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

267

The model contains two structures. The first structure can

map any route ID, start-stop ID, and the time T; to the next

going trip's ID, and the departure time at the start-stop.

The idea behind this method is that T can be any time

during the day with sharp minutes part. Thus, we have

1440 possible values for T during the day. We use a Redis

hash for the implementation. For each stop route

combination, we create a hash with 1440 entries such that

the key part will mention the stop ID and the route ID

separated by the string "__", the hash fields will hold the T

possible values, and the value field will hold the next

trip_ID and its departure time. If T falls between two trips'

departure times, then the answer (the value field) should

be the trip with a later departure time. If T is earlier than

the departure time of the first trip, then the answer will be

the first trip and its departure time. If T is later than the

departure time of the last trip in the GTFS data, then no

entry will be stored in the hash, and a null value will be

returned for such search, leading to rejecting the transition

and the plan, and in this case, we will have less than 1440

entries in the hash list. The second structure is a Redis

hash with the key part holding the destination stop ID, the

field part containing the trip ID goes through that stop, and

the value part containing the arrival time. Thus, both

structures can form answers for any trip timing request.

Both structures are Redis hash, and each can provide the

response within O(1) complexity. Thus, the RMH can

solve the timing problem with (2) complexity.

Using GTFS data from Budapest and Debrecen, we tested

the performance of RMH and the normal trip planning

algorithm using the same computation hardware and

software specifications. Experiments show that RHM can

provide better complexity than the time validation

algorithm. The experiments also show that RHM provides

consistent time independent of data size (city size) in

comparison to the run-time algorithm, where the

performance is decreased when the data size is increased.

In future work, the RMH can be applied to any similar

problem where the input can be divided into sets or ranges

with identical output. The RMH sacrifices the space to

provide better performance.

Acknowledgment

The work is supported by the EFOP-3.6.1-16-2016-00022

project. The project is co-nanced by the European Union

and the European Social Fund.

References
[1] T. Litman, “Integrating Public Health Objectives in

Transportation Decision-Making,” American Journal of

Health Promotion, vol. 18, no. 1, pp. 103–108, 2003, doi:

10.4278/0890-1171-18.1.103.

[2] T. Litman, “Exploring the Paradigm Shifts Needed To

Reconcile Transportation and Sustainability Objectives,”

Transp Res Rec, vol. 1670, no. 1, pp. 8–12, Jan. 1999, doi:

10.3141/1670-02.

[3] J. F. Sallis, L. D. Frank, B. E. Saelens, and M. K. Kraft,

“Active transportation and physical activity: opportunities

for collaboration on transportation and public health

research,” Transp Res Part A Policy Pract, vol. 38, no. 4,

pp. 249–268, 2004, doi:

https://doi.org/10.1016/j.tra.2003.11.003.

[4] T. Shannon, B. Giles-Corti, T. Pikora, M. Bulsara, T.

Shilton, and F. Bull, “Active commuting in a university

setting: Assessing commuting habits and potential for

modal change,” Transp Policy (Oxf), vol. 13, no. 3, pp.

240–253, 2006, doi:

https://doi.org/10.1016/j.tranpol.2005.11.002.

[5] A. Golub and K. Martens, “Using principles of justice to

assess the modal equity of regional transportation plans,” J

Transp Geogr, vol. 41, pp. 10–20, 2014, doi:

https://doi.org/10.1016/j.jtrangeo.2014.07.014.

[6] K. Martens, A. Golub, and G. Robinson, “A justice-

theoretic approach to the distribution of transportation

benefits: Implications for transportation planning practice

in the United States,” Transp Res Part A Policy Pract, vol.

46, no. 4, pp. 684–695, 2012, doi:

https://doi.org/10.1016/j.tra.2012.01.004.

[7] K. Coffel et al., “Guidelines for Providing Access to Public

Transportation Stations,” 2012.

[8] M. Catala, S. Dowling, and D. M. Hayward, “Expanding

the Google Transit Feed Specification to Support

Operations and Planning,” 2011.

[9] J. Wong, “Leveraging the General Transit Feed

Specification for Efficient Transit Analysis,”

Transportation Research Record: Journal of the

Transportation Research Board, vol. 2338, pp. 11–19,

Dec. 2013, doi: 10.3141/2338-02.

[10] J. Wong, L. Reed, K. Watkins, and R. Hammond, “Open

Transit Data: State of the Practice and Experiences from

Participating Agencies in the United States,” 2013.

[11] E. W. Dijkstra, “A note on two problems in connexion with

graphs,” Numer Math (Heidelb), vol. 1, no. 1, pp. 269–271,

1959, doi: 10.1007/BF01386390.

[12] R. Bellman, “On a routing problem,” Q Appl Math, vol. 16,

no. 1, pp. 87–90, 1958.

[13] R. W. Floyd, “Algorithm 97: Shortest path,” Commun

ACM, vol. 5, no. 6, p. 345, 1962, doi:

http://doi.acm.org/10.1145/367766.368168.

[14] D. B. Johnson, “Efficient Algorithms for Shortest Paths in

Sparse Networks,” J. ACM, vol. 24, no. 1, pp. 1–13, Jan.

1977, doi: 10.1145/321992.321993.

[15] J. Mote, I. Murthy, and D. L. Olson, “A parametric

approach to solving bicriterion shortest path problems,”

Eur J Oper Res, vol. 53, no. 1, pp. 81–92, 1991, doi:

https://doi.org/10.1016/0377-2217(91)90094-C.

[16] J. C. Namorado Climaco and E. Queirós Vieira Martins,

“A bicriterion shortest path algorithm,” Eur J Oper Res,

vol. 11, no. 4, pp. 399–404, 1982, doi:

https://doi.org/10.1016/0377-2217(82)90205-3.

[17] E. Q. V. Martins, “On a multicriteria shortest path

problem,” Eur J Oper Res, vol. 16, no. 2, pp. 236–245,

1984, doi: https://doi.org/10.1016/0377-2217(84)90077-8.

Alzaidi & Vagner, Trip Timing Algorithm for GTFS Data with Redis Model to Improve the Performance

268

[18] C. Tung Tung and K. Lin Chew, “A multicriteria Pareto-

optimal path algorithm,” Eur J Oper Res, vol. 62, no. 2, pp.

203–209, 1992, doi: https://doi.org/10.1016/0377-

2217(92)90248-8.

[19] J. Brumbaugh-Smith and D. Shier, “An empirical

investigation of some bicriterion shortest path algorithms,”

Eur J Oper Res, vol. 43, no. 2, pp. 216–224, 1989, doi:

https://doi.org/10.1016/0377-2217(89)90215-4.

[20] H. W. Corley and I. D. Moon, “Shortest Paths in Networks

with Vector Weights,” J. Optim. Theory Appl., vol. 46, no.

1, pp. 79–86, May 1985, doi: 10.1007/BF00938761.

[21] H. G. Daellenbach and C. A. De Kluyver, “Note on

Multiple Objective Dynamic Programming,” Journal of the

Operational Research Society, vol. 31, no. 7, pp. 591–594,

Jul. 1980, doi: 10.1057/jors.1980.114.

[22] A. J. V Skriver and K. Andersen, “A label correcting

approach for solving bicriterion shortest-path problems,”

Comput Oper Res, vol. 27, pp. 507–524, May 2000, doi:

10.1016/S0305-0548(99)00037-4.

[23] P. Dell’Olmo, M. Gentili, and A. Scozzari, “On Finding

Dissimilar Pareto-Optimal Paths,” Eur J Oper Res, vol.

162, pp. 70–82, Apr. 2005, doi:

10.1016/j.ejor.2003.10.033.

[24] E. Machuca, L. Mandow, and J. Cruz, “An evaluation of

heuristic functions for bicriterion shortest path problems,”

New Trends in Artificial Intelligence. Proceedings of

EPIA’09, Jan. 2009.

[25] L. Mandow and J. L. de la Cruz, “Frontier Search for

Bicriterion Shortest Path Problems,” in Proceedings of the

2008 Conference on ECAI 2008: 18th European

Conference on Artificial Intelligence, NLD: IOS Press,

2008, pp. 480–484.

[26] L. Mandow and J. L. Pérez de la Cruz, “Path recovery in

frontier search for multiobjective shortest path problems,”

J Intell Manuf, vol. 21, no. 1, pp. 89–99, 2010, doi:

10.1007/s10845-008-0169-2.

[27] R. Mart\’\i, J. Luis González Velarde, and A. Duarte,

“Heuristics for the Bi-Objective Path Dissimilarity

Problem,” Comput. Oper. Res., vol. 36, no. 11, pp. 2905–

2912, Nov. 2009, doi: 10.1016/j.cor.2009.01.003.

[28] A. Raith and M. Ehrgott, “A comparison of solution

strategies for biobjective shortest path problems,” Comput

Oper Res, vol. 36, pp. 1299–1331, Apr. 2009, doi:

10.1016/j.cor.2008.02.002.

[29] J. Widuch, “A Label Correcting Algorithm for the Bus

Routing Problem,” Fundam Inform, vol. 118, pp. 305–326,

Aug. 2012, doi: 10.3233/FI-2012-716.

[30] C.-L. Liu, T.-W. Pai, C.-T. Chang, and C.-M. Hsieh, “Path-

planning algorithms for public transportation systems,” in

ITSC 2001. 2001 IEEE Intelligent Transportation Systems.

Proceedings (Cat. No.01TH8585), 2001, pp. 1061–1066.

doi: 10.1109/ITSC.2001.948809.

[31] A. V. MUSTAFA ALZAIDI, “Trip Planning Algorithm

For Gtfs Data With Nosql Structure To Improve The

Performance,” J Theor Appl Inf Technol, vol. Vol.99. No,

no. 10 31st May 2021, pp. 2290–2300, May 2021.

[32] S. Farber, B. Ritter, and L. Fu, “Space–time mismatch

between transit service and observed travel patterns in the

Wasatch Front, Utah: A social equity perspective,” Travel

Behav Soc, vol. 4, pp. 40–48, 2016, doi:

https://doi.org/10.1016/j.tbs.2016.01.001.

[33] S. K. Fayyaz S., X. C. Liu, and G. Zhang, “An efficient

General Transit Feed Specification (GTFS) enabled

algorithm for dynamic transit accessibility analysis,” PLoS

One, vol. 12, no. 10, pp. e0185333-, Oct. 2017, [Online].

Available: https://doi.org/10.1371/journal.pone.0185333

[34] S. Motamed, A. Broumandnia, and A. Nourbakhsh,

“Multimodal biometric recognition using particle swarm

optimization-based selected features,” Journal of

Information Systems and Telecommunication, vol. 1, pp.

79–87, Mar. 2013, doi: 10.7508/jist.2013.02.002.

[35] P. Goli and M. M. R. KARAMI, “Speech Intelligibility

Improvement in Noisy Environments for Near-End

Listening Enhancement,” 2016.

[36] G. M. Saeed, H. B. N. Babak, and L. Mojtaba, “Achieving

Better Performance of S-MMA Algorithm in the OFDM

Modulation,” 2013.

[37] Q. Zervaas, The Definitive Guide to GTFS (Consuming

open public transportation data with the General Transit

Feed Specifcation), First Edit. 2014. [Online]. Available:

http://gtfsbook.com/gtfs-book-sample.pdf

[38] N. Amirah, D. Mohamad, and A. Hilmy, Acceptable

walking distance accessible to the nearest bus stop

considering the service coverage. 2021. doi:

10.1109/ICOTEN52080.2021.9493435.

[39] “Introduction to Redis – Redis.”

https://redis.io/topics/introduction (accessed Jan. 18, 2021).

[40] S. Tapia-Fernández, D. García-García, and P. García-

Hernandez, “Key Concepts, Weakness and Benchmark on

Hash Table Data Structures,” Algorithms, vol. 15, no. 3,

2022, doi: 10.3390/a15030100.

