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Abstract  
Massive multiple-input multiple-output is a promising technology in future communication networks where a large number 

of antennas are used. It provides huge advantages to the future communication systems in data rate, the quality of services, 

energy efficiency, and spectral efficiency. Linear detection algorithms can achieve a near-optimal performance in large-

scale MIMO systems, due to the asymptotic orthogonal channel property. But, the performance of linear MIMO detectors 

degrades when the number of transmit antennas is close to the number of receive antennas (loaded scenario). Therefore, this 

paper proposes a series of detectors for large MIMO systems, which is capable of achieving promising performance in 

loaded scenarios. The main idea is to improve the performance of the detector by finding the hidden sparsity in the residual 

error of the received signal. At the first step, the conventional MIMO model is converted into the sparse model via the 

symbol error vector obtained from a linear detector. With the aid of the compressive sensing methods, the incorrectly 

detected symbols are recovered and performance improvement in the detector output is obtained. Different sparse recovery 

algorithms have been considered to reconstruct the sparse error signal. This study reveals that error recovery by imposing 

sparse constraint would decrease the bit error rate of the MIMO detector. Simulation results show that the iteratively 

reweighted least squares method achieves the best performance among other sparse recovery methods. 

 

Keywords: Massive MIMO; MMSE Detector; Error Recovery; Compressive Sensing; Iteratively Reweighted Least 

Squares (IRLS) Method. 

 

1- Introduction 

The number of cellular phones and mobile data traffic are 

extremely growing each year. Telecommunication 

companies are asked to provide higher data rates, further 

spectral efficiency, and larger capacity. The fifth-

generation (5G) wireless communication systems are 

being designed to answer excessive data rate demands.  

Massive MIMO technology is a good candidate for the 

next-generation of the wireless communication. The base 

station (BS) in massive MIMO systems equipped with 

hundreds of antennas are used to serve tens of users 

simultaneously [1, 2]. But there are some challenges such 

as pilot contamination, detection performance, channel 

estimation and detection complexity [3-5]. 

The purpose of each detection algorithm is to obtain an 

estimate of the transmit signal, given knowledge of the 

received signal and the channel state information (CSI). 

The maximum a posteriori (MAP) and the maximum 

likelihood (ML) algorithms provide the optimal detectors 

but they are not practically feasible for the massive MIMO 

systems since their computational complexity increase 

exponentially with the number of antennas. Linear MIMO 

detectors such as zero forcing (ZF) and minimum mean 

square error (MMSE) receivers can achieve near optimal 

performance when the number of users is much lower than 

the number of the antennas in BS [6]. Many methods have 

been proposed to achieve the performance of MMSE 

detector with low complexity such as the optimized 

coordinate descent (OCD) [7], Gauss-Seidel (GS) method  

[8], parallelizable Chebyshev iteration (PCI) [9] and 

alternating minimization method (Alt-Min) [10]. The 

performance of the linear detectors and also the previously 

mentioned methods degrade when the number of 

transmitters is close to the number of receiver antennas 

[11]. Therefore, new and efficient detectors with a low 

error rate are highly needed to solve this problem. This 

paper focuses on developing a detector which achieves 

favorable performance in loaded scenarios.  

Recently, compressive sensing (CS) and sparse signal 
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recovery techniques have received much attention in 

different signal processing applications. Compressive 

sensing  has emerged as a promising approach for use in 

large MIMO systems [12, 13]. 

It is noteworthy that the original signals in massive MIMO 

systems are not intrinsically sparse, but it is expected that 

the detector output contains an error only for a few number 

of users. Thus, the error vector resulting from a primary 

estimator is likely to be sparse, especially in high SNR 

regime. The motivation of this paper is to improve the 

performance of the detector by using the sparsity in the 

residual error of large MIMO systems. In order to exploit 

the sparsity of the detection errors, the conventional model 

is converted into a sparse model via the symbol error 

vector [13, 14]. After that, the error recovery algorithm 

can be performed to improve the detection performance by 

recovering the non-zero entries of the error vector.  

Sparse signal recovery is basically an optimization 

problem with   -norm and is NP-hard. Therefore, different 

approaches are proposed to solve this problem. Greedy 

methods [15-17],   -relaxation based optimization [18, 19] 

and Bayesian methods [20, 21] are the main approaches to 

estimate the sparse vector. Many different algorithms have 

been proposed for sparse signal reconstruction. The 

contribution of this paper is to address the effectiveness of 

the   -relaxation-based sparse recovery methods in 

massive MIMO detectors for the first time. 

The rest of the paper is organized as follows. Section II 

introduces the system model of the massive MIMO 

system. Section III presents the conversion of the 

conventional MIMO system model into the sparse error 

domain. Sparse recovery algorithms are introduced in 

section IV. The simulation results and discussions about 

the performance of the proposed algorithm are presented 

in section V and finally the paper is concluded in Section 

VI. 

Notation: Boldface capital letters and lowercase letters 

represent matrices and vectors, respectively.    denotes the 

    identity matrix; ( ) , ( )   , ( )   denote the 

conjugate transposition, the inversion and the 

transposition, respectively.       denotes the     

complex matrix. The  -norm (also called   -norm) of 

vector   (          )  is                                      

‖ ‖  (∑ |  |
  

   )
 
 ⁄ .  

2- System Model 

Consider a multi-user MIMO model with    users and    

receivers in the BS. The received signal can be described 

as: 

 

                                                                       (1) 

 

where          is the channel matrix between the BS 

and the    users whose entries are modeled as independent 

and identically distributed (iid) complex Gaussian with 

zero mean and unit variance.        , is the complex-

valued information vector, and   is a white Gaussian noise 

vector with zero mean and correlation matrix  (   )  
  
    . It is assumed that the channel matrix is known 

perfectly at the BS but it is unknown at the transmitter 

side. 

2-1- Linear Detection 

The maximum likelihood (ML) detector is not suitable for 

solving large dimensional problems due to the high 

computational complexity. Therefore, suboptimal 

detectors such as Minimum Mean Square Error with low 

complexity are beneficial in operational conditions. 

 The MMSE detector can be obtained by the solution of 

the following minimization problem. 

 

                          ,|   ̂|
 - (2) 

 

where   ̂     is the estimation of the user’s data. 

3- Massive MIMO Detection in Sparse Domain 

This section, presents a class of detectors based on error 

recovery technique for detection of the transmitted 

symbols in uplink massive MIMO system. This method 

iteratively achieves near-optimal performance in terms of 

bit error rate. In the following the error domain sparse 

model is introduced. 

3-1- Sparse Model 

At the first step, the conventional system model (1) should 

be converted into a sparse model via the symbol error 

vector obtained from a linear detector. 

The error vector   , is defined as the difference between 

the original signal and the recovered one. Therefore, the 

system model in error domain can be formulated as 

follows: 

 

       ̂      (   ̂    )            (3) 

 

where       ̂     is the error vector of the primary 

estimated symbols and its nonzero values correspond to 

the incorrectly detected symbols. 

It is noteworthy that, by recovering the incorrectly 

detected symbols, the performance of the detector can be 

improved. Since it is expected that only a few symbols are 
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incorrectly detected,    , is a sparse vector. Therefore, the 

detection operation is equivalent to recover the sparse 

error vector,   , from the difference signal,   .  
Once the sparse error vector is recovered, the estimation of 

the transmitted signal,  ̂, is obtained by adding the error 

vector to the initial estimate,   ̂    . Thus, the final 

estimation of the user’s data is obtained by 

 

 ̂   ̂      ̂                                           (4) 

3-2- Error Recovery 

The problem of sparse representation in the MIMO 

detection is to find the vector   . Therefore, we are 

looking for the sparsest solution which can be done by 

solving the following optimization problem: 

 

                                   ‖  ‖                              (5) 

 

Where ‖  ‖  denotes the   -norm of    and gives the total 

number of non-zero elements in the vector. Since (  ) is 

NP-hard, the optimization problem is relaxed with convex 

  -norm. Taking into account the effect of the noise 

component, the problem (  ) can be converted to the 

following optimization problem: 

   

                                 ‖  ‖           ‖       ‖    (6) 

 

It is assumed that the noise has bounded entries, i.e. 

‖  ‖    for some sufficiently small  . Additionally, 

according to the Lagrange multiplier theorem, there exists 

an appropriate constant   such that the problem (  ) is 

equivalent to the following unconstrained minimization 

problem. 

                                   ‖  ‖  
 

 
‖       ‖ 

          (7) 

 

Where the Lagrange multiplier   depends on    and  . 

Note that the cost function in (  ) is not differentiable with 

respect to    and specific optimization algorithms are 

required to solve (  ). The following section addresses 

three well-known sparse coding algorithms to estimate the 

error vector   . The minimization function in (  ) is 

composed of two parts. The first term with   –norm 

induces sparsity to the estimated error vector, while the 

second term, 
 

 
‖       ‖ 

 , makes the estimated vector 

consistent with   . In order to investigate the effectiveness 

of the sparsity promoting term in (  ), the results of the 
MIMO detection with the following minimization problem 

are also considered.    

 

                                   ‖  ‖  
 

 
‖       ‖ 

          (8) 

where the   –norm in (  ) is replaced with the   –norm. 

The closed-form solution of the convex minimization 

problem (  ) can be formulated as follows: 

 

                      ̂  (     
  )                              (9) 

 

In the simulation result section, the solution to (  ) is 

called the regularized least square (RLS) estimation. 

4- Sparse Error Reconstruction  

The most significant stage in error recovery-based MIMO 

detection is the sparse error reconstruction. In this study, 

three algorithms are considered for the sparse coding step. 

More explicitly, Iterative Re-weighed Least Squares 

(IRLS), Alternating Direction Method of Multipliers 

(ADMM), and Iterative Shrinkage-Thresholding 

Algorithm (ISTA) [22-25] have been applied to 

reconstruct the error vector. In the following, these three 

algorithms are introduced briefly. 

4-1- IRLS Algorithm 

The Iterative Re-weighed Least Squares algorithm is one 

of the strategies which is able to recover sparse signals. In 

this algorithm, the   -norm in (   ) is replaced by a 

weighted   -norm [26]:       
 

                         
       

 

 
‖       ‖ 

      (10) 

 
Where   is a diagonal weight matrix and it is updated from 

the current iterate (  ) . 

The minimization in (P3) is a quadratic optimization 

problem, soluble using linear algebra. The pseudo-code for 

the IRLS error recovery-based MIMO detector has been 

shown in Algorithm 1. 

4-2- ADMM Algorithm  

The alternating direction method of multipliers is an 

alternative algorithm for sparse coding. This algorithm 

uses the augmented Lagrangian to splits the main 

optimization problem into two quadratic and separable 

minimization problems.  

In this method, the augmented Lagrangian is defined as 

[27] 

 

  (       )    ‖  ‖  
 

 
‖ ‖ 

               

                 
 

 
‖        ‖ 

                          (11) 
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Algorithm 1: IRLS error recovery-based detector 

Input:  ,  , and   
  

Parameters: maximum iteration number (  ), threshold ( ) 

Output: The estimation of the transmitted symbols:  ̂ 

 

initialization:  

1:         
     ,    = diag ( )   and      

   

2:  ̂      
       ‘Primary Estimation’ 

3:        ̂     

4: The initial weight matrix     

 

Iteration: Increase    

5: Regularized Least-Squares: approximately solve the 

linear system 

(         )(  )   
    

 

6: Weight Update: Update the diagonal weight matrix   

 

      (|(  ) |   ) 

 

7: Stopping Rule: if ‖(  )  (  )   ‖    break  

else go back to step 5 

8: Output: (  ) . 

9: return  ̂   ̂     (  )  

 

 

 

where    is the Lagrangian multiplier and      is a 

penalty parameter. The pseudo-code of the MIMO 

detection using the ADMM algorithm has been shown in 

Algorithm 2. 

4-3- ISTA Algorithm 

Another algorithm which can be used for solving problem 

(P2) is the iterative shrinkage-thresholding algorithms 

(ISTA). The solution based on the ISTA algorithm can be 

written as [23, 28] 

 

                    (  )       
 ( (  )      )     (12) 

 

where   is the step size and the error vector is updated as  

 

                 (  )   (  )                                            (13) 

 

where  () is the shrinkage operator and is described by 

 

                 (  )     (  |  |   )     (  )     (14) 

 

where   and    ( )  are the Schur product and the sign 

function respectively. The parameter      represents 

the threshold value and   is the proper scale 

hyperparameter. 

 

The pseudo-code of the MIMO detection using the ISTA 

algorithm has been shown in Algorithm 3. 

5- Simulation Result 

In this section, numerical simulation results and 

complexity of detectors are presented to demonstrate the 

performance of the proposed methods. The simulations are 

conducted for        MIMO system, where    and    
are the number of receive and transmit antennas, 

respectively. In the simulations, the massive MIMO 

system with 4-QAM and 16-QAM modulations are 

considered. Each entry of the channel matrix   is an i.i.d. 

circularly symmetric complex Gaussian random variable 

(i.e.,    (   )) and the channel statistics information is 

available for the BS and satisfy 

 

                        
 

  
  
                                              

(15) 

 

where    is the  th column of the matrix  . 

 

Algorithm 2: ADMM error recovery-based detector 

(       )(  )    
      

      
    

          
 
  ‖ ‖     

    (  )   

  
 

 
‖(  )   ‖ 

  

Input:  ,  , and    
  

 Parameters: maximum iteration number ( ), threshold ( ), 

penalty parameter ( ) 

Output: The estimation of the transmitted symbols:  ̂ 

 

initialization:  

1:         
     ,    = diag ( )   and      

   

2:  ̂      
       ‘Primary Estimation’ 

3:        ̂     

 

Iteration: Increase    

4: Update error vector,   :  

 

 

5: Update   : compute    via soft shrinkage  

 

6: Update Lagrangian multiplier,   :   
 =   

   -

  ((  )   
 ) 

7: Stopping Rule: if ‖(  )  (  )   ‖    break 

else go back to step 4 

8: Output: (  ) . 

9: return  ̂   ̂     (  )  
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Algorithm 3: ISTA error recovery based detector 

Input:  ,  , and    
  

 Parameters: maximum iteration number ( ) ), threshold ( ),   

Output: The estimation of the transmitted symbols:  ̂ 

 

initialization:  

1:         
     ,    = diag( )   and      

   

2:  ̂      
         ‘Primary Estimation’ 

3:        ̂     

 

Iteration: Increase    

4: Update   :  

 

   (  )       
 ( (  )      ) 

 

5: Update error vector,   : 

 

(  )   (  ) 

 

6: Stopping Rule: if ‖(  )  (  )   ‖    break 

else go back to step 4 

7: Output: (  ) . 

8: return  ̂   ̂     (  )  

 

 

 
All simulations are carried out in Matlab 2015b on a 

processor Intel(R) Core (TM) i5-6200U CPU at 2.30 GHz 

and 8GB RAM and all results are averaged over 10000 

iterations. 

Prior to apply the minimization problems (  ) or (  ) for 

the MIMO detection, the coefficient   should be adjusted. 

Fig. 1 shows the BER of the MIMO detectors for ISTA, 

ADMM, and IRLS algorithms with respect to different 

values of  . In this simulation, the SNR has been fixed at 

15 dB and the parameter   varies from 0 to 50. The 

simulations are conducted with          for 4-QAM 

modulation. According to this figure, the values of the 

parameters    in the following simulations are set to 

        ,         And         .  

Fig .2 (a) shows the error of the primary detector in an 

uplink massive MIMO system with 16-QAM modulation 

with         . This simulation shows that the error of 

the estimated user symbols is sparse. Fig. 2 (b), (c) and (d) 

illustrate the recovered error vector using the ADMM, 

ISTA, and IRLS respectively. It can be seen that only the 

error corresponding to the 40
th

 user is not completely 

recovered. To further investigate the performance of 

different error recovery methods, various detection 

scenarios are simulated.  

 
 

Fig. 1 BER performance versus   in the uplink massive MIMO for 4-

QAM modulation with SNR = 15 dB. 

 

 
      
     Fig. 2 (a) the error of the primary detector and (b), (c), (d) the recovered 

error vector using the ADMM, ISTA, and IRLS algorithms in the uplink 

massive MIMO system for 16-QAM modulation for           with 
SNR  = 15 dB. 

 

 

Fig.3-Fig .6 shows the bit error rate (BER) of the MIMO 

detection for       *     +  and *    + -QAM 

modulations. In Fig. 3 and Fig. 4, 4-QAM constellation 

with          and          are considered 

respectively. In comparison to the MMSE detector, 

performance improvement of the error recovery methods 

are markedly evident. It can be seen that the IRLS method 

has the best performance among other error recovery 

methods. In addition, all sparsity-based error recovery 

methods lead to lower BER in comparison to the RLS. 
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     Fig. 3 BER performance comparison of the error recovery algorithms in 

the uplink massive MIMO for 4-QAM modulation for          . 
 

 
 

      Fig. 4 BER performance comparison of the error recovery algorithms in 

the uplink massive MIMO for 4-QAM modulation for          . 

 

 
 

     Fig. 5 BER performance comparison of the error recovery algorithms in 

the uplink massive MIMO for 16-QAM modulation for          . 

Fig. 5 and Fig. 6 show the detection performance for 16-

QAM modulation with          and          

respectively. Although the detection improvement is 

decreased but still all error recovery detectors achieved 

better performance than the MMSE detector. 

Fig.7 compares the run time of the previously mentioned 

error recovery algorithms for different number of 

transmitters and           
The times are averaged over 10000 iterations. It can be 

seen that the run time of the all methods increase with the 

system dimensions. Generally, the run time of the IRLS 

method is less than that of the ADMM and ISTA 

algorithms. Since the RLS method has a close form 

solution, it leads to the least run time.   

 

 
 

     Fig. 6 BER performance comparison of the error recovery algorithms in 

the uplink massive MIMO for 16-QAM modulation for         . 

 

 

 
 

      Fig. 7 Run time evaluation for the error recovery algorithms versus 

number of transmit antennas in the uplink massive MIMO for 64-QAM 

modulation with       and SNR = 10 dB. 
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The total computational complexity of the methods can be 

analyzed with respect to the number of multiplications in 

the Big-O notation. Since in the simulations     is close to 

  , it can be easily shown that the computational 

complexity of all methods is of order  (  
 )  which is 

similar to that of the MMSE MIMO detector. In order to 

summarize the results, it was demonstrated that the IRLS 

method leads to the best MIMO detection performance. 

Note that, since the IRLS method is an iterative algorithm 

and also it requires the matrix inversion operation in each 

iteration, the run time of the proposed algorithm is more 

than that of the MMSE detector. Applying the 

approximation methods in matrix inversion computation 

such as Gauss-Seidel, Chebyshev, and conjugate gradient 

methods would decrease the run time of the IRLS sparse 

recovery method. 

 The performance of the large-scale MIMO systems 

depends on the accuracy of the channel state information 

(CSI). In future works, an algorithm for joint channel 

estimation and signal detection in sparse error domain 

would be considered. 

6- Conclusions 

This paper focused on the problem of detection in massive 

MIMO systems. The main idea of this algorithm is to 

improve the performance of the detector by finding the 

hidden sparsity in the residual error of the received signal. 

In this paper, three sparse recovery algorithms, i.e. 

Iterative Re-weighed Least Squares (IRLS), Alternating 

Direction Method of Multipliers (ADMM), and Iterative 

Shrinkage-Thresholding Algorithm (ISTA) have been 

applied to reconstruct the error of the primary detector. It 

is noteworthy that the iteratively reweighted least-squares 

(IRLS) method achieved the best performance among 

other sparse recovery methods. The proposed methods 

outperform the MMSE detector but it is obvious that the 

complexity of the sparse error recovery-based MIMO 

detectors is more than that of the MMSE detector. 

Consequently, more efforts are needed to decrease the 

computational burden of the sparse error recovery 

algorithms. 
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