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Abstract  
The validation performance is obligatory to ensure the software reliability by determining the characteristics of an 

implemented software system. To ensure the reliability of software, not only detecting and solving occurred faults but also 

predicting the future fault is required. It is performed before any actual testing phase initiates. As a result, various works on 

software fault prediction have been done. In this paper presents, we present a software fault prediction model where 

different data transformation methods are applied with Poisson fault count data. For data pre-processing from Poisson data 

to Gaussian data, Box-Cox power transformation (Box-Cox_T), Yeo-Johnson power transformation (Yeo-Johnson_T), and 

Anscombe transformation (Anscombe_T) are used here. And then, to predict long-term software fault prediction, linear 

regression is applied. Linear regression shows the linear relationship between the dependent and independent variable 

correspondingly relative error and testing days. For synthesis analysis, three real software fault count datasets are used, 

where we compare the proposed approach with Naïve gauss, exponential smoothing time series forecasting model, and 

conventional method software reliability growth models (SRGMs) in terms of data transformation (With_T) and non-data 

transformation (Non_T). Our datasets contain days and cumulative software faults represented in (62, 133), (181, 225), and 

(114, 189) formats, respectively. Box-Cox power transformation with linear regression (L_Box-Cox_T) method, has 

outperformed all other methods with regard to average relative error from the short to long term. 
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1- Introduction 

In the modern era, the software acts as an essential part of 

our life. The software ensures the performance of our 

digital devices and helps to maintain our lifestyle, manage 

businesses, and so on. It has become impossible to pass 

even a single day without software usage in our daily life. 

When software is responsible for a massive operation, 

making a minor software fault, the entire system can 

collapse. For example, in 2018, a fully autonomous uber 

test car hit a pedestrian and accidentally killed her [1]. 

Because of the object detection software fault, the system 

failed to detect the human who was crossing the road with 

her bike. In addition, the Hawaii missile false alarm is 

another example of major suffering due to software failure 

[2]. Such incidents could have been avoided by reliable 

software with a software failure prediction system which is 

a popular approach in software engineering. 

The engineering approach of systematic application 

development can be defined as the term, software 

engineering. The test effort, optimal cost analysis, 

correction prediction, security, effort, reusability, and 

quality-related prediction are a few vital parts issues of 

software engineering. To find a versatile method of 

prediction analysis further research is still going on in this 

area. On the other hand, to ensure software reliability, 

software fault prediction performance has to make sure. 

Software reliability is the probability of failure-free 

software. Long-term software failure can detect the 

possibility of a software failure so that impact of the 

failure can be minimized by taking necessary steps and 

precautions [3]. 

The development of software is expected to be perfect. 

However, it is impracticable to design and develop 
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software with 100% accuracy and dependability. From a 

previous study, already it has been established that 

proficiency of fault prediction is caused due to the lack of 

proper evaluation criteria of performance and different 

fault distribution in a fault dataset [4]. But day by day the 

importance of software fault prediction has gained lot of 

attention because of the capability of providing faults 

number as well as the occurrence pattern of a certain 

system.  Subsequently, it is also helpful for the quality 

assurance team as it can reduce testing time and cost. 

The purpose of the software fault prediction is to identify 

the fault before sending it to the testing phase in the basis 

of software structural characteristics. In addition, to ensure 

software quality, professional stakeholders use prediction 

systems for optimal cost and effort during the operational 

phases. In this regard, we focused on the long-term 

software fault prediction using a linear regression method. 

Besides that, we have compared the model with Naïve 

gauss, exponential smoothing time series forecasting 

model, and two existing software reliability growth models 

name log extreme minimum (SRGM_LEM) [5] and pareto 

(SRGM_Pareto) [6]. Besides that, we have used software 

fault count data instead of fault detection time data 

because of the availability and the usefulness. Furthermore, 

three real data sets have been used for this study and the 

three most popular data transformations Box-Cox_T, Yeo-

Johnson_T as well as Anscombe_T methods have been 

applied for the Poisson data into Gaussian data. 

The organization of the rest of the paper is as follows: the 

related study is explained with conventional NHPP-based 

SRGMs in Section 2. Then in Section 3, the system 

architecture is described with suitable figures associated 

with data pre-processing techniques and forecasting 

models. The fault prediction with the proposed 

methodology is presented in Section 4. After that, Section 

5 represents the experimental illustration assist with 

system setup, performance measurement, and result 

analysis. Finally, the paper concludes with future direction 

in Section 6. 

2- Related Works 

Various works have been done and are still going on in 

this field to predict faults of software to ensure reliability. 

Software reliability growth models (SRGMs) are one of 

the oldest with some limitations, such as the maximum 

likelihood estimation requires high computation power, 

and from a large number of SRGMs, researchers get 

confused to select the suitable model for every software 

data [3]. Nowadays, another popular classification method 

is an artificial neural network (ANN) with 

backpropagation (BP) learning algorithms used in software 

fault prediction [5], [67], [8]. 

Recently, Begum et al. proposed a robust prediction 

interval method using a refined artificial intelligence 

approach, where 5 data transformation methods are used 

for pre-processing and compared with the traditional 

method SRGMs [9]. They have constructed prediction 

intervals using their proposed method, and performance 

analysis is conducted by coverage rate and mean 

prediction interval width as well as compared with the 

existing delta method. However, the architecture of neural 

networks is complex; as a result, computation time is very 

high. The same author has related works [10–13] based on 

multilayer perceptron to address optimal software release 

problems.  

Furthermore, the paper [14] presented a neuro base 

software fault prediction method using the Box-Cox 

transformation scheme. They have also investigated the 

optimal value of transformation parameter λ in case of 

average relative errors. Subsequently, they compared their 

result with traditional SRGMs and showed that their 

method outperformed in the early testing phase. On the 

other hand, multiplayer neural network architecture is used 

for identifying optimal software testing time [15]. For 

underlying software fault count, they have also pre-

processed the data using a well-known data transformation 

technique. Where experimental result was conducted from 

four (4) actual software fault count data. 

In [16] a study showed a study about software fault 

prediction and the different components and parameters of 

software fault prediction. Then the paper focused on the 

accomplishment in this area as well as recent research 

trends. In addition, they have discussed major future 

challenges of software fault prediction. But the advantage 

and disadvantage of recent studies has not prevailed. 

Different software fault prediction technique [17]–[20] 

have been proposed previously but none of those fully fills 

the long-term software fault prediction criteria as well as 

could not provide enough quality assurance resources and 

logistics. 

Recently semantic long short-term memory (LSTM) 

network is used to train a model that can be self-directed 

to identify fault prediction and performed on real projects 

where the proposed model outperformed state-of-the-art 

approaches of fault prediction [21], [22]. After that, for 

finding fault in real life, a deep learning-based fault 

prediction model is presented in [23]. Which matches the 

abstract of source code syntax tree representation based on 

tree structure LSTM. They have evaluated their model 

using Samsung and a public PROMISE repo dataset. Then 

in a study [34], author estimate the reliability improvement 

that the recently suggested SDAFlex&Rel software 

development methodology, which aims to create reliable 

but flexible software, promises. By laying the groundwork 

for formal modelling, refinement, and verification which 

in turn avoid and eliminate possible faults, that method 

increases the dependability of software. 
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On the other hand, Deepak and Pravin introduced object-

oriented metrics that are used for main factor findings [24]. 

In, Diego J. Pedregal [25] presents a paper where a few 

time series forecasting methods such as regression, Naïve 

methods, ARIMA, Transfer Functions, VAR(X), 

exponential smoothing (ETS), unobserved components 

(UC) models are used to develop a user-friendly graphical 

interface tool based on MATLAB for automatic outlier 

identification and detection. Also, a regression technique 

is applied for prediction analysis which provides a 

different approach for the software prediction process. For 

example, the linear regression method is used in optical 

network fault tracing to reduce high cost and fault 

detection time cited in [26].  

In this paper, we presented different transformation 

methods as pre-processing for the real dataset and applied 

linear regression, Naïve Gauss, and exponential smoothing 

time series forecasting methods to predict software faults. 

Finally compared the outcome from various perspectives 

with existing popular SRGMs. 

2-1- Non-Homogeneous Poisson Process-based 

SRGM 

Let the group number of software fault represented by G(t) 

at time t. Suppose (i) G(0) = 0, (ii) G(t) has independent 

increments, (iii) Pro[G(t+q)- G(t) ≥ 2] = O(q),  (iv) 

Pro[G(t+q)- G(t) =1] = λ(t; Ө)q+O(q), Here, non-

homogeneous Poisson process(NHPP) intensity function is 

λ(t; Ө), Ө is the parameter of the model and infinitesimal 

time q higher term is O(q). So that, probability of G(t) = y 

is calculated by, 

 

   [ ( )   ]  
 (   ) 

  
    [  (   )] (1) 

 

where mean value function is, 
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By estimating model parameter Ө, mean value function 

λ(t;Ө)  or Λ(t;Ө) can be specified the NHPP, regarded as 

parametric SRGMs. In [32], using SRATS model 

parameter can be estimated. After finding model parameter, 

the mean value function of random time t_(n+1) presented 

below: 
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here, l represents the length of prediction and    denotes 

cumulative fault for n-th testing days. For log extreme 

minimum (SRGM_LEM) [5] and pareto (SRGM_Pareto) 

[6], the equation are:  
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3- System Architecture of Proposed Model 

The system architecture of the proposed model is shown in 

Figure 1, where the best method is highlighted in bold. As 

we know the fault count data is Poisson count data and 

used as an integer value in the software fault prediction so 

the underlying data requires to be transformed from 

Poisson to the Gaussian data in advance. The real data 

noted by Data Set are passed into the pre-processing state 

where categorized; With_T and Non_T. With_T represents 

pre-processed data by the well-known transformation 

methods; Box-Cox_T, Anscombe_T and Yeo-Johnson_T. 

Non_T define the non-transformed data. The methodology 

has two categories; linear regression and time series 

forecasting. Where Naïve Gauss, and exponential 

smoothing method of time series forecasting is used. 

Furthermore, two popular SRGMs; SRGM_LEM and 

SRGM_Pareto is applied to justify the accuracy. After 

that, the result is sent to Inverse_Trans state for inverse 

transformation. For determining better accuracy of long-

term software fault prediction, we have compared linear 

regression with Naïve gauss, exponential smoothing 

methods, and SRGMs in terms of average and relative 

error. 

 

3-1- Pre-Processing 

In the pre-processing stage, we have tested software fault 

data for both cases, with and without data transformation. 

In the case of transformation, Box-Cox [27], Anscombe 

[28], and Yeo-Johnson [29] methods are used in both 

linear regression and time series forecasting. In case of 

linear regression, L_Box-Cox_T, L_Anscombe_T, and 

L_Yeo-Johnson_T represent Box-Cox, Anscomb and Yeo-

Johnson respectively. Besides that, two time series 

forecasting Naïve gauss and exponential smoothing are 

represented as NG_Box-Cox_T, NG_Anscomb_T, 

NG_Yeo-Johnson_T, ES_Box-Cox_T, ES_Anscomb_T 

and ES_Yeo-Johnson_T sequentially.  
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Researcher Box and Cox develop Box-Cox power 

transformation (Box-Cox_T) to transform data into normal 

shapes for determining the appropriate value of a variable 

λ. It is used for transforming from arbitrary random data to 

Gaussian data. But the value of variable λ is difficult to 

find using log transformation. Additionally, when the data 

is reverted from transformed to the original state, it always 

provides a median prediction. 

 

 

Fig. 1 System architecture of the proposed method. 

Another power transformation operator, which is an 

extension of Box-Cox_T, Yeo-Johnson transformation 

(Yeo-Johnson_T), is applied to transform the original data 

into normally distributed numbers. and useful method. 

Where the distribution is far from Gaussian, distribution is 

skewed more often. Yeo-Johnson_T is another useful 

method to handle those data and make them normal 

(Gaussian). 
 

Table 1: Data Transformation Formulae. 

 

 

The Anscombe transform (Anscombe_T) is a variance 

stabilizing transformation in statistics that converts a 

random variable with a Poisson distribution into one with 

a Gaussian distribution that is approximately standard. In 

photon-limited imaging (astronomy, X-ray), where images 

naturally obey the Poisson law, it is also commonly 

employed. In Table 1, different transformation and inverse 

transformation equations for Box-Cox_T, Anscombe_T, 

and Yeo-Johnson_T methods are shown. Where input i, 

denotes the cumulative number of software faults detected 

at i (1, 2, 3, … n)-th testing day, output [ l =1,2,3,…], l is 

the length of prediction. After that, the data inverse 

transformation formula is used for the final predictive 

output. When λ=2, Yeo Johnson_T showed ambiguous 

results so we have to exclude that. 
 

3-2- Forecasting Models 

In machine learning, we are required to form predictive 

outcomes based on different rules, attributes, and patterns 

from the provided data set. In addition, regression is a 

well-known method for generating predictive outcomes as 

a numeric value from given datasets between multiple 

independent and one targeted single dependent variable. In 

this paper, we have tested both the transformed and non-

transformed dataset in our system using linear regression 

and time series forecasting methods, such as Naïve gauss 

and exponential smoothing [30].  

Naïve gauss is a sophisticated forecasting model where the 

last outcome is used as the current predictive value and is 

widely used for economic and financial time series-related 

analysis [30] Additionally, another commonly used 

predictor model is Exponential Smoothing, where 

prediction is made via an exponentially weighted average 

of previous observations. 

Among different regression models, linear regression is 

one of the easiest [31], most widely used methods for 

predictive analysis and checks whether the set of variables 

generates a better outcome with dependent variables or 

not. As a supervised method, here, an independent variable 

(assume x) is given, and the linear regression predicts a 

suitable dependent variable (assume y) and finds out linear 

relations between those variables. Let the specific set of 

input values xi (i =1, 2, 3,…n) where n denotes the number 

of input and the predicted output for the set of input 

variables by yi.  

In our software fault data, ti, xi denotes the number of 

testing days and a cumulative number of software faults, 

respectively. So, without loss of generality, the linear 

regression equation combines a specific set (ti, xi) 

represented by (yi, xi). Hence, the input and predicted 

output are in numeric value. Suppose that the input 

variable is (xi= x1, x2, x3 ,…xn) and the parameters of the 

model are β i = [β0, β1, β2,… βn]. After that, the 

prediction model would be:  

 

      ∑       

 

   

 (7) 
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If xi increases to (xi= 1, x1, x2, x3 ,...xn) after that, yi would 

be a parameter of dot product and an independent variable 

that is 

 

      ∑       

 

   

  ⃗  ⃗  (8) 

 

Apart from the algebra equation of the straight line, let the 

slope be ―m‖ then the equation become 

 

       (9) 

 

Then if the slope is ―a‖ for the linear regression, the 

equation become 

 

       (10) 

 

Where b is the y-axis intercept and a is the slope, then we 

can easily find the value of the coefficient of a, b, 
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In the cases, where the coefficient is zero, the effect of 

input variable xi eliminates the model's effectiveness; 

therefore, the predicted output will be (0 * x = 0). It has a 

consequence with the regularization method so that 

learning algorithms of regression models decrease the 

complexity of the algorithm by putting pressure on the size 

of the coefficient. 

4- Fault Prediction through Proposed 

Methodology 

For software fault prediction, we have to use the 
previous fault data to predict next faults. In our proposed 
system, we have applied linear regression, naïve gauss and 
exponential smoothing time series forecasting model. For 
theorical better understanding we have illustrated the 
configuration of our training and prediction scheme in 
Figure 2 where the x-axis shows the time and y-axis shows 
the number of faults In the training phase (0, n), after pre-
processing, processed input data xi, [i=1,2,3,…, n] and 
output yn+l, [ l =1,2,3…] where prediction length l=5, 10, 
15.To predict the cumulative number of software faults for 
l testing days from the training point tn, the prediction has 

to be made for the n+l days. In this scheme, with given λ 

the Box-Cox, Yeo-Johnson and Anscombe transformations 
transformed data (x1, x2, …, xn ) are used for the input, and 

the predicted fault (yn+1, yn+2, … ,  yn+l ) are used for the 
evaluation in the prediction phase. 

 
Fig. 2 Training and prediction scheme. 

 

               (13) 

 

In the equation of linear regression (13), the coefficient of 

a and b are generated from equation (11) and (12). 

However, it is not necessary to train all the unknown 

patterns in principle by linear regression. 

 

         (14) 

 

where xn is processed input at n-th testing days. Equation 

(13) represents Naïve gauss [31]. 

 

         (   )   (15) 

 

Where,   is the smoothing constant (0.25, 0.5, 0.75, 1) and 

yn is the predictive software fault at n-th testing days. 

Exponential smoothing is presented in equation (15). 

5- Experimental Setup and Results Analysis 

5-1- Experimental Setup 

We have used three real project datasets cited in the 

reference [33]; DS_1, DS_2, and DS_3, which contain 

days and cumulative software fault (grouped) shown in 

Table 2.  

DS_1 contains 62 days, cumulative software fault 133 and 

the project type is ―command and control subsystem‖. 

Then the ―command and data subsystem‖ type project data 

is used in DS_2 and DS_3 where the cumulative number 

of faults is 225 and 189 for 181 days and 114 days 

respectively. In the datasets, the length of total training 

and testing of software faults are given by(10X5), 

(20X10), (30X10), (40X15). Here, (10X5) means ten 

inputs, five defined as short and in (40X15) architecture 

presents forty inputs, fifteen predicted outputs which 

represented as long time prediction, respectively.  
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Table 2: Structure of the Data Set in Study. 

 

Dataset Number of 

Days 

Number 

of Faults 

Type of the project 

DS_1 62 133 Command and 

Control subsystem 

DS_2 181 225 Command and Data 

subsystem 

DS_3 114 189 Command and Data 

subsystem 

 

To find out the desired output via the linear regression, 

naïve model, and exponential smoothing model, we have 

implemented our proposed system in python and used 

NumPy’s for pre-processing the data. In Figure 3, the X-

axis represents testing days, and the Y-axis shows a 

cumulative number of software faults. Where the data set 

DS_1, DS_2 and DS_3 is represented using different 

colours (red, purple and green). 

 

 
Fig. 3 Dataset Structure 

5-2- Performance Measurement Criterion 

To measure the performance of the system, we have 

followed two criteria: average error and relative error. 

Average error represents a degree to which a group of 

incorrect values with respect to absolute value. In addition, 

the relative error is a ratio of absolute error and actual 

error. For n-th testing day, the observation point is given 

tn. Here (n - l ) software fault counts data are used for 

training in linear regression models. The prediction model 

is measured by the average error. 

 

    
∑    
 
   

 
 (16) 

 

where REs is called the relative error for the future time t 

=n + s and is given by 

 

    |
 ̃        

 ̃   
| (17) 

 

Here,  ̃    is actual software fault and      is predicted 

software fault at (n+s)-th testing days. So, we regard the 

prediction model with smaller AE as a better prediction 

model. 

5-3- Result Analysis 

For better understanding, we have analysed the proposed 

result and then compared it with other time series 

forecasting models (Naïve, Exponential Smoothing) and 

SRGMs. Figure 4 shows the comparative graphical results 

where the relative error is shown on the Y-axis with 

respect to testing days on the X-axis, and the length of the 

prediction is 15 days based on linear regression. In the 

datasets DS_1 and DS_3, L_Box-Cox_T (when λ=1) 

shows less error, whereas in DS_2, L_Anscombe_T is 

better, and L_Non_T gives the worst condition in all the 

cases. In the figure, all the behavior of the data 

transformation in the case of relative error is shown in 

different colors such as, red with a square representing 

shows L_Anscombe_T, light green with a triangle 

representing L_Non_T, L_Box-Cox_T represented in sky 

blue color with a diamond sign and the L_Yeo -Johnson_T 

is showed in violet with a cross symbol. In the DS_1, 

L_Non_T and L_Yeo -Johnson_T continuously changed 

the states while the L_Box-Cox_T showed stable and 

comparatively less error. In addition, furthermore, in 

DS_2, the worst result was provided by the L_Non_T on 

the other hand other methods showed the average result. 

Furthermore, L_Box_Cox_T clearly outperformed all 

other methods in DS_3. 

In Table 3, prediction performance results of software 

fault based on average error (AE) for three datasets 

denoted as DS_1, DS_2, and DS_3, respectively. Here, the 

architecture represents the number of input and predicted 

output. From the data table, we can say that for different 

values of λ, L_Box-Cox_T showed better results. In the 

10X5 architecture, for both DS_2 and DS_3, L_Box-

Cox_T was preferable, but in DS_1, L_Yeo-Johnson_T 

performed better. Besides that, L_Box-Cox_T 

outperformed other methods in 20X10 architecture for all 

datasets and in DS_1 and DS_3 for 40X15 architecture. 

Exceptionally in 30X10 architecture, the L_Box-Cox_T, 

L_Yeo-Johnson_T as well Non_T give less error in DS_2, 

but in DS_1 L_Yeo-Johnson_T and in DS_3 

L_Anscombe_T was better. The best performance of every 

architecture is highlighted in bold text. Comparison of 

AEs for the naïve gauss and exponential smoothing time 

series forecasting model considering the three datasets is 

shown Table 4 and Table 5.  
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(a) 

 
(b) 

 
(c) 

Fig. 4 Behavior of relative error with linear regression when l=15 for (a) 

DS_1, (b) DS_2, (c) DS_3. 

 

By analyzing the data, we got that naïve gauss provides 

better result than exponential smoothing in every data set. 

To be mentioned that, when   = 1, Box-Cox and the Yeo-

Johnson transformed data provides same error. In addition, 

usually, whenever we have increased the input days, then 

the result showed an improved outcome (shown in 40X15 

architecture). But the linear regression model for all 

architecture has shown superior predictive results than the 

time series forecasting models. 

 

 

 
Table 3: Comparison of AEs for linear Regression Model with Different 

Transformation Methods. 

Arch

itectu

re 

Transformati

on Method 

Value 

of λ 
DS_1 DS_2 DS_3 

10X5 

L_Box-

Cox_T 

0.5 0.6330 0.4296 0.3160 

1 0.7236 0.6142 0.1526 

2 1.6462 0.7844 0.3904 

L_Anscombe

_T 
- 0.6682 0.4592 0.3256 

L_Yeo-

Johnson_T 

0 0.3440 0.9122 2.1502 

1 0.9236 0.7646 0.1975 

L_Non_T - 1.1236 0.6142 0.3526 

20X1

0 

L_Box-

Cox_T 

0.5 2.8586 0.7093 0.3983 

1 1.2853 0.1631 0.6625 

2 0.3592 0.1543 0.8293 

L_Anscombe

_T 
- 2.8256 0.6618 0.4263 

L_Yeo-

Johnson_T 

0 5.4305 1.2803 1.6912 

1 1.0853 0.1584 0.6846 

L_Non_T - 1.2853 0.1631 0.6625 

30X1

0 

L_Box-

Cox_T 

0.5 0.9270 0.3523 0.2743 

1 0.6003 0.3034 0.4853 

2 1.6852 0.6728 0.8468 

L_Anscombe

_T 
- 0.8992 0.3089 0.2525 

L_Yeo-

Johnson_T 

0 8.3375 2.3368 2.1974 

1 0.6000 0.3034 0.4853 

L_Non_T - 0.6867 0.3034 0.4853 

40X1

5 

L_Box-

Cox_T 

0.5 1.4036 0.3351 1.2571 

1 0.0411 0.1764 0.1380 

2 1.1772 0.9081 0.1415 

L_Anscombe

_T 
- 0.1866 0.1031 1.2107 

L_Yeo-

Johnson_T 

0 7.4240 2.4961 0.9557 

1 0.3202 0.2077 0.3477 

L_Non_T - 0.3096 0.4596 0.5941 

 

Table 4: Comparison of AEs for Naïve Gauss Model with Different 

Transformation Methods. 

Archit

ecture 

Transform

ation 

Method 

Value 

of λ 
DS_1 DS_2 DS_3 

10X5 

NG_Box-

Cox_T 

0.5 5.1018 5.9957 11.2750 

1 9.7363 
11.321

3 
20.3810 

2 17.8097 
20.270

2 
42.9644 

NG_Ansco

mbe_T 
- 4.9690 5.8260 10.3004 

NG_Yeo-

Johnson_T 

0 2.9077 4.3616 11.4400 

1 9.7363 
11.321

3 
20.3810 

20X10 
NG_Box-

Cox_T 

0.5 1.8409 1.6517 3.8768 

1 3.5839 3.2436 7.4225 
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2 6.8030 6.2574 26.9249 

NG_Ansco

mbe_T 
- 1.4830 1.6263 3.7993 

NG_Yeo-

Johnson_T 

0 0.8928 0.9966 2.5400 

1 3.5839 3.2436 7.4225 

30X10 

NG_Box-

Cox_T 

0.5 1.0929 2.1003 1.1349 

1 2.1679 4.1139 2.2350 

2 4.2653 7.8961 13.0742 

NG_Ansco

mbe_T 
- 1.2691 2.0781 1.1212 

NG_Yeo-

Johnson_T 

0 0.4916 1.1539 0.6425 

1 2.1679 4.1139 2.2350 

40X15 

NG_Box-

Cox_T 

0.5 1.1487 0.8004 1.3202 

1 2.2689 1.5627 2.5800 

2 4.4279 2.9826 7.0538 

NG_Ansco

mbe_T 
- 1.2033 0.7945 1.3086 

NG_Yeo-

Johnson_T 

0 0.4886 0.4067 0.6954 

1 2.2689 1.5627 2.5800 

 

Comparison of two SRGMs, SRGM_Pareto and 

SRGM_LEM for the same three dataset is presented in 

Table 6. After getting the mean value function using 

Equation (5) and (6), we have calculated long term 

prediction by Equation (4). SRGM_Pareto performed well 

in the 10X5 architecture however the SRGM_Pareto 

provided superior result for DS_2 and DS_3 in all other 

architectures. 

In Table 7, the best method according to AEs from linear 

regression (Table 3), time series forecasting (Table 4 and 

Table 5) and SRGMs (Table 6) is presented. Linear 

regression with transformation performed comparatively 

better result than the other models. Then to be more 

specific, Box-Cox transformation with linear regression 

(L_Box-Cox_T) outrun all others. Notwithstanding, 

SRGMs showed good performance in 30X10 architecture. 

Subsequently, among the three datasets, only in one case, 

architecture 40X15 L_Anscombe_T offers superior results 

than other data models. From the result, we can also 

observe that the traditional method L_Non_T has not 

shown better results in any cases. 

 
Table 5: Comparison of AEs for Exponential Smoothing model with 

different transformation methods. 

Arch

itect

ure 

Transform

ation 

Method 

Value 

of λ 
DS_1 DS_2 DS_3 

10X5 

ES_Box-

Cox_T 

0.5 6.8332 7.7045 15.0115 

1 12.8170 14.4343 26.2358 

2 22.7536 25.4941 26.2358 

ES_Anscom

be_T 
- 7.1665 7.4876 13.5335 

ES_Yeo-

Johnson_T 

0 3.9619 5.6239 15.4431 

1 12.8171 14.4345 20.3810 

20X1

0 

ES_Box-

Cox_T 

0.5 2.2531 2.1116 5.1992 

1 4.3536 4.1366 9.8457 

2 8.1509 7.9421 7.4225 

ES_Anscom

be_T 
- 1.7020 2.0790 5.0920 

ES_Yeo-

Johnson_T 

0 1.0996 1.2775 2.5412 

1 4.3536 4.1366 2.3970 

30X1

0 

ES_Box-

Cox_T 

0.5 1.5773 2.7959 1.7096 

1 3.0995 5.4466 3.3406 

2 5.9938 10.3474 7.4225 

ES_Anscom

be_T 
- 1.9551 2.7662 1.6887 

ES_Yeo-

Johnson_T 

0 0.7176 1.5450 1.6425 

1 3.0995 5.4466  

40X1

5 

ES_Box-

Cox_T 

0.5 1.5464 1.0887 1.6128 

1 3.0418 2.1135 3.1425 

2 5.8889 3.9919 2.2350 

ES_Anscom

be_T 
- 1.6053 1.0805 1.5985 

ES_Yeo-

Johnson_T 

0 0.6603 0.5561 1.6954 

1 3.0418 2.1135 2.5800 

 
Table 6: Comparison of AEs for SRGMs with Different Transformation 

Methods. 

Architect

ure 

SRGM 

Model 
DS_1 DS_2 DS_3 

10X5 

SRGM_LE

M 
1.4259 4.7747 14.4099 

SRGM_Pare

to 
1.2472 0.9279 1.5445 

20X10 

 

SRGM_LE

M 
0.4354 1.00171 1.2371 

SRGM_Pare

to 
0.6770 0.3921 0.2609 

30X10 

SRGM_LE

M 
0.2005 0.4511 0.4904 

SRGM_Pare

to 
0.4054 0.2425 0.1474 

40X15 

SRGM_LE

M 
0.1128 0.1948 0.3073 

SRGM_Pare

to 
0.2814 0.1423 0.1242 

Table 7:  Best Method based on AEs (Among linear Regression and Time 
Series Forecasting and SRGMs.) 

Archite

cture 
DS_1 DS_2 DS_3 

10X5 L_Yeo-Johnson_T L_Box-Cox_T L_Box-Cox_T 

20X10 L_Box-Cox_T L_Box-Cox_T SRGM _Pareto 

30X10 SRGM_LEM SRGM_Pareto SRGM_Pareto 

40X15 L_Box-Cox_T L_Anscombe_T SRGM_Pareto 

6- Conclusion 

In this paper, we have presented a long-term software fault 

prediction model based on linear regression with data 

transformation. In our model, we have pre-processed three 

actual software development project datasets with three 
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different transformation methods. Through a 

comprehensive analysis with non-transformation, time 

series forecasting method and conventional SGRMs, it has 

been shown that linear regression with Box-Cox (L_Box-

Cox_T) could work well to predict the software fault in 

short time prediction. On the other hand, SRGM_Pareto 

showed better result for 30X10 architecture. Additionally, 

when we have increased input testing days for long-term 

prediction the relative errors have decreased. As a result, 

linear regression-based model was much attractive, though 

SGRMs are used often for long term software fault 

prediction. For further development, we will study to find 

an optimal value of λ for Box-Cox and Yeo-Johnson 

power transformation. Moreover, we will construct the 

prediction interval for better accuracy by well-known 

methods and apply our method in experimental or 

simulation data using Monte Carlo simulation methods for 

better prediction. 
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