

 Jia Uddin

jia.uddin@wsu.ac.kr

Journal of Information Systems and Telecommunication
Vol.11, No.3, July-September 2023, 222-231

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

1
.Department of Computer Science and Engineering, Dhaka University of Engineering & Technology, Gazipur-1707,

Dhaka, Bangladesh;
2
.Department of Computer Science and Engineering, International University of Business Agriculture and Technology

3
.AI and Big Data Department, Endicott College, Woosong University, Daejeon, South Korea

Received: 12 Apr 2022/ Revised: 04 Sep 2022/ Accepted: 27 Oct 2022

Abstract
The validation performance is obligatory to ensure the software reliability by determining the characteristics of an

implemented software system. To ensure the reliability of software, not only detecting and solving occurred faults but also

predicting the future fault is required. It is performed before any actual testing phase initiates. As a result, various works on

software fault prediction have been done. In this paper presents, we present a software fault prediction model where

different data transformation methods are applied with Poisson fault count data. For data pre-processing from Poisson data

to Gaussian data, Box-Cox power transformation (Box-Cox_T), Yeo-Johnson power transformation (Yeo-Johnson_T), and

Anscombe transformation (Anscombe_T) are used here. And then, to predict long-term software fault prediction, linear

regression is applied. Linear regression shows the linear relationship between the dependent and independent variable

correspondingly relative error and testing days. For synthesis analysis, three real software fault count datasets are used,

where we compare the proposed approach with Naïve gauss, exponential smoothing time series forecasting model, and

conventional method software reliability growth models (SRGMs) in terms of data transformation (With_T) and non-data

transformation (Non_T). Our datasets contain days and cumulative software faults represented in (62, 133), (181, 225), and

(114, 189) formats, respectively. Box-Cox power transformation with linear regression (L_Box-Cox_T) method, has

outperformed all other methods with regard to average relative error from the short to long term.

Keywords: Software Reliability; Software Faults; Forecasting; Long Term Prediction; Relative Error.

1- Introduction

In the modern era, the software acts as an essential part of

our life. The software ensures the performance of our

digital devices and helps to maintain our lifestyle, manage

businesses, and so on. It has become impossible to pass

even a single day without software usage in our daily life.

When software is responsible for a massive operation,

making a minor software fault, the entire system can

collapse. For example, in 2018, a fully autonomous uber

test car hit a pedestrian and accidentally killed her [1].

Because of the object detection software fault, the system

failed to detect the human who was crossing the road with

her bike. In addition, the Hawaii missile false alarm is

another example of major suffering due to software failure

[2]. Such incidents could have been avoided by reliable

software with a software failure prediction system which is

a popular approach in software engineering.

The engineering approach of systematic application

development can be defined as the term, software

engineering. The test effort, optimal cost analysis,

correction prediction, security, effort, reusability, and

quality-related prediction are a few vital parts issues of

software engineering. To find a versatile method of

prediction analysis further research is still going on in this

area. On the other hand, to ensure software reliability,

software fault prediction performance has to make sure.

Software reliability is the probability of failure-free

software. Long-term software failure can detect the

possibility of a software failure so that impact of the

failure can be minimized by taking necessary steps and

precautions [3].

The development of software is expected to be perfect.

However, it is impracticable to design and develop

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

223

software with 100% accuracy and dependability. From a

previous study, already it has been established that

proficiency of fault prediction is caused due to the lack of

proper evaluation criteria of performance and different

fault distribution in a fault dataset [4]. But day by day the

importance of software fault prediction has gained lot of

attention because of the capability of providing faults

number as well as the occurrence pattern of a certain

system. Subsequently, it is also helpful for the quality

assurance team as it can reduce testing time and cost.

The purpose of the software fault prediction is to identify

the fault before sending it to the testing phase in the basis

of software structural characteristics. In addition, to ensure

software quality, professional stakeholders use prediction

systems for optimal cost and effort during the operational

phases. In this regard, we focused on the long-term

software fault prediction using a linear regression method.

Besides that, we have compared the model with Naïve

gauss, exponential smoothing time series forecasting

model, and two existing software reliability growth models

name log extreme minimum (SRGM_LEM) [5] and pareto

(SRGM_Pareto) [6]. Besides that, we have used software

fault count data instead of fault detection time data

because of the availability and the usefulness. Furthermore,

three real data sets have been used for this study and the

three most popular data transformations Box-Cox_T, Yeo-

Johnson_T as well as Anscombe_T methods have been

applied for the Poisson data into Gaussian data.

The organization of the rest of the paper is as follows: the

related study is explained with conventional NHPP-based

SRGMs in Section 2. Then in Section 3, the system

architecture is described with suitable figures associated

with data pre-processing techniques and forecasting

models. The fault prediction with the proposed

methodology is presented in Section 4. After that, Section

5 represents the experimental illustration assist with

system setup, performance measurement, and result

analysis. Finally, the paper concludes with future direction

in Section 6.

2- Related Works

Various works have been done and are still going on in

this field to predict faults of software to ensure reliability.

Software reliability growth models (SRGMs) are one of

the oldest with some limitations, such as the maximum

likelihood estimation requires high computation power,

and from a large number of SRGMs, researchers get

confused to select the suitable model for every software

data [3]. Nowadays, another popular classification method

is an artificial neural network (ANN) with

backpropagation (BP) learning algorithms used in software

fault prediction [5], [67], [8].

Recently, Begum et al. proposed a robust prediction

interval method using a refined artificial intelligence

approach, where 5 data transformation methods are used

for pre-processing and compared with the traditional

method SRGMs [9]. They have constructed prediction

intervals using their proposed method, and performance

analysis is conducted by coverage rate and mean

prediction interval width as well as compared with the

existing delta method. However, the architecture of neural

networks is complex; as a result, computation time is very

high. The same author has related works [10–13] based on

multilayer perceptron to address optimal software release

problems.

Furthermore, the paper [14] presented a neuro base

software fault prediction method using the Box-Cox

transformation scheme. They have also investigated the

optimal value of transformation parameter λ in case of

average relative errors. Subsequently, they compared their

result with traditional SRGMs and showed that their

method outperformed in the early testing phase. On the

other hand, multiplayer neural network architecture is used

for identifying optimal software testing time [15]. For

underlying software fault count, they have also pre-

processed the data using a well-known data transformation

technique. Where experimental result was conducted from

four (4) actual software fault count data.

In [16] a study showed a study about software fault

prediction and the different components and parameters of

software fault prediction. Then the paper focused on the

accomplishment in this area as well as recent research

trends. In addition, they have discussed major future

challenges of software fault prediction. But the advantage

and disadvantage of recent studies has not prevailed.

Different software fault prediction technique [17]–[20]

have been proposed previously but none of those fully fills

the long-term software fault prediction criteria as well as

could not provide enough quality assurance resources and

logistics.

Recently semantic long short-term memory (LSTM)

network is used to train a model that can be self-directed

to identify fault prediction and performed on real projects

where the proposed model outperformed state-of-the-art

approaches of fault prediction [21], [22]. After that, for

finding fault in real life, a deep learning-based fault

prediction model is presented in [23]. Which matches the

abstract of source code syntax tree representation based on

tree structure LSTM. They have evaluated their model

using Samsung and a public PROMISE repo dataset. Then

in a study [34], author estimate the reliability improvement

that the recently suggested SDAFlex&Rel software

development methodology, which aims to create reliable

but flexible software, promises. By laying the groundwork

for formal modelling, refinement, and verification which

in turn avoid and eliminate possible faults, that method

increases the dependability of software.

Begum, Rony, Islam & Uddin, Long-Term Software Fault Prediction Model with Linear Regression and Data Transformation

224

On the other hand, Deepak and Pravin introduced object-

oriented metrics that are used for main factor findings [24].

In, Diego J. Pedregal [25] presents a paper where a few

time series forecasting methods such as regression, Naïve

methods, ARIMA, Transfer Functions, VAR(X),

exponential smoothing (ETS), unobserved components

(UC) models are used to develop a user-friendly graphical

interface tool based on MATLAB for automatic outlier

identification and detection. Also, a regression technique

is applied for prediction analysis which provides a

different approach for the software prediction process. For

example, the linear regression method is used in optical

network fault tracing to reduce high cost and fault

detection time cited in [26].

In this paper, we presented different transformation

methods as pre-processing for the real dataset and applied

linear regression, Naïve Gauss, and exponential smoothing

time series forecasting methods to predict software faults.

Finally compared the outcome from various perspectives

with existing popular SRGMs.

2-1- Non-Homogeneous Poisson Process-based

SRGM

Let the group number of software fault represented by G(t)

at time t. Suppose (i) G(0) = 0, (ii) G(t) has independent

increments, (iii) Pro[G(t+q)- G(t) ≥ 2] = O(q), (iv)

Pro[G(t+q)- G(t) =1] = λ(t; Ө)q+O(q), Here, non-

homogeneous Poisson process(NHPP) intensity function is

λ(t; Ө), Ө is the parameter of the model and infinitesimal

time q higher term is O(q). So that, probability of G(t) = y

is calculated by,

 [()]
 ()

 [()] (1)

where mean value function is,

 () ∫ ()

 (2)

By estimating model parameter Ө, mean value function

λ(t;Ө) or Λ(t;Ө) can be specified the NHPP, regarded as

parametric SRGMs. In [32], using SRATS model

parameter can be estimated. After finding model parameter,

the mean value function of random time t_(n+1) presented

below:

 (̂) ∫ (̂)

(3)

 (() ̂) ∫ (̂)

 (̂) (̂) (4)

here, l represents the length of prediction and denotes

cumulative fault for n-th testing days. For log extreme

minimum (SRGM_LEM) [5] and pareto (SRGM_Pareto)

[6], the equation are:

 () (()) ()

 () ([(

)])

(5)

 () () ()

 () (

) (6)

3- System Architecture of Proposed Model

The system architecture of the proposed model is shown in

Figure 1, where the best method is highlighted in bold. As

we know the fault count data is Poisson count data and

used as an integer value in the software fault prediction so

the underlying data requires to be transformed from

Poisson to the Gaussian data in advance. The real data

noted by Data Set are passed into the pre-processing state

where categorized; With_T and Non_T. With_T represents

pre-processed data by the well-known transformation

methods; Box-Cox_T, Anscombe_T and Yeo-Johnson_T.

Non_T define the non-transformed data. The methodology

has two categories; linear regression and time series

forecasting. Where Naïve Gauss, and exponential

smoothing method of time series forecasting is used.

Furthermore, two popular SRGMs; SRGM_LEM and

SRGM_Pareto is applied to justify the accuracy. After

that, the result is sent to Inverse_Trans state for inverse

transformation. For determining better accuracy of long-

term software fault prediction, we have compared linear

regression with Naïve gauss, exponential smoothing

methods, and SRGMs in terms of average and relative

error.

3-1- Pre-Processing

In the pre-processing stage, we have tested software fault

data for both cases, with and without data transformation.

In the case of transformation, Box-Cox [27], Anscombe

[28], and Yeo-Johnson [29] methods are used in both

linear regression and time series forecasting. In case of

linear regression, L_Box-Cox_T, L_Anscombe_T, and

L_Yeo-Johnson_T represent Box-Cox, Anscomb and Yeo-

Johnson respectively. Besides that, two time series

forecasting Naïve gauss and exponential smoothing are

represented as NG_Box-Cox_T, NG_Anscomb_T,

NG_Yeo-Johnson_T, ES_Box-Cox_T, ES_Anscomb_T

and ES_Yeo-Johnson_T sequentially.

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

225

Researcher Box and Cox develop Box-Cox power

transformation (Box-Cox_T) to transform data into normal

shapes for determining the appropriate value of a variable

λ. It is used for transforming from arbitrary random data to

Gaussian data. But the value of variable λ is difficult to

find using log transformation. Additionally, when the data

is reverted from transformed to the original state, it always

provides a median prediction.

Fig. 1 System architecture of the proposed method.

Another power transformation operator, which is an

extension of Box-Cox_T, Yeo-Johnson transformation

(Yeo-Johnson_T), is applied to transform the original data

into normally distributed numbers. and useful method.

Where the distribution is far from Gaussian, distribution is

skewed more often. Yeo-Johnson_T is another useful

method to handle those data and make them normal

(Gaussian).

Table 1: Data Transformation Formulae.

The Anscombe transform (Anscombe_T) is a variance

stabilizing transformation in statistics that converts a

random variable with a Poisson distribution into one with

a Gaussian distribution that is approximately standard. In

photon-limited imaging (astronomy, X-ray), where images

naturally obey the Poisson law, it is also commonly

employed. In Table 1, different transformation and inverse

transformation equations for Box-Cox_T, Anscombe_T,

and Yeo-Johnson_T methods are shown. Where input i,

denotes the cumulative number of software faults detected

at i (1, 2, 3, … n)-th testing day, output [l =1,2,3,…], l is

the length of prediction. After that, the data inverse

transformation formula is used for the final predictive

output. When λ=2, Yeo Johnson_T showed ambiguous

results so we have to exclude that.

3-2- Forecasting Models

In machine learning, we are required to form predictive

outcomes based on different rules, attributes, and patterns

from the provided data set. In addition, regression is a

well-known method for generating predictive outcomes as

a numeric value from given datasets between multiple

independent and one targeted single dependent variable. In

this paper, we have tested both the transformed and non-

transformed dataset in our system using linear regression

and time series forecasting methods, such as Naïve gauss

and exponential smoothing [30].

Naïve gauss is a sophisticated forecasting model where the

last outcome is used as the current predictive value and is

widely used for economic and financial time series-related

analysis [30] Additionally, another commonly used

predictor model is Exponential Smoothing, where

prediction is made via an exponentially weighted average

of previous observations.

Among different regression models, linear regression is

one of the easiest [31], most widely used methods for

predictive analysis and checks whether the set of variables

generates a better outcome with dependent variables or

not. As a supervised method, here, an independent variable

(assume x) is given, and the linear regression predicts a

suitable dependent variable (assume y) and finds out linear

relations between those variables. Let the specific set of

input values xi (i =1, 2, 3,…n) where n denotes the number

of input and the predicted output for the set of input

variables by yi.

In our software fault data, ti, xi denotes the number of

testing days and a cumulative number of software faults,

respectively. So, without loss of generality, the linear

regression equation combines a specific set (ti, xi)

represented by (yi, xi). Hence, the input and predicted

output are in numeric value. Suppose that the input

variable is (xi= x1, x2, x3 ,…xn) and the parameters of the

model are β i = [β0, β1, β2,… βn]. After that, the

prediction model would be:

 ∑

 (7)

Begum, Rony, Islam & Uddin, Long-Term Software Fault Prediction Model with Linear Regression and Data Transformation

226

If xi increases to (xi= 1, x1, x2, x3 ,...xn) after that, yi would

be a parameter of dot product and an independent variable

that is

 ∑

 ⃗ ⃗ (8)

Apart from the algebra equation of the straight line, let the

slope be ―m‖ then the equation become

 (9)

Then if the slope is ―a‖ for the linear regression, the

equation become

 (10)

Where b is the y-axis intercept and a is the slope, then we

can easily find the value of the coefficient of a, b,

(∑

)(∑

) (∑

)(∑

)

 (∑

) (∑

)

(11)

 (∑

) (∑

)(∑

)

 (∑

) (∑

)

(12)

In the cases, where the coefficient is zero, the effect of

input variable xi eliminates the model's effectiveness;

therefore, the predicted output will be (0 * x = 0). It has a

consequence with the regularization method so that

learning algorithms of regression models decrease the

complexity of the algorithm by putting pressure on the size

of the coefficient.

4- Fault Prediction through Proposed

Methodology

For software fault prediction, we have to use the
previous fault data to predict next faults. In our proposed
system, we have applied linear regression, naïve gauss and
exponential smoothing time series forecasting model. For
theorical better understanding we have illustrated the
configuration of our training and prediction scheme in
Figure 2 where the x-axis shows the time and y-axis shows
the number of faults In the training phase (0, n), after pre-
processing, processed input data xi, [i=1,2,3,…, n] and
output yn+l, [l =1,2,3…] where prediction length l=5, 10,
15.To predict the cumulative number of software faults for
l testing days from the training point tn, the prediction has

to be made for the n+l days. In this scheme, with given λ

the Box-Cox, Yeo-Johnson and Anscombe transformations
transformed data (x1, x2, …, xn) are used for the input, and

the predicted fault (yn+1, yn+2, … , yn+l) are used for the
evaluation in the prediction phase.

Fig. 2 Training and prediction scheme.

 (13)

In the equation of linear regression (13), the coefficient of

a and b are generated from equation (11) and (12).

However, it is not necessary to train all the unknown

patterns in principle by linear regression.

 (14)

where xn is processed input at n-th testing days. Equation

(13) represents Naïve gauss [31].

 () (15)

Where, is the smoothing constant (0.25, 0.5, 0.75, 1) and

yn is the predictive software fault at n-th testing days.

Exponential smoothing is presented in equation (15).

5- Experimental Setup and Results Analysis

5-1- Experimental Setup

We have used three real project datasets cited in the

reference [33]; DS_1, DS_2, and DS_3, which contain

days and cumulative software fault (grouped) shown in

Table 2.

DS_1 contains 62 days, cumulative software fault 133 and

the project type is ―command and control subsystem‖.

Then the ―command and data subsystem‖ type project data

is used in DS_2 and DS_3 where the cumulative number

of faults is 225 and 189 for 181 days and 114 days

respectively. In the datasets, the length of total training

and testing of software faults are given by(10X5),

(20X10), (30X10), (40X15). Here, (10X5) means ten

inputs, five defined as short and in (40X15) architecture

presents forty inputs, fifteen predicted outputs which

represented as long time prediction, respectively.

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

227

Table 2: Structure of the Data Set in Study.

Dataset Number of

Days

Number

of Faults

Type of the project

DS_1 62 133 Command and

Control subsystem

DS_2 181 225 Command and Data

subsystem

DS_3 114 189 Command and Data

subsystem

To find out the desired output via the linear regression,

naïve model, and exponential smoothing model, we have

implemented our proposed system in python and used

NumPy’s for pre-processing the data. In Figure 3, the X-

axis represents testing days, and the Y-axis shows a

cumulative number of software faults. Where the data set

DS_1, DS_2 and DS_3 is represented using different

colours (red, purple and green).

Fig. 3 Dataset Structure

5-2- Performance Measurement Criterion

To measure the performance of the system, we have

followed two criteria: average error and relative error.

Average error represents a degree to which a group of

incorrect values with respect to absolute value. In addition,

the relative error is a ratio of absolute error and actual

error. For n-th testing day, the observation point is given

tn. Here (n - l) software fault counts data are used for

training in linear regression models. The prediction model

is measured by the average error.

∑

 (16)

where REs is called the relative error for the future time t

=n + s and is given by

 |
 ̃

 ̃
| (17)

Here, ̃ is actual software fault and is predicted

software fault at (n+s)-th testing days. So, we regard the

prediction model with smaller AE as a better prediction

model.

5-3- Result Analysis

For better understanding, we have analysed the proposed

result and then compared it with other time series

forecasting models (Naïve, Exponential Smoothing) and

SRGMs. Figure 4 shows the comparative graphical results

where the relative error is shown on the Y-axis with

respect to testing days on the X-axis, and the length of the

prediction is 15 days based on linear regression. In the

datasets DS_1 and DS_3, L_Box-Cox_T (when λ=1)

shows less error, whereas in DS_2, L_Anscombe_T is

better, and L_Non_T gives the worst condition in all the

cases. In the figure, all the behavior of the data

transformation in the case of relative error is shown in

different colors such as, red with a square representing

shows L_Anscombe_T, light green with a triangle

representing L_Non_T, L_Box-Cox_T represented in sky

blue color with a diamond sign and the L_Yeo -Johnson_T

is showed in violet with a cross symbol. In the DS_1,

L_Non_T and L_Yeo -Johnson_T continuously changed

the states while the L_Box-Cox_T showed stable and

comparatively less error. In addition, furthermore, in

DS_2, the worst result was provided by the L_Non_T on

the other hand other methods showed the average result.

Furthermore, L_Box_Cox_T clearly outperformed all

other methods in DS_3.

In Table 3, prediction performance results of software

fault based on average error (AE) for three datasets

denoted as DS_1, DS_2, and DS_3, respectively. Here, the

architecture represents the number of input and predicted

output. From the data table, we can say that for different

values of λ, L_Box-Cox_T showed better results. In the

10X5 architecture, for both DS_2 and DS_3, L_Box-

Cox_T was preferable, but in DS_1, L_Yeo-Johnson_T

performed better. Besides that, L_Box-Cox_T

outperformed other methods in 20X10 architecture for all

datasets and in DS_1 and DS_3 for 40X15 architecture.

Exceptionally in 30X10 architecture, the L_Box-Cox_T,

L_Yeo-Johnson_T as well Non_T give less error in DS_2,

but in DS_1 L_Yeo-Johnson_T and in DS_3

L_Anscombe_T was better. The best performance of every

architecture is highlighted in bold text. Comparison of

AEs for the naïve gauss and exponential smoothing time

series forecasting model considering the three datasets is

shown Table 4 and Table 5.

Begum, Rony, Islam & Uddin, Long-Term Software Fault Prediction Model with Linear Regression and Data Transformation

228

(a)

(b)

(c)

Fig. 4 Behavior of relative error with linear regression when l=15 for (a)

DS_1, (b) DS_2, (c) DS_3.

By analyzing the data, we got that naïve gauss provides

better result than exponential smoothing in every data set.

To be mentioned that, when = 1, Box-Cox and the Yeo-

Johnson transformed data provides same error. In addition,

usually, whenever we have increased the input days, then

the result showed an improved outcome (shown in 40X15

architecture). But the linear regression model for all

architecture has shown superior predictive results than the

time series forecasting models.

Table 3: Comparison of AEs for linear Regression Model with Different

Transformation Methods.

Arch

itectu

re

Transformati

on Method

Value

of λ
DS_1 DS_2 DS_3

10X5

L_Box-

Cox_T

0.5 0.6330 0.4296 0.3160

1 0.7236 0.6142 0.1526

2 1.6462 0.7844 0.3904

L_Anscombe

_T
- 0.6682 0.4592 0.3256

L_Yeo-

Johnson_T

0 0.3440 0.9122 2.1502

1 0.9236 0.7646 0.1975

L_Non_T - 1.1236 0.6142 0.3526

20X1

0

L_Box-

Cox_T

0.5 2.8586 0.7093 0.3983

1 1.2853 0.1631 0.6625

2 0.3592 0.1543 0.8293

L_Anscombe

_T
- 2.8256 0.6618 0.4263

L_Yeo-

Johnson_T

0 5.4305 1.2803 1.6912

1 1.0853 0.1584 0.6846

L_Non_T - 1.2853 0.1631 0.6625

30X1

0

L_Box-

Cox_T

0.5 0.9270 0.3523 0.2743

1 0.6003 0.3034 0.4853

2 1.6852 0.6728 0.8468

L_Anscombe

_T
- 0.8992 0.3089 0.2525

L_Yeo-

Johnson_T

0 8.3375 2.3368 2.1974

1 0.6000 0.3034 0.4853

L_Non_T - 0.6867 0.3034 0.4853

40X1

5

L_Box-

Cox_T

0.5 1.4036 0.3351 1.2571

1 0.0411 0.1764 0.1380

2 1.1772 0.9081 0.1415

L_Anscombe

_T
- 0.1866 0.1031 1.2107

L_Yeo-

Johnson_T

0 7.4240 2.4961 0.9557

1 0.3202 0.2077 0.3477

L_Non_T - 0.3096 0.4596 0.5941

Table 4: Comparison of AEs for Naïve Gauss Model with Different

Transformation Methods.

Archit

ecture

Transform

ation

Method

Value

of λ
DS_1 DS_2 DS_3

10X5

NG_Box-

Cox_T

0.5 5.1018 5.9957 11.2750

1 9.7363
11.321

3
20.3810

2 17.8097
20.270

2
42.9644

NG_Ansco

mbe_T
- 4.9690 5.8260 10.3004

NG_Yeo-

Johnson_T

0 2.9077 4.3616 11.4400

1 9.7363
11.321

3
20.3810

20X10
NG_Box-

Cox_T

0.5 1.8409 1.6517 3.8768

1 3.5839 3.2436 7.4225

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

229

2 6.8030 6.2574 26.9249

NG_Ansco

mbe_T
- 1.4830 1.6263 3.7993

NG_Yeo-

Johnson_T

0 0.8928 0.9966 2.5400

1 3.5839 3.2436 7.4225

30X10

NG_Box-

Cox_T

0.5 1.0929 2.1003 1.1349

1 2.1679 4.1139 2.2350

2 4.2653 7.8961 13.0742

NG_Ansco

mbe_T
- 1.2691 2.0781 1.1212

NG_Yeo-

Johnson_T

0 0.4916 1.1539 0.6425

1 2.1679 4.1139 2.2350

40X15

NG_Box-

Cox_T

0.5 1.1487 0.8004 1.3202

1 2.2689 1.5627 2.5800

2 4.4279 2.9826 7.0538

NG_Ansco

mbe_T
- 1.2033 0.7945 1.3086

NG_Yeo-

Johnson_T

0 0.4886 0.4067 0.6954

1 2.2689 1.5627 2.5800

Comparison of two SRGMs, SRGM_Pareto and

SRGM_LEM for the same three dataset is presented in

Table 6. After getting the mean value function using

Equation (5) and (6), we have calculated long term

prediction by Equation (4). SRGM_Pareto performed well

in the 10X5 architecture however the SRGM_Pareto

provided superior result for DS_2 and DS_3 in all other

architectures.

In Table 7, the best method according to AEs from linear

regression (Table 3), time series forecasting (Table 4 and

Table 5) and SRGMs (Table 6) is presented. Linear

regression with transformation performed comparatively

better result than the other models. Then to be more

specific, Box-Cox transformation with linear regression

(L_Box-Cox_T) outrun all others. Notwithstanding,

SRGMs showed good performance in 30X10 architecture.

Subsequently, among the three datasets, only in one case,

architecture 40X15 L_Anscombe_T offers superior results

than other data models. From the result, we can also

observe that the traditional method L_Non_T has not

shown better results in any cases.

Table 5: Comparison of AEs for Exponential Smoothing model with

different transformation methods.

Arch

itect

ure

Transform

ation

Method

Value

of λ
DS_1 DS_2 DS_3

10X5

ES_Box-

Cox_T

0.5 6.8332 7.7045 15.0115

1 12.8170 14.4343 26.2358

2 22.7536 25.4941 26.2358

ES_Anscom

be_T
- 7.1665 7.4876 13.5335

ES_Yeo-

Johnson_T

0 3.9619 5.6239 15.4431

1 12.8171 14.4345 20.3810

20X1

0

ES_Box-

Cox_T

0.5 2.2531 2.1116 5.1992

1 4.3536 4.1366 9.8457

2 8.1509 7.9421 7.4225

ES_Anscom

be_T
- 1.7020 2.0790 5.0920

ES_Yeo-

Johnson_T

0 1.0996 1.2775 2.5412

1 4.3536 4.1366 2.3970

30X1

0

ES_Box-

Cox_T

0.5 1.5773 2.7959 1.7096

1 3.0995 5.4466 3.3406

2 5.9938 10.3474 7.4225

ES_Anscom

be_T
- 1.9551 2.7662 1.6887

ES_Yeo-

Johnson_T

0 0.7176 1.5450 1.6425

1 3.0995 5.4466

40X1

5

ES_Box-

Cox_T

0.5 1.5464 1.0887 1.6128

1 3.0418 2.1135 3.1425

2 5.8889 3.9919 2.2350

ES_Anscom

be_T
- 1.6053 1.0805 1.5985

ES_Yeo-

Johnson_T

0 0.6603 0.5561 1.6954

1 3.0418 2.1135 2.5800

Table 6: Comparison of AEs for SRGMs with Different Transformation

Methods.

Architect

ure

SRGM

Model
DS_1 DS_2 DS_3

10X5

SRGM_LE

M
1.4259 4.7747 14.4099

SRGM_Pare

to
1.2472 0.9279 1.5445

20X10

SRGM_LE

M
0.4354 1.00171 1.2371

SRGM_Pare

to
0.6770 0.3921 0.2609

30X10

SRGM_LE

M
0.2005 0.4511 0.4904

SRGM_Pare

to
0.4054 0.2425 0.1474

40X15

SRGM_LE

M
0.1128 0.1948 0.3073

SRGM_Pare

to
0.2814 0.1423 0.1242

Table 7: Best Method based on AEs (Among linear Regression and Time
Series Forecasting and SRGMs.)

Archite

cture
DS_1 DS_2 DS_3

10X5 L_Yeo-Johnson_T L_Box-Cox_T L_Box-Cox_T

20X10 L_Box-Cox_T L_Box-Cox_T SRGM _Pareto

30X10 SRGM_LEM SRGM_Pareto SRGM_Pareto

40X15 L_Box-Cox_T L_Anscombe_T SRGM_Pareto

6- Conclusion

In this paper, we have presented a long-term software fault

prediction model based on linear regression with data

transformation. In our model, we have pre-processed three

actual software development project datasets with three

Begum, Rony, Islam & Uddin, Long-Term Software Fault Prediction Model with Linear Regression and Data Transformation

230

different transformation methods. Through a

comprehensive analysis with non-transformation, time

series forecasting method and conventional SGRMs, it has

been shown that linear regression with Box-Cox (L_Box-

Cox_T) could work well to predict the software fault in

short time prediction. On the other hand, SRGM_Pareto

showed better result for 30X10 architecture. Additionally,

when we have increased input testing days for long-term

prediction the relative errors have decreased. As a result,

linear regression-based model was much attractive, though

SGRMs are used often for long term software fault

prediction. For further development, we will study to find

an optimal value of λ for Box-Cox and Yeo-Johnson

power transformation. Moreover, we will construct the

prediction interval for better accuracy by well-known

methods and apply our method in experimental or

simulation data using Monte Carlo simulation methods for

better prediction.

Acknowledgement.

This research is funded by Woosong University Academic

Research in 2023.

References
[1] J. Stilgoe, ―Who Killed Elaine Herzberg?,‖ in Who’s

Driving Innovation? New Technologies and the

Collaborative State, J. Stilgoe, Ed. Cham: Springer

International Publishing, 2020, pp. 1–6. doi: 10.1007/978-3-

030-32320-2_1.

[2] B. P. Murthy, N. Krishna, T. Jones, A. Wolkin, R. N.

Avchen, and S. J. Vagi, ―Public Health Emergency Risk

Communication and Social Media Reactions to an Errant

Warning of a Ballistic Missile Threat — Hawaii, January

2018,‖ Morb. Mortal. Wkly. Rep., vol. 68, no. 7, pp. 174–

176, Feb. 2019, doi: 10.15585/mmwr.mm6807a2.

[3] H. Pham, System Software Reliability. Springer Science &

Business Media, 2007.

[4] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and

A. Bener, ―Defect prediction from static code features:

current results, limitations, new approaches,‖ Autom. Softw.

Eng., vol. 17, no. 4, pp. 375–407, Dec. 2010, doi:

10.1007/s10515-010-0069-5.

[5] A. L. Goel, ―Software Reliability Models: Assumptions,

Limitations, and Applicability,‖ IEEE Trans. Softw. Eng.,

vol. SE-11, no. 12, pp. 1411–1423, Dec. 1985, doi:

10.1109/TSE.1985.232177.

[6] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood,

―Evaluation of competing software reliability predictions,‖

IEEE Trans. Softw. Eng., vol. SE-12, no. 9, pp. 950–967,

Sep. 1986, doi: 10.1109/TSE.1986.6313050.

[7] S. Santosa, R. A. Pramunendar, D. P. Prabowo, and Y. P.

Santosa, ―Wood Types Classification using Back-

Propagation Neural Network based on Genetic Algorithm

with Gray Level Co-occurrence Matrix for Features

Extraction,‖ 2019.

[8] Y. Wang, D. Niu, and L. Ji, ―Short-term power load

forecasting based on IVL-BP neural network technology,‖

Syst. Eng. Procedia, vol. 4, pp. 168–174, Jan. 2012, doi:

10.1016/j.sepro.2011.11.062.

[9] ―Long-term Software Fault Prediction with Robust

Prediction Interval Analysi...: EBSCOhost.‖

[10] M. Begum and T. Dohi, ―Optimal Release Time Estimation

of Software System using Box-Cox Transformation and

Neural Network,‖ Int. J. Math. Eng. Manag. Sci., vol. 3, pp.

177–194, Jun. 2018, doi: 10.33889/IJMEMS.2018.3.2-014.

[11] M. Begum and T. Dohi, ―Estimating prediction interval of

cumulative number of software faults using back

propagation algorithm,‖ May 2016.

[12] M. Begum and T. Dohi, optimal software release decision

via artificial neural network approach with bug count data.

2016.

[13] M. Begum and T. Dohi, ―Prediction Interval of Cumulative

Number of Software Faults Using Multilayer Perceptron,‖

vol. 619, pp. 43–58, Jan. 2016, doi: 10.1007/978-3-319-

26396-0_4.

[14] M. Begum and T. Dohi, ―A Neuro-Based Software Fault

Prediction with Box-Cox Power Transformation,‖ J. Softw.

Eng. Appl., vol. 10, no. 3, Art. no. 3, Mar. 2017, doi:

10.4236/jsea.2017.103017.

[15] M. Begum and T. Dohi, ―Optimal stopping time of software

system test via artificial neural network with fault count

data,‖ J. Qual. Maint. Eng., vol. 24, pp. 00–00, Jan. 2018,

doi: 10.1108/JQME-12-2016-0082.

[16] Y. Kamei and E. Shihab, ―Defect Prediction:

Accomplishments and Future Challenges,‖ in 2016 IEEE

23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), Mar. 2016, vol. 5,

pp. 33–45. doi: 10.1109/SANER.2016.56.

[17] V. R. Basili, ―The experimental paradigm in software

engineering,‖ in Experimental Software Engineering Issues:

Critical Assessment and Future Directions, Berlin,

Heidelberg, 1993, pp. 1–12. doi: 10.1007/3-540-57092-

6_91.

[18] T. M. Khoshgoftaar et al., ―Predicting fault-prone modules

with case-based reasoning,‖ in Proceedings The Eighth

International Symposium on Software Reliability

Engineering, Nov. 1997, pp. 27–35. doi:

10.1109/ISSRE.1997.630845.

[19] C. Catal, ―Software fault prediction: A literature review and

current trends,‖ Expert Syst. Appl., vol. 38, no. 4, pp. 4626–

4636, Apr. 2011, doi: 10.1016/j.eswa.2010.10.024.

[20] K. Thantirige, A. K. Rathore, S. K. Panda, S. Mukherjee, M.

A. Zagrodnik, and A. K. Gupta, ―An open-switch fault

detection method for cascaded H-bridge multilevel inverter

fed industrial drives,‖ in IECON 2016 - 42nd Annual

Conference of the IEEE Industrial Electronics Society, Oct.

2016, pp. 2159–2165. doi: 10.1109/IECON.2016.7794032.

[21] M. Islam, M. Akhtar, and M. Begum, Long short-term

memory (LSTM) networks based software fault prediction

using data transformation methods. 2022, p. 6. doi:

10.1109/ICAEEE54957.2022.9836388.

[22] M. Islam, M. Begum and M. Akhtar, Recursive Approach

for Multiple Step-Ahead Software Fault Prediction through

Long Short-Term Memory (LSTM). p. 10.

Journal of Information Systems and Telecommunication, Vol.11, No.3, July-September 2023

231

[23] H. K. Dam et al., ―Lessons Learned from Using a Deep

Tree-Based Model for Software Defect Prediction in

Practice,‖ in 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), May

2019, pp. 46–57. doi: 10.1109/MSR.2019.00017.

[24] D. Sharma and P. Chandra, ―Linear regression with factor

analysis in fault prediction of software,‖ J. Interdiscip.

Math., vol. 23, pp. 11–19, Jan. 2020, doi:

10.1080/09720502.2020.1721641.

[25] D. J. Pedregal, ―Time series analysis and forecasting with

ECOTOOL,‖ PLOS ONE, vol. 14, no. 10, p. e0221238, Oct.

2019, doi: 10.1371/journal.pone.0221238.

[26] O. Nyarko-Boateng, A. F. Adekoya, and B. A. Weyori,

―Predicting the actual location of faults in underground

optical networks using linear regression,‖ Eng. Rep., vol. 3,

no. 3, p. eng212304, 2021, doi: 10.1002/eng2.12304.

[27] G. E. P. Box and D. R. Cox, ―An Analysis of

Transformations,‖ J. R. Stat. Soc. Ser. B Methodol., vol. 26,

no. 2, pp. 211–252, 1964.

[28] F. J. Anscombe, ―The Transformation of Poisson, Binomial

and Negative-Binomial Data,‖ Biometrika, vol. 35, no. 3/4,

pp. 246–254, 1948, doi: 10.2307/2332343.

[29] S. Weisberg, ―Yeo-Johnson Power Transformations.‖ 2001.

[30] E. S. Gardner, ―Exponential smoothing: The state of the

art—Part II,‖ Int. J. Forecast., vol. 22, no. 4, pp. 637–666,

Oct. 2006, doi: 10.1016/j.ijforecast.2006.03.005.

[31] X. Su, X. Yan, and C.-L. Tsai, ―Linear regression,‖ WIREs

Comput. Stat., vol. 4, no. 3, pp. 275–294, 2012, doi:

10.1002/wics.1198.

[32] H. Okamura and T. Dohi, ―SRATS: Software reliability

assessment tool on spreadsheet (Experience report),‖ in

2013 IEEE 24th International Symposium on Software

Reliability Engineering (ISSRE), Nov. 2013, pp. 100–107.

doi: 10.1109/ISSRE.2013.6698909.

[33] M. R. Lyu, Ed., Handbook of Software Reliability

Engineering. Los Alamitos, Calif.: New York: McGraw-

Hill, 1996.

[34] A. Rasoolzadegan, ―A new approach to the quantitative

measurement of software reliability,‖ 2015.

