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Abstract  
Accessing public transport plays an essential role in the daily life productivity of people in urban regions. Therefore, it is 

necessary to represent the spatiotemporal diversity of transit services to evaluate public transit accessibility appropriately. 

That can be accomplished by determining the shortest path or shortest travel time trip plan. Many applications like ArcGIS 

provide tools to estimate the trip time using GTFS data. They can perform well in finding travel time. Still, they can be 

computationally inefficient and impractical with increasing the data dimensions like searching all day time or in case of 

huge data. Some research proposed recently provides more computationally efficient algorithms to solve the problem. This 

paper presents a new algorithm to find the timing information for a trip plan between two start and destination points. Also, 

we introduce RMH (Range Mapping Hash) as a new approach using Redis NoSQL to find and calculate the accessibility of 

a trip plan with fixed time complexity of O(2) regardless of the city size (GTFS size). We experimented with the 

performance of this approach and compared it with the traditional run-time algorithm using GTFS data of Debrecen and 

Budapest. This Redis model can be applied to similar problems where input can be divided into ranges with the same output. 
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1- Introduction 

For two key reasons, public transportation accessibility has 

become a hot topic for scholars and transit organizations. 

First, improved transit accessibility promotes active 

transportation (such as walking and bicycling) while 

decreasing private vehicle use. As a result, it will enhance 

public health and reduce GHG emissions [1]–[4]. Second, 

transit-dependent people primarily rely on public 

transportation to reach key services (e.g., workplace, 

university, and shopping center). Thus, transit accessibility 

is crucial to attaining socioeconomic fairness[5], [6]. Also, 

transit accessibility research may help guide decisions 

about transportation investment and land use 

development[7]. 

 

GTFS stands for General Transit Feed Specification. It 

was developed by TriMet and Google in Portland [8]. 

Google announced transit feed specs in 2007, enabling 

transit agencies to develop and publish transit data online 

as open sources using the GTFS format. The feed rapidly 

became the most extensively used standard for exchanging 

static transit data in Canada and the United States [9] [10]. 

Additionally, the transit sector has embraced the GTFS 

format as a standard for communicating schedule data due 

to its expanding popularity. Subsequently, software such 

as OpenTripPlanner, GoogleMaps, and Bing Maps was 

developed and updated to use GTFS and provide services 

like, stop locations, timetables, and route planning. The 

trip (or route) planner is essential to these applications 

since it examines GTFS data for possible routes between 

two places, which is the most demanded service. 

 

Handling a user trip planning request requires two actions 

or steps. First, identifying all feasible pathways or routes 

between two places as candidate solutions; second, 

filtering and validating these solutions according to the 

user's schedule and start time. Route planning is more 

complex than identifying a path or route in a graph since it 

considers journeys, directions, and intermediate transfers 

between bus stops or stations. The shortest path of a graph 

is a frequent issue; various algorithms have been 

developed to solve it [11]–[14]. Depending on the factors 

used to calculate the weight of graph edges, the algorithm 

may be bi- or multi-criteria. For instance, if the graph 

edges depict roads, the road weight may be a bi-criterion, 

taking distance and cost into account, or a multi-criterion, 
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taking other parameters into account. Numerous 

techniques attempt to solve the shortest path issue by 

decreasing the considered factors to a single value; these 

algorithms fall into types like two-phases algorithms [15], 

kth shortest-path [16], label correction, and setting 

algorithms[17]–[23], and others [23]–[28]. A subset of 

these techniques is used in certain studies [29][30] to 

locate pathways in local transportation networks. We have 

already introduced a trip planning algorithm variation[31] 

this algorithm ignores the weight criteria while checking 

for all possible next transitions from the current and uses a 

limit for the number of made transitions to find the best 

route (trip plan). This trip planning algorithm can find the 

possible trip plans without considering the timing factor. 

However, some plans may be rejected due to time conflict 

between the plan trips and the GTFS trips timetable or trip 

unavailability at the time the user determines to start the 

journey. Therefore, we must calculate and find the trips 

time and transit accessibility as a next step. 

 

 To calculate transit accessibility in spatiotemporal 

dimensions, trip time for station pairs must be calculated at 

any particular time of day, which is practically impossible 

with a standard computer as it is time-consuming and 

needs high computation power[32]Although previous 

studies [33] introduce algorithms that try to calculate the 

trip time and transit accessibility while reducing the time 

complexity and computational power, there is still a need 

to find an approach to simplify the complexity of such 

problems solution and reduce the required time and 

resources, what is the aim of this paper. Algorithms 

enhancement is a common research topic[34]–[36]. The 

contribution of this paper has two parts. First, we introduce 

a new time validation algorithm that can find the timing 

information for a trip plan or reject the plan if there is a 

time conflict according to the trips timetable in the GTFS. 

Second, we go beyond the algorithm enhancement and 

propose RMH (Range Mapping Hash), which is a new 

method that can find and extract the timing information for 

any trip using GTFS data with O(2) time complexity. Our 

new approach (RMH) eliminates the need for an algorithm 

to search the GTFS timing records. We use Redis NoSQL 

Hash to create RMH. Thus we provide a solution by 

turning the problem of simplifying the existing algorithms 

into a simple database interaction that can run even on a 

stander computer. The idea is that for a route going 

through a station, at any minute between the last going bus 

and the next bus, the answer for the question "when is the 

next bus time" will be the time of the next bus. The RMH 

is applicable not only for the GTFS timing data but also 

for improving the performance of similar problems, as we 

describe later. We experiment with the performance of 

RMH and compare it to run-time search algorithm 

performance using arbitrary search input for 30 pairs of 

origin and destination stops using the GTFS data of 

Debrecen and Budapest. We implement the algorithm and 

RMH as an open-source project using C# and Redis 

available on https://github.com/mustafamajid/GTFS-

csharp. The project also includes our published trip 

planning algorithm[31]. 

Next, we review our route planning algorithm and its 

output data structure[31]. Then we introduce the time 

validation algorithm, which will use this output to provide 

the trip's timing information. Later, we introduce the RMH 

approach and the Redis implementation. Finally, we list 

our experiment's results and performance evaluation. 

2- GTFS and Trip Planning 

The GTFS data is a set of tables, usually in CSV file 

format. There are three main objects in the GTFS: route, 

trips, and stop [37]. The routes represent the pathway used 

by the vehicle, a bus, tram, train, etc., and are usually 

denoted by the vehicle name. The route visits a set of stops 

in a specific sequence where the stop can be a bus or tram 

stop or a train or subway station. 

 

Planning a trip between two locations (the start and 

destination) requires finding all possible single or 

combinations of trips that can take the passenger from start 

to destination points. Finding trip plans can be divided into 

two steps. First, find all possible routes that can connect 

the start to the destination point, and these will be the 

candidate solutions list. Then find the trip's timing 

information and check for any time conflict in the 

candidate's plans. To understand the problem, we use 

Figure 1 as an example of the GTFS data. The figure 

shows three routes, A, B, and C going through a set of 

stops denoted by circles with numbers. We consider that 

the user wants to start the trip from stop 7 at 11:10:00 

going to stop 6. Therefore, the candidate solutions will be 

as follows: first, the user takes route C to stop 9 and then 

takes route A from stop 9 to stop 6. The second solution is 

that the user walks from stop 7 to stop 3 and then takes 

route B to stop 6 if the distance is walkable [38]. The next 

step is to validate the solution according to the timetable. 

For the first solution, as in the figure, if the user starts at 

11:07:00, 11:17:00, or 11:27:00, he will arrive to stop nine 

at 11:35:00, 11:35:00, or 11:45:00, respectively. Thus, the 

user will take the trip at 11:17:00 because it is the earlier 

trip and then arrive at stop 9 at 11:35:00, where the next 

trip using route A will be at 11:45:00 and reach the 

destination at 12:05:00. In the same way, we can find the 

time information for the second solution. As we mentioned 

earlier, a solution can be rejected if there is a time conflict; 

for example, the first solution may be rejected if there is 

no outgoing trip using route A from stop 9 any time after 

11:35:00. 
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Fig 1. GTFS routes and stops example. 

3- Find Trip Time Information 

3-1- Data Structure 

Finding trip plans according to the time is a complex 

problem and needs computation power that is not provided 

by standard computers [33]. For this work, we use the 

output structure (the candidate solutions) provided by our 

previously proposed trip routes planning algorithm [31] as 

an input to introduce our new trip timing algorithm. Figure 

2 shows the UML design of the trip routes planning 

algorithm output with additional fields to store the time 

data. The structure contains three main objects 

Solution_LIST, PATH, and MOVE. Each MOVE 

represents a single transition from a start-stop to an end-

stop using a route (e.g., a bus), and PATH denotes a trip 

plan or solution containing at least one or more transitions 

(MOVE) stored in a list called Way. The algorithm's final 

output is a list of PATH called the Solution_List. The 

MOVE_WITH_TIME class was inherited from the MOVE 

class and contained the arrival and departure time fields. 

Finally, a list of  MOVE_WITH_TIME is added to the 

PATH class called Way_With_Time. The task of the next 

trip timing algorithm is to validate the PATH by checking 

every MOVE object in its Way list. If time conflict is 

found in any MOVE, the whole PATH will be rejected; 

Otherwise, a new MOVE_WITH_TIME object will be 

created from the current MOVE by adding the timing 

fields. The newly created list of MOVE_WITH_TIME 

objects will form the Way_With_Time list. 

 

Fig 2. Algorithm data structure. 

3-2- Algorithm 

The stoptimes.txt file list a set of records for each trip; 

each record contains stop ID, trip ID, trip arrival, and 

departure time at that stops. The set of trips records is 

present in the file ordered by trip ID and the arrival time. 

Thus, if the file starts to list a trip that visits ten stops at 

row number N, then the row N contains timing data about 

the first stop, row N + 9 shows the data about the last stop 

that the trip visits, and row N + 10 will list data for the 

first stop of another new trip if any. Every PATH must be 

checked by examining the MOVEs in its WAY list using 

T's time. The stoptimes.txt file record is checked 

sequentially to find the trip with the closest time to T. 

Initially, T is set to the time determined by the user 

(USER_TIME) to start the trip, and during the next 

MOVEs check, T is set to the arrival time at the last 

checked MOVE end stop. The check starts from the first 

record in the stoptimes.txt until finding the first record (i) 

with stop_id equal to the MOVE start_stop_id and with 

the same route used by the MOVE and the departure time 

is greater than T and one of the next record (i + j) in the 

same trip with stop_id equal to the MOVE end_stop_id. 

Where j is the number of intermediate stops, if such 

records are found, a MOVE_WITH_TIME object is 

created using the examined MOVE and record (i) 

departure time as Start_time and record (i + j) arrival_time 

as arrive time for the new MOVE_WITH_TIME object 

and as the new T value for the next MOVE check. If no 

such record is found in the stoptimes.txt file, then the 

whole PATH is rejected and mentioned as an unacceptable 

solution. The new resulting MOVE_WITH_TIME objects 

are used to form a WAY_WITH_TIME list. Figure 3 

shows the Trim timing algorithm that validates the MOVE 

according to the trip's timing information. The algorithm 

input is the start-stop from which the MOVE starts, the 

end-stop where the MOVE ends, the route used to make 

that MOVE, and the user's time. The algorithm output 

must be the trip on that route with the nearest time to T. 
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Fig 3. Trip timing algorithm. 

3-3- Time Complexity 

Searching the stoptimes.txt file record is a time-consuming 

process as any linear search, the algorithm performs a 

linear search for timing information. Let N is the number 

of records present in the stoptimes file. Then, the best case 

is if the stop with time greater than T is at the stoptimes 

file's first record. The worst case is O (N-1), and the 

average case is O((N-1)/2). Thus, the algorithm time is 

increased by increasing the number of records. We ignore 

the number of records between the start and the end stops, 

as this number is minimal compared to N. 

4- Redis 

Redis is a high-performance in-memory NoSQL database 

written with C and worked on most POSIX platforms [39]. 

Redis is a message broker and session manager that stores 

data in key-value pairs. An HTML page including its 

resources may be serialized to a string and saved in a 

Redis to enable a high-speed page load. Thus, software 

organizations prefer Redis for its fast performance and 

scalability. Strings, Lists, Sets, Hashes, and Sorted Sets are 

the five data structures available in Redis. In this research, 

we will depend only on the Hash structure. All our object 

data will be converted to a string and concatenated before 

being stored in the Redis Hashes. A wide range of 

programming languages supports Redis. Each language 

has its libraries and packages for communicating with and 

manipulating the Redis server. In this project, we utilized 

StackExchange.Redis, which can be installed using NuGet 

Package Manager. 

5- Range Mapping Hash (RMH) 

We propose the RMH as a Redis model to avoid the time-

consuming liner data scanning by mapping the input 

parameters to the output directly without any liner search 

or scan using the power of hash structure in Redis. For 

each route between any two stops, we need to map a route 

and two stops ID and time T to the ID of the trip with the 

nearest time to T on that route, the trip departure time at 

the start-stop, and trip arrival time at the end stop. The 

RMH consists of two structures. Both structures querying 

results are combined to form the timing answer. We use a 

Redis Hash structure for the implementation. The Hash 

structure syntax has three-part, the KEY, which refers to 

the Hash name, the FIELD that uniquely identifies a row 

in the hash; and the VALUE. The HGET and HSET 

commands are used to retrieve and insert data into Redis 

Hash [39]. 

5-1- RMH Trip Departure Time Structure 

The first structure is used to map the start-stop ID, route 

ID, and Time (T) into the next trip's ID and time at this 

stop using that route. For this structure, we create a Redis 

hash for each stop route pair to store all trip visiting time 

at the stop. The Hash KEY part will mention the stop ID 

and the route ID separated by the "__" string. The FIELD 

will contain the time to be examined and denote it as T. 

The hash VALUE part holds the time of the next coming 

trip according to T, and the trip ID, separated by the "__" 

string. Figure 4 shows the trip time structure. 

All this information is available in the stoptimes file 

except the time (T). Any possible T value belongs to the 

set of sharp minutes in the day. Thus a maximum of 1440 

entries is needed to cover all the possibilities. For each 

stop ID, route ID pair from the stoptimes data, and a time 

T entry, the value field contains the time of the next 

coming trip and the trip ID separated by "___". For 

example, in Figure 4, we take route 10 and stop 1100905. 

Three trips, 208,209, and 210 are listed in the stoptimes 

file with departure times 11:44:00, 11:54:00, and 12:04:00. 

At the first hash entry, where the T value is 11:43:00, the 

answer (the Hash value field) shows the time 11:44:00 and 

trip ID 208. For any value of T equal to or greater than 

11:44:00, the answer will be trip 209 as its time is 

11:54:00. When T is greater or equal to 11:54:00, the 

answer will be trip 210 and its time 12:04:00. 

Input: WAY a List of MOVE, USER_TIME. 

OutPut: WAY_WITH_TIME as List of MOVE_WITH_TIME objects 

Step1: T=USER_TIME , WAY_WITH_TIME = empty 

Step2: ForEach MOVE M in WAY 

Do Step4 To Step5 

Step3: Set M_WITH_TIME =NULL, 

Step4: For (i=0 ; i< Stoptimes.Length-2 ; i++) 

IF(Stoptimes[i].stop_id == M.start_stop_id && Stoptimes[i].Route == 
M.route_id && Stoptimes[i].Departure_time >T ) Then: 

For (j=i+1 ; i< Stoptimes.Length-1 ; j++) 

IF (Stoptimes[j].stop_id == M. end_stop_id) 

M_WITH_TIME = MOVE_WITH_TIME ( 
M,Stoptimes[i].Derparture_time 
Stoptimes[j].Arraival_time). 

ADD M_WITH_TIME to WAY_WITH_TIME, 

T= Stoptimes[j].Arrival_time 

Goto Step2 check the next MOVE 

Step5: IF M_WITH_TIME ==NULL Then: 

Return FALS and Exit Else 

Step6: Return WAY_WITH_TIME 
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Fig 4. RMH trip departure time structure. 

5-2- RHM Arrival Time Structure 

After using the trip departure time structure, we have the 

departure time from the start-stop and the trip ID. Finally, 

we can find the end stop's arrival time using the end-stop 

ID and the trip ID using the arrival time structure. Figure 5 

shows the arrival time structure, a single Redis Hash for 

each stop, to list all the trip arrival time combinations. The 

KEY part of the Redis Hash is used to refer to stop using 

the stop ID; the FIELD is used to refer to the trip ID, 

where the VALUE stores the arrival time.  

 

For example, in Figure 5, the trip planning algorithm 

results in a MOVE with start-stop 1100905, end stop 

1002315, and route 10. If the T value is 11:45:00, the 

timing validation will work as follow: HGET  statement 

using the trip departure time structure is used to retrieve 

the trip ID and the departure time from the start-stop. The 

HGET KEY will be "1100905__10" (start-stop ID and the 

route ID); the FIELD part is "11:45:00" (T). the returned 

value from this HGET statement will be "11:54:00__209" 

(the departure time and the trip ID), as shown in figure 8. 

Now, the trip is known, and the end stop's arrival time is 

the only missing part. Another HGET statement with KEY 

is "1002315", and FIELD "209" is used with the arrival 

time structure; the return value from this statement will be 

"12:02:00 (the arrival time at the end stop) as shown in 

Figure 9. If any of the two structures did not return a 

match for the HGET command, the MOVE is rejected and 

the whole PATH (path). Thus the total time complexity of 

RMH formed by two Hash table read operations only. As 

the time complexity for reading from a Hash structure is 

O(1)[40], then RMH total complexity is O(2). 

 

 

Fig 5. RHM arrival time structure. 

6- Experiment and Results 

6-1- Experiment Tool 

We implement the trip timing algorithm as a C# project. 

The project is a WinForm application (GUI) containing a 

set of classes: GTFSData for loading and preprocessing 

the GTFS data, Algorithm class contains the 

implementation of our previously published trip planning 

algorithm, TimeCalculator class contains the 

implementation of the trip timing algorithm (trip timing), 

Redis action class include the code for connecting to Redis 

database load the data to Redis and retrieve the solution 

and other classes. Figure 6 shows the UML design of the 

main classes in the project.  

 

We used the GetMovesWithTime( ) function from the 

TimeCalculator class for this experiment, which takes a 

MOVE list and start-time as a parameter and returns a 

MOVE_WITH_TIME list. We calculate the execution 

time for this function and compare it with the execution 

time for reviving the timing information using the RMH 

using the GetSolFromRedis( ) function from the 

RedisAction class. 

The GetMovesWithTime() illustrates the implementation 

of the trip timing algorithm given earlier, whereas the 

GetSolFromRedis() represents the interaction with the 

Redis RMH model, which is implemented as mentioned 

before. This function will retrive the same result returned 

by the GetMovesWithTime() function (for the same 

parameters). The Redis RMH serves in a similar way to a 

data warehouse model where redundant data is stored and 

utilized to serve the application purpose. 
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Fig 6.Test tool UML design. 

 

6-2- Result  

We experiment using RMH (Redis model) with Budapest 

and Debrecen cities GTFS data for 30 random start and 

end stop combinations. Each experiment finds the timing 

data with and without using Redis (the RMH) and records 

the time (in milliseconds) that the computer takes to 

retrieve the result for each combination. Table 1 shows the 

recorded results. 

 

Table 1. Experiments results. 

NO 

Budapest  

Without 

Redis 

 

Budapest  

Using 

Redis 

Debrecen  

Without 

Redis 

Debrecen  

Using Redis 

1 1202.4 8.368 1204.6 8.559 

2 1305.4 8.238 1106.7 8.278 

3 1105.2 8.38 908.2 8.48 

4 1409.3 8.749 907.3 7.237 

5 1408.4 8.198 904.1 8.107 

6 1206.3 8.558 1008.1 7.848 

7 1201.9 7.387 906.7 8.298 

8 1106.3 7.938 909.4 6.897 

9 1002.6 8.638 907.5 8.318 

10 1402.3 8.727 906.3 8.278 

11 1404.2 8.648 1009.8 8.67 

12 1103.2 7.018 908.7 6.917 

13 1107.1 7.449 1105.7 7.53 

14 1303.4 7.418 1009.2 7.227 

15 1324.1 8.027 1205.4 7.887 

16 909.7 8.199 1204.2 8.509 

17 1213 8.73 1004.5 7.488 

18 908.5 8.319 1003.3 6.809 

20 1308.7 7.679 1202.9 8.037 

22 1408.4 6.829 1103.2 7.748 

23 1203.8 6.839 1208.9 7.05 

24 1304.8 8.307 1009.1 7.807 

25 1303.5 8.678 907.7 6.909 

26 1204.3 8.098 908.5 7.677 

27 1305.1 7.099 1101.8 8.3 

28 1001.1 7.697 901.8 8.437 

29 1003.9 7.158 1001.2 8.047 

30 1421.4 7.758 1202.4 6.849 

Average 1219.89 7.985 1025.94 7.808 

 

Figure 7 visualize the execution time difference between 

the time taken for finding the timing information for a trip 

using the run-time algorithm without Redis and the 

execution time for retrieving the exact data for the same 

pair of start and end stops using Redis. We can notice that 

the run-time performance varies during the experiments, 

around an average of 1219.89 milliseconds. Conversely, 

Redis's execution time is more stable. It has ignorable 

variation during the experiments, with an average of 7.985 
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milliseconds forming a straight line in the chart close to 

zero compared to the run-time performance. 

 

 

Fig 7.Budapest data experiments result. 

With Debrecen data, the experiment shows a similar 

performance compared to Budapest experiments. The 

average execution time is 7.808 milliseconds which is very 

close to the execution time for Redis with Budapest data. 

However, again, the experiments show notifiable variation 

in the performance using the run-time algorithm. Figure 8 

shows Debrecen data experiments' performance using 

Redis and the run-time algorithm (without Redis). 

 

 

Fig 8.Debrecen experiments result. 

The experiments also show that the difference between 

GTFS data size for the cities ( Debrecen 1483 KB and 

Budapest 42128 KB) affects the performance in the case 

of run-time algorithm use. This effect can be clear if we 

compare the average execution time with both cities' data, 

as shown in Figure 9. We can notice that the average run-

time execution time increases with larger cities (in this 

case, Budapest), while the data size has no effect in the 

case of using Redis. 

 

Fig 9.Experiments results average comparison. 

7- Conclusions 

In contemporary and Smart Cities, sharing transportation 

data is crucial for a successful transportation system. As a 

result, the necessity for a uniform format for 

communicating transportation data has grown. 

Transportation authority’s extensively use GTFS (General 

Transit Feed Specification) across the globe as a standard 

format for sharing and publishing data. In addition, trip 

planning and computing transit accessibility are common 

topics between researchers and transit organizations as 

they can affect society's life and productivity. However, 

computing transit accessibility and finding a trip plan with 

timing information is complex and requires more 

computation than a standard computer can provide. 

Find a trip plan and transit accessibility consist of two 

steps. First, find all possible routes that can lead from the 

start to the destination, mark them as candidate solutions, 

and then validate them according to the user time to start 

the trip(start time) and the trip timetable in the GTFS. The 

first part is done using the trip route planning algorithm, 

and the second part is accomplished using the trip timing 

algorithm. Also, they can be combined in one algorithm. 

This work uses our already published trip planning 

algorithm output as input to introduce a new trip timing 

algorithm. The trip planning algorithm output is a set of 

trip plans; each has one or more transitions. The trip 

timing algorithm in this paper validates these transitions 

by searching the trips to find the trip with the closest 

departure time to the time T (where T initially is specified 

by the user to start the trip) on the specified route. 

 

Some researchers try to improve the time complexity of 

trip planning and trip timing algorithms. We introduced 

the Range Mapping Hash RMH as a Redis model that 

provides fast access to the timing data and eliminates the 

need to run the trip timing algorithm as it does the same 

task with better performance.  
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The model contains two structures. The first structure can 

map any route ID, start-stop ID, and the time T; to the next 

going trip's ID, and the departure time at the start-stop. 

The idea behind this method is that T can be any time 

during the day with sharp minutes part. Thus, we have 

1440 possible values for T during the day. We use a Redis 

hash for the implementation. For each stop route 

combination, we create a hash with 1440 entries such that 

the key part will mention the stop ID and the route ID 

separated by the string "__", the hash fields will hold the T 

possible values, and the value field will hold the next 

trip_ID and its departure time. If T falls between two trips' 

departure times, then the answer (the value field) should 

be the trip with a later departure time. If T is earlier than 

the departure time of the first trip, then the answer will be 

the first trip and its departure time. If T is later than the 

departure time of the last trip in the GTFS data, then no 

entry will be stored in the hash, and a null value will be 

returned for such search, leading to rejecting the transition 

and the plan, and in this case, we will have less than 1440 

entries in the hash list. The second structure is a Redis 

hash with the key part holding the destination stop ID, the 

field part containing the trip ID goes through that stop, and 

the value part containing the arrival time. Thus, both 

structures can form answers for any trip timing request. 

Both structures are Redis hash, and each can provide the 

response within O(1) complexity. Thus, the RMH can 

solve the timing problem with (2) complexity. 

Using GTFS data from Budapest and Debrecen, we tested 

the performance of RMH and the normal trip planning 

algorithm using the same computation hardware and 

software specifications. Experiments show that RHM can 

provide better complexity than the time validation 

algorithm. The experiments also show that RHM provides 

consistent time independent of data size (city size) in 

comparison to the run-time algorithm, where the 

performance is decreased when the data size is increased. 

In future work, the RMH can be applied to any similar 

problem where the input can be divided into sets or ranges 

with identical output. The RMH sacrifices the space to 

provide better performance. 
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