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Abstract  
The data are stored on the memory of the classical computer in small units of classical bits, which could be either 0 or 1. 

However, on a Quantum Computer, The Quantum States of each Quantum Bit (Qbit), would be every possible number 

between 0 and 1, including themselves. By placing the photons on a special state, which is a spot located at the middle of 

the two-dimensional space vectors (
 
 
)  and (

 
 
)  on the Unit Circle, which is called Superposition and we can take 

advantage of properties of this state when we place lots of vectors of N-dimensional spaces in superposition and we can do 

a parallelization and factorization for getting significant speedup. In fact, in Quantum Computing we are taking advantage 

of Quantum Dynamic Principles to process the data, which Classical Computers lack on, by considering the limitations of 

logical concepts behind them. Through this paper, we expand a quantum algorithm for the number of n Qbits in a new way 

and by implementing circuits using IBM-Q Experience, we are going to have some practical results, which are more 

obvious to be demonstrable. By expanding the Quantum Algorithms and using Linear Algebra, we can manage to achieve 

the goals at a higher level, the ones that Classical Computers are unable to perform, as machine learning problems with 

complicated models and by expanding the subject we can mention majors in different sciences like Chemistry (predicting 

the Structure of proteins with higher percentage accuracy in less period), Astronomy and so on. 
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1- Introduction 

Nowadays, the act of factorization in mathematics is so 

popular among scientists and also engineers due to the 

extensive applications coming with it. Applications such 

as the optimization of the processing algorithms, which 

are exclusively written to be processed on Graphics 

Processing Units, which can run a lot faster than Central 

Processing Units due to their special parallelization and 

so on [1, 2]. Another capability of factorization is that it 

can help us solve differential matrix equations on a large-

scale and would be practical in Linear Algebra [3], 

therefore it would be practical in computer science by 

considering the foundation of computers, which every 

classical bit is defined by matrices and the operation on 

them would be matrices and matrices are coming from 

Linear Algebra [4], therefore it is directly related to 

computer science. For example, it has been proved we 

can pull out more functional properties of some specific 

data across non-linear mappings, negative valued data 

processing, and also reviewing the data with only known 

relationships with them and all the three mentioned 

properties have been obtained by using the non-negative 

matrix factorization in a publication [5]. This subject is 

not related just to some specific branches of science and 

it is useful in many subjects. As an example, the 

simulation of materials is so important, given that if it 

would be possible to simulate the exact construction of a 

specific protein, then we would be able to cure many 

diseases since many of them are caused by the lack of 

some protein or shortages in the structure proteins [6]. 

By considering the amino acids, which are the main 

formational units of proteins, they can create many 

different types of proteins, according to the chemical 

structure they have and the types of chemical structure 

they can form. By expanding the data range, we are 
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going to need much more power and resources to process 

the data, but we can use some factorization methods to 

factor and classify data, which would be easier for 

computers to process and simulate but sometimes it 

becomes impossible to do such calculations using the 

classical computers, the ones which are working with 

classical bits [7]. 

Classical computers are too weak to process a huge 

amount of data using some algorithms and it may take 

thousands of years to get the results, so it would be 

useless in that case. This occurs due to their classical 

properties and their physical limitations [8]. we are going 

to be more precise on this subject, we are going to check 

a paper, which has been published and it is concentrated 

on reviewing some machine learning methods to 

calculate the protein secondary structure prediction. 

Proteins are molecules, which carry out essential 

subordinates in almost all operations in the human body. 

They are made up of amino acid macromolecules and 

there are about 500 amino acids out there but 20 of them 

are coded by the genome to construct the necessary 

proteins for the human body. In summary, by 

considering a collection of n amino acids, 2n types of 

proteins with different constructions are possible to build. 

As a result, for 250 amino acids, we are going to have, 

2250 proteins, which is a large number of species and it 

needs a very long time, so many powerful hardware and 

so much power source to calculate every possible state, 

which is not efficient [9]. 

Decades ago, a scientist presented another method of 

computation varying from classical computation and it is 

called Quantum Computation, which uses Qbits rather 

than Classical bits. As we know, classical bits can be in 

either two states of 0 or 1, which are presented by (
 
 
) as 

0 and (
 
 
) as 1 and there are the only states, which a 

classical bit can be at a time, but in quantum computation 

a Qbit, which has the same functionality as the bits in 

Classical Computing, but it can be in more states at a 

time. A Qbit can be 0 or 1 or both the 0 and 1 together, 

which is a quantum property of the underlying atomic 

particles. This is called ―Super Position‖ in Quantum 

Mechanics [10]. Scientists are using these properties to 

their advantage. Superposition means, that an Electron 

could be in both of the 0 and 1 states at once. According 

to the cause, Quantum Bits include Classical Bits as 

special states. These underlying atomic particles have 

more weird properties such as ―Entanglement‖ and 

―supremacy‖ [11], which we are not going to talk about 

and the superposition is the most important part of our 

research. Another useful feature of a Quantum Computer 

is, that it is reversible, which works this way, because of 

its physical properties and limitations and we are going 

to take advantage of this property later on. There are four 

primary operations, which can be done on a single bit of 

information including, Identity, Negation, Constant-0 

and Constant-1, which we are going to have more focus 

on, later in this paper. For an introduction, Identity and 

Negation are reversible, but Constant-0 and Constant-1 

are irreversible and we are going to have to write them in 

a reversible way. By knowing a factor like being 

reversible or irreversible of an unknown function, we can 

do the factorization to get more properties of that 

function, which is very useful, as described earlier. In a 

classical computer, it can take 2 queries to process it by 

having one bit as an input to know if our unknown 

function is irreversible or not, whereas a quantum 

computer would do it on a single query, which is a 

massive speedup. As a result, for every 2 bits, we are 

going to need a single query, which is half the time and 

at the end, we are going to need √(2^n ) queries for n 

bits. 

At first, we had an abstract of the whole paper. After that, 

we considered four sections in the introduction. In the 

first part of the introduction, we checked the importance 

and the capabilities of the factorization operation, then 

we reviewed the lack of classical computers in 

calculating the properties of unknown functions in order 

to factor and classify those properties. After that, by 

addressing the quantum mechanics and quantum 

computer properties, we claimed we are able to do a 

calculation to get the mentioned property on a quantum 

computer with half the time for getting the same result 

on a classical computer. Now we are reviewing the 

sections of the paper and then we are going to have the 

algorithm of doing the calculation on a quantum 

computer on paper and the result of an experiment on a 

real quantum computer using the cloud-base framework 

IBM has introduced for the researchers to have access to 

real quantum computers by aiming the real experiments 

on real quantum computers. At last, we are going to have 

a discussion and then the references. By using the 

mentioned methods and, at most of them, we must do the 

whole calculations of the existing entities of the function 

to get to know more about the features of the function in 

order to do some factorizations regarding to increase the 

pace of further calculations. 

 

2- Related Works 

Major In general, mathematical thinking and 

computation has been doing an important role in our 

lives and the advancement of various sciences. We are 

going to discuss a number of the related research jobs, 

which has been done in this area a few years ago and we 

are going to know the importance of the discussed 

subject in the following section. Our special subject in 
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the discussion would be the pros of mathematical 

factorization on algorithms and the approach to it. 

A recent work, which has been done earlier, shows the 

benefits of Maximization-Factorization Statics on an 

advance in computer science, which is Blockchain 

Technology and also Internet-of-Things, which has been 

published in IEEE Internet of Things Journal. The pros 

include using less memory and power and also they are 

the less iteration to converge to the consensus solution 

and easiness to configure the complete mathematical 

model as per the requirement [12]. Another work has 

been published on PPoPP '21: Proceedings of the 26th 

ACM SIGPLAN Symposium on Principles and Practice 

of Parallel Programming, in which the authors have 

proposed a method of deriving parallel I/O lower bounds 

for the programs and they derive COnfLUX, an LU 

algorithm with the parallel I/O cost of 

N3/([EQUATION]) communicated elements per 

processor - only 1/3× over our established lower bound, 

which would be considered as a massive speedup [13]. 

Through another one, the authors show, that the D-Wave 

2X can be effectively used as part of an unsupervised 

machine learning method. The used method takes a 

matrix as input and produces two low-rank matrices as 

output—one containing latent features in the data and 

another matrix describing how the features can be 

combined to approximately reproduce the input matrix. 

Despite the limited number of bits in the D-Wave 

hardware, this method is capable of handling a large 

input matrix. The D-Wave only limits the rank of the two 

output matrices. They applied their method to learn the 

features from a set of facial images and compare the 

performance of the D-Wave to two classical tools [14]. 

Another job, which has been published on IEEE Access, 

proposes two techniques for overcoming load-imbalance 

encountered when implementing so-called look-ahead 

mechanisms in relevant dense matrix factorizations for 

the solution of linear systems. The first technique 

promotes worker sharing (WS) between the two tasks, 

allowing the threads of the task that completes first to be 

reallocated for use by the costlier task. The second 

technique allows a fast task to alert the slower task of 

completion, enforcing the early termination (ET) of the 

second task, and a smooth transition of the factorization 

procedure into the next iteration [15]. In another research, 

a person named Reid Atcheson, who is a Ph.D. in 

Computational and Applied Mathematics, proposed a 

way to use non-Euclidean norms to formulate a QR-like 

factorization which can unlock interesting and 

potentially useful properties of non-Euclidean norms - 

for example, the ability of l1 norm to suppresses outliers 

or promote sparsity. At the end of his paper, he 

confirmed the results using python [16]. Through another 

work, the authors propose a novel solution to this 

problem: at the mathematical level, we reduce the 

computational requirement by exploiting the data 

sparsity structure of the matrix off-diagonal tiles utilizing 

low-rank approximations; and, at the programming-

paradigm level, we integrate PaRSEC, a dynamic, task-

based runtime to reach unparalleled levels of efficiency 

for solving extreme-scale linear algebra matrix 

operations. The paper has been published on PASC '20: 

Proceedings of the Platform for Advanced Scientific 

Computing Conference [17]. In another research, the 

authors have proposed to factorize the matrix using a 

―lattice HH-matrix‖ format that generalizes the BLR 

format by storing each of the blocks (both diagonals and 

off-diagonals) in the HH-matrix format. These blocks 

stored in the HH-matrix format are referred to as lattices. 

Thus, this lattice format aims to combine the parallel 

scalability of BLR factorization with the near-linear 

complexity of HH-matrix factorization. At the very first 

step, they compared factorization performances using the 

HH-matrix, BLR, and lattice HH-matrix formats under 

various conditions on a shared-memory computer. The 

performance results show that the lattice format has 

storage and computational complexities similar to those 

of the HH-matrix format, and hence a much lower cost of 

factorization than BLR [18]. In another research, the 

authors describe efficient algorithms for computing rank-

revealing factorizations of matrices that are too large to 

fit in RAM, and must instead be stored on slow external 

memory devices such as solid-state or spinning disk hard 

drives (out-of-core or out-of-memory). They propose 

separate methods. The first is a blocked version of 

column pivoted Householder QR, organized as a "left-

looking" method to minimize the number of write 

operations (which are more expensive than reading 

operations on a spinning disk drive). The second method 

results in a so-called UTV factorization which expresses 

a matrix A as A=UTV× where U and V are unitary, and 

T is triangular. This method is organized as an 

algorithm-by-blocks, in which floating-point operations 

overlap read and write operations [19]. In another work, 

the authors proposed a distributed high-performance 

parallel implementation of the BPMF using Gibbs 

sampling on shared and distributed architectures. They 

have shown by using efficient load balancing using 

work-stealing on a single node, and by using 

asynchronous communication in the distributed version 

they beat state-of-the-art implementations [20]. Through 

another paper, which has been published in IEEE 

Transactions on Services Computing, they addressed a 

privacy bug in clouds by presenting a novel outsourced 

scheme for NMF (O-NMF), which aims to lessen clients' 

computing burden and tackle security problems faced by 

outsourcing NMF [21]. Through another research, which 

has been published in 2017 IEEE International Parallel 

and Distributed Processing Symposium Workshops 

(IPDPSW), Batch matrix operations address the case of 
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solving the same linear algebra problem for a very large 

number of very small matrices. They focused on 

implementing the batch Cholesky factorization in CUDA, 

in single-precision arithmetic, for NVIDIA GPUs and 

also the benefits of using noncanonical data layouts, 

where consecutive memory locations store elements with 

the same row and column index in a set of consecutive 

matrices [22]. In another work, the authors provide a 

comprehensive survey of mixed-precision numerical 

linear algebra routines, including the underlying concepts, 

theoretical background, and experimental results for both 

dense and sparse linear algebra problems [23]. Through 

another work, the authors provide techniques for 

Supernodal Sparse Cholesky factorization on a hybrid 

multicore platform consisting of a multicore CPU and 

GPU. The techniques are the subtree algorithm, 

pipelining and, multithreading. The subtree algorithm 

minimizes PCIe transmissions by storing an entire 

branch of the elimination tree in the GPU memory (the 

elimination tree is a tree data structure describing the 

workflow of the factorization) and also reduces the total 

kernel launch time by launching BLAS kernels in 

batches [24]. In another job, the authors highlight the 

necessary development of new instrumentation tools 

within the PaRSE task-based runtime system to leverage 

the performance of low-rank matrix computations. They 

demonstrate the benefits of these amenable tools while 

assessing the performance of TLR Cholesky 

factorization from data distribution, communication-

reducing, and synchronization-reducing perspectives. 

The mentioned tool-assisted performance analysis results 

in three major contributions: a new hybrid data 

distribution, a new hierarchical TLR Cholesky algorithm, 

and a new performance model for tuning the tile size. 

The new TLR Cholesky factorization achieves an 8X 

performance speedup over existing implementations on 

massively parallel supercomputers, toward solving large-

scale 3D climate and weather prediction applications 

[25]. And finally, in the last mentioning paper, the 

authors present a multithreaded method for Supernodal 

Sparse Cholesky factorization on a hybrid multicore 

platform consisting of a multicore CPU and GPU. The 

mentioned algorithm can utilize concurrency at different 

levels of the elimination tree by using multiple threads in 

both the CPU and the GPU. The elimination tree is a tree 

data structure describing the workflow of the 

factorization. The results on a platform consisting of an 

Intel multicore processor along with an Nvidia GPU 

indicate a significant improvement in performance and 

energy over a single-threaded Supernodal algorithm [26]. 

 

Table 1: Presenting the Related Works with Details 

Number Publication Description Efficiency 

1 Kumar, G. et. al., 

Discussing an efficient 
statistical method with 

a proof-of-work 
consensus approach for 

cloud and fog 
computing 

Less iteration to converge to the consensus solution and easiness to configure the complete 
mathematical model as per the requirement and also less energy and memory are needed 

2 
Kwasniewski, 

G. et. al., 

Presenting a method of 
deriving parallel I/O 

lower bounds for Dense 
linear algebra programs 

Running on 1,024 nodes of Piz Daint, COnfLUX communicates 1.6× less than the second-
best implementation and is expected to communicate 2.1× less on a full-scale and run on 

Summit 

3 Lang, N. et. al., 

Proposing efficient 
algorithms for solving 

large-scale matrix 
differential equations 

better performance of the proposed methods compared to earlier formulations 

4 
Likharev, K.K. 

et. al., 

The discussion of 
Fundamental 

limitations on the 
energy dissipated 

during one elementary 
logical operation 

The limits due to classical and quantum statistics are shown to lie well below the earlier 
estimates, k B T and ηϑ, respectively 

5 
Malley, D.O. et. 

al., 
 

Representing a novel 
computational 

architecture and have 
attracted significant 

interest 

The D-Wave 2X can be effectively used as part of an unsupervised machine learning 
method 

https://ieeexplore.ieee.org/author/38236896100
javascript:void(0);
javascript:void(0);
https://www.sciencedirect.com/science/article/pii/S0024379515002219#!
https://link.springer.com/article/10.1007/BF01857733#auth-K__K_-Likharev
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6 
Ostrouchov. et. 

al., 

Explaining the 
observed performance 

of sparse matrix 
factorization algorithms 
on parallel computers 

Finishing with a parameterized model that is capable of reproducing the full range of 
behavior within these bounds, including the speedups observed in practice 

7 
Prijatmoko, D. 

et. al., 

Quantifying changes in 
body composition and 
compare methods for 

measuring body 
composition in 

alcoholic cirrhosis 

With increasing severity of cirrhosis, total body water increased, whereas total body protein 
decreased with a significant decrease in serum albumin levels 

8 Steffen, P. et. al., 

Updating the compiler 
to include a parallel 

backend, launching a 
large number of 

independent threads 

Speedups ranging from 6.1× to 25.8× on an Nvidia GTX 280 through the CUDA libraries 

9 
MengTang. et. 

al., 

Presenting a 
multithreaded method 
for Supernodal sparse 
Cholesky factorization 
on a hybrid multicore 

platform consisting of a 
multicore CPU and 

GPU 

Improvement in performance and energy over single-threaded Supernodal algorithm 

10 
MengTang. et. 

al., 

presenting techniques 
for Supernodal sparse 
Cholesky factorization 
on a hybrid multicore 

platform consisting of a 
multicore CPU and 

GPU 

Improvement in performance and energy over CHOLMOD 

11 
Theurer, T. et. 

al., 

Introducing a rigorous 
resource theory 

framework for the 
quantification of 

superposition of a finite 
number of linear 

independent states 

Establishing a strong structural connection between superposition and entanglement 

12 
VanderAa, T. et. 

al., 

Proposing a distributed 
high-performance 

parallel implementation 
of the BPMF using 
Gibbs sampling on 

shared and distributed 
architectures 

Beating the state of the art implementations by using efficient load balancing and 
asynchronous communication 

13 
Wardah, W. et. 

al., 

Improving protein 
secondary structure 
prediction accuracy 

using neural networks 

Producing better protein secondary structure prediction from higher architecture complexity 

14 
Windley, P. F. et. 

al., 

The problem of 
transposing a matrix in 
the store of a computer 

Storing the data on the memory of a computer 

https://www.osti.gov/search/author:%22Ostrouchov,%20L%20S%22
https://www.osti.gov/search/author:%22Ostrouchov,%20L%20S%22
https://www.sciencedirect.com/science/article/abs/pii/001650859391083T#!
https://www.sciencedirect.com/science/article/abs/pii/001650859391083T#!
https://www.sciencedirect.com/science/article/pii/S1877050917308918#!
https://www.sciencedirect.com/science/article/abs/pii/S1877750317312164#!
https://www.sciencedirect.com/science/article/pii/S187705091730501X#!
https://www.sciencedirect.com/science/article/abs/pii/S1476927118305012#!
javascript:;
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15 
Yamazaki, I. et. 

al., 

Parallelizing the LU 
factorization of a 

hierarchical low-rank 
matrix (HH-matrix) on 
a distributed-memory 

computer 

Lower cost of factorization, which leads to a faster one 

16 

Zhang, D. et. al., 

 

Extend the original 
non-negative matrix 

factorization to kernel 
NMF 

Extracting more efficient features, dealing with data through knowing the relations, 
processing negative values 

 

3- Proposed Method 

3-1- Problem Statement 

As we all know, the four primary operations on a single bit 

of information are Identity, Negation, and Constants, 

including Constant-0, and Constant-1. As an intro, Identity 

and Negation are reversible but the Constants are 

irreversible. The proof is specified. A bit of information, 

which is either 0 or 1 and is stored on a Classical 

Computer and are considered as vectors. They are 

presented by (
 
 
) and (

 
 
), which are presenting the state 0 

and 1 in order. The operations are also considered by 

matrices. By considering the multiplication of an operation 

into a bit, we are going to have a vector, which is the new 

state of the mentioned bit. Regardless of the state of the 

entry bit, the Constants Matrices and the results are going 

to be the same in every possible way, due to the essence of 

their construction, so they are irreversible and the vice 

versa applies to Identity and Negation. We can do some 

factorization by knowing the features of a function, which 

would give us the ability of faster processing. It can even 

make some impossibilities, possible due to the physical 

limitations of our processing units. To know if a function 

is reversible or not, it can take up to thousands of years to 

do the whole process on a classical computer. Imagine we 

have a single bit of entry information, it would take two 

queries for us to get to know if the function is reversible or 

not (by considering that we do not much information of 

our function, which would be so valuable in many areas in 

different sciences as Analytical Chemistry since it could 

help us generating new constructions of materials by 

solving useful equations). We should input 0 and 1 each 

time to get the results and then we can recognize if it is 

reversible or not by comparing the outputs of each query. 

For two bits, again we should test every possible state of 

each bit, which would be 4 queries. In summary, we 

should have two to the power of n (2n) for n bits of entry 

information. Now consider we have a function with 

thousands of entries and we want to know if it is reversible 

or not. In a simple word, we cannot calculate it, because it 

takes thousands of years to be processed and we are going 

to represent a way to calculate the mentioned factor of a 

function with n bits of entry information in a single query 

on a quantum computer, which would take infinite years of 

calculations on a classical one [27]. 

 

 

 

Fig. 1 Proposed beam former 

3-2- Necessary Basics of Quantum Computing  

In quantum computing, unlike the classical one, we have 

more than two states for each bit. A Quantum bit could be 

in the states of 0 and 1 and both and every possible 

number between them as states. According to this 

definition, the states of a classical bit would be a part of 

the states of a quantum bit, which is more recognizable in 

figure 2. 

 Fig. 2  The comparison of a classical bit (Cbit) with a quantum bit (Qbit) 

 

 

https://journals.sagepub.com/doi/abs/10.1177/1094342019861139


    

Journal of Information Systems and Telecommunication, Vol.11, No.2, April-June 2023  

  

141 

3-3- Tensor Product  

We represent the quantum state of 0 by |0⟩ and 1 by |1⟩. As 

we discussed earlier, we represent states of a bit using 

vectors, which is an m×1 matrix, in which m=2^n and we 

are able to represent it as the Tensor Products of n 2×1 

vectors, which would be a lot helpful later on [28]. A 

Tensor Product of n vectors is: 

 
(1) 

  

Fig. 3  The representation of Tensor Product using shapes (which is 
similar to the chemical structure of materials) 

3-4- Quantum Gates 

There are a number of quantum gates out there, but we 

need a few of them and we will discuss them [29]. 

3-4-1 CNOT Gate 

CNOT gate is a 4×4 matrix and it changes the last two 

elements of the 4×1 matrix (Tensor Product of two 

vectors) [30]. It is represented by: 

 
(2) 

3-4-2 Bit-Flip Operator 

It is the Negation in Classical Computing and is used to 

produce the symmetry of the input state [31]. The matrix 

is: 

 
(3) 

3-4-3 Hadamard Gate 

This gate takes the input into a superposition, which is one 

of the four states: 

 
(4) 

3-4-4 Identity and Constants 

These are represented and called as the same as Classical 

Computing environment. Identity, Constant-0 and 

Constant-1 are represented in order: 

 
(5) 

3-5- Irreversible Quantity 

Quantum Computers are irreversible devices, which means 

we do not have the ability to perform irreversible 

operations in the same way of reversible ones, as we were 

acting on classical computers [32]. It is not permitted by 

the physical reality according to the quantum mechanics 

and properties of a quantum computer. To solve this 

problem, we can have two Qbits as an entry instead of one. 

 
Fig. 4  The solution for having irreversible functions on a reversible 

computer 

The input, which is labeled by output could be either 0 or 

1 and there is not much difference between them, because 

the answer would be symmetry if we use the other one. In 

this particular subject, we use |0⟩. The important output to 

us would be the one, which has been labeled by output, 

which the function would operate on. Now we can 

reversibly use Constants. 

3-6- Method 

Now we are going to calculate an algorithm on a single 

Qbit using one query to get to know if the unknown 

 

𝑎0
𝑎1
…
𝑎𝑛

  ⊗  

𝑏0
𝑏1
…
𝑏𝑛

  ⊗ … ⊗  

𝑧0
𝑧1
…
𝑧𝑛

  =  

𝑎0 ∗ 𝑏0 ∗ … ∗ 𝑧0
𝑎1 ∗ 𝑏1 ∗ … ∗ 𝑧1

…
𝑎𝑛 ∗ 𝑏𝑛 ∗ …∗ 𝑧𝑛

  

 

1  0  0  0
0  1  0  0
0  0  0  1
0  0  1  0
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function is reversible or not in which we should have two 

queries on a classical computer [33]. We are going to need 

two Qbits as entries for each Qbit. At first, we are going to 

get them through a Bit-Flip operator and then a Hadamard 

Gate, and after that we will apply our unknown function 

and at the end another Hadamard Gate and finally 

measuring the results. So it would look like this: 

 Fig. 5  The implemented Quantum Gates 

4- Results and Discussion 

At first, we apply the Bit-Flip and then the Hadamard Gate 

which gives the down results (by considering both the 

inputs at the state of |0⟩): 
Output

1
: 

 
(6) 

Input: 

 
(7) 

Now we apply each of the four primary gates and the 

Hadamard on them separately. 

Constant-0: 

Output: 

 

 
(8) 

Input: 

 

 
(9) 

So the result of measuring Constant-0 would be |11⟩. 
Constant-1: 

 

 

                                                           
1 A matrix can be represented in several ways. The best way to do this on 

a paper is to write it linearly. For example, the matrix 

 

𝑎    𝑎   …   𝑎 𝑛
𝑏    𝑏   …   𝑏  
…    …    …    …
𝑧𝑛   𝑧𝑛  …   𝑧𝑛 

 , which is a m × n matrix and it could be 

represented by: 

[(a11,a12,…,a1m) (b21,b22,…,b2m)… (zn1,zn2,…,znm)]T, which saves 
a lot of space. 

 

 

Output: 

 
(10) 

Input: 

 
(11) 

As we see, the result of measuring Constant-1 would be 

|11⟩ too. 

Identity: 

Output: 

 
(12) 

Input: 

 
(13) 

As a result, the measurement result of Identity was |  ⟩  
Negation: 

Output: 

 
(14) 

Input: 

 
(15) 

The result was the same as Identity, which is |01⟩. As you 

saw, the results of the Identity and Negation were equal 

(|01⟩), and the same happened for Constants (|11⟩). It is 

now proved that we can run the whole process on a single 

query, in which we need two queries on a classical 

computer. For one entry Qbit if the result comes out |01⟩, 
then the function is reversible, but if we get |11⟩, then the 

function would be irreversible. We are going to discuss the 

n Qbits through the next table. 

 

 

 

 

 

 

 

 

 

 

[(0,1)(1,0)]T × [1,0]T = [0,1]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [0,1]T = [1/√2 , -1/√2]T 

[(0,1)(1,0)]T × [1,0]T = [0,1]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [0,1]T = [1/√2 , -1/√2]T 

[1/√2 , -1/√2]T (No changes are applied) , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2 , -1/√2]T = 

[0,1]T = |1⟩ 

[1/√2 , -1/√2]T (No changes are applied) , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2 , -1/√2]T = 

[0,1]T = |1⟩  

[(0,1)(1,0)]T × [1/√2 , -1/√2]T = [-1/√2 , 1/√2]T ,  

  [(1/√2, 1/√2)(1/√2, -1/√2)]T × [-1/√2 , 1/√2]T = [0,1]T = |1⟩ 

[1/√2 , -1/√2]T (No changes are applied) , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2 , -1/√2]T = [0,-

1]T = |1⟩ 

[1/√2 , -1/√2]T (No changes are applied) ,   [(1/√2, 1/√2)(1/√2, -1/√2)]T × [-1/√2 , 1/√2]T = [0,1]T 

= |1⟩ 

[(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0)] ×[ [1/√2, -1/√2]T ⊗ [1/√2, -1/√2]T ]T 

= [1/√2, 1/√2]T ⊗ [1/√2, -1/√2]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2, 1/√2]T = [0,1]T 

= |0⟩ 

[(0,1)(1,0)]T × [1/√2, -1/√2]T =  [-1/√2, 1/√2]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [-1/√2, 1/√2]T = 

[0,-1]T = |1⟩ 

[(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0)] ×[ [1/√2, -1/√2]T ⊗ [1/√2, -1/√2]T ]T 

= [1/√2, 1/√2]T ⊗ [1/√2, -1/√2]T , , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2, 1/√2]T = [0,1]T 

= |0⟩ 
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Table 2: Expanding the algorithm for n Qbits 

Number 

of Qbits 
Reversible Irreversible 

1 
|01⟩ |11⟩ 

2 |0011⟩ |1111⟩ 

3 |000111⟩ |111111⟩ 

… … … 

n |00…011…1⟩ |11…1⟩ 

 

By considering the calculations, we can say for n Qbits as 

entry, we are going to need 2×n Qbits of memory due to 

the properties, which discussed earlier, and then we would 

apply the algorithm and we will face two conditions, a 

state including 2×n of 1s which is |11…1⟩ and we can 

conclude that the function is irreversible, but if we face a 

state including n×0s and n×1s which would be 

|00…011…1⟩, then the function is reversible. We got it in 

a single query. 

5- Main Difference Between the Method and 

Shor’s Algorithm 

As you have observed, we have proven it is possible for 

the purposed method to function as well as Shor’s 

algorithm, by the difference that other existing methods 

require much more complicated circuits than the method 

given in this paper. We will be comparing a few of them 

with the method brought up in this paper at the following 

table. The table is consisting of the best existing 

algorithms by considering required random access 

memory and the estimated time to implement the 

algorithm in order to get the hidden features of the given 

function, and as it is observable, the one brought up on this 

paper is going to get us going less than a minute by 

considering the implemented circuit and also the number 

of qubits, which we are going to need and in this case it 

would be two Qbits. 

Table 3: Publications in this area 

Publication 

Number of 

bits/Qbits 

required for 

the 

implementation 

of n bits/Qbits 

Estimated 

time (s) 

Kumar, G. et. al.,  
1024 

 
(≈) > 150 

Kwasniewski, 
G. et. al., 

 
512 

 
(≈) > 70 

 

Lang, N. et. al.,  
128 

 
(≈) > 20 

Likharev, K.K. 
et. al., 

 
16 

 
(≈) > 4 

Our proposed 
method 

 
2 

 
(≈) > 1 

6- Applying the Method on a Real Quantum 

Computer 

IBM is a high-tech industry, which does an important role 

in the United States economy [34]. The concentration of 

such high-tech companies is on the combination of 

Science, Technology, Engineering, and Mathematics, 

which is called STEM for short [35]. It is one of the fewest 

industries, which has Quantum Computers. They provided 

a framework for scientists and engineers to do their 

research on real Quantum Computers online. It is called 

Qiskit, which has been written in python and is open 

source and free to use [36]. By creating an account on the 

IBM website, we got access to real Quantum Computers 

and have done a short process, due to the number of 

processes and also physical limitations, so we could do it 

on two Qbits, which has been considered for a single bit of 

entry. We have done it by defining the necessary gates and 

entries to get it into a lineup, which has been established 

by IBM and when it is our turn, after getting checked by 

their agents, they processed it on a real Quantum 

Computer and sent us back the results. We have calculated 

the results of each primary operation on a single Qbit, in 

which we need two of them and we have exported all the 

data we entered including the source codes and the 

graphical figure of the implemented gates and also we 

exported the results we got from the calculations including 

the plots of the probabilities and amplitudes on 

computational basis states and an extra 3D Q-sphere, 

which is the exact state of the Qbit and it is represented in 

a 3D plot but we are unable to put it on the paper, due to 

its 3D feature, but we put a 2D version of it on the paper. 

6-1- Constant-0 

The source code of the four designed circuits is available 

at: 

https://github.com/sepehrgoodarzi6/The-four-primary-

operations-on-a-Qbit.git 

By measuring the results of the Qbits, we got the results 

showing on plots a 3D-sphere. According to the 

probability states and also amplitude, the measured 

probability of states of Qbits is a hundred percent |11⟩1
  

(which we have demonstrated in the previous section). 

                                                           
1
 There is no certainty in Quantum Mechanics and in fact, the probabilities are all we got, 

which are able to measure them so much faster than the certain results using classical 

computers and the point is that we are able to get to a point, which we can ensure we 

found the result we are looking for by repeating the calculation a few more time, which is 

still so much faster than any Classical Algorithm implemented on Classical Computers. 

https://ieeexplore.ieee.org/author/38236896100
javascript:void(0);
javascript:void(0);
https://www.sciencedirect.com/science/article/pii/S0024379515002219#!
https://link.springer.com/article/10.1007/BF01857733#auth-K__K_-Likharev
https://github.com/sepehrgoodarzi6/The-four-primary-operations-on-a-Qbit.git
https://github.com/sepehrgoodarzi6/The-four-primary-operations-on-a-Qbit.git
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Fig. 8  The implemented circuit for the Constant-0 test 

 

Fig. 9  The prediction of the probability states of Qbits of Constant-0 test 

 

Fig. 10  The amplitude on computational basis states of Constant-0 test 

 

Fig. 11  2D version of the 3D-sphere of Constant-0 test 

6-2- Constant-1 

According to the probability states and also amplitude, the 

measured probability of states of Qbits is a hundred 

percent |11⟩, exactly the same as the results we got from 

testing Constant-0.  

 

Fig. 12  The implemented circuit for the Constant-1 test 

 

Fig. 13  The prediction of the probability states of Qbits of Constant-1 

test 
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Fig. 14  The amplitude on computational basis states of Constant-1 test 

 

 

Fig. 15 2D version of the 3D-sphere of Constant-1 test 

6-3- Identity 

According to the probability states and also amplitude, the 

measured probability of states of Qbits is a hundred 

percent |10⟩, which varies from the results of the 

Constants. 

Fig. 16  The implemented circuit for the Identity test 

 

Fig. 17  The prediction of the probability states of Qbits of Identity test 

 

Fig. 18  The amplitude on computational basis states of Identity test 
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Fig. 19  2D version of the 3D-sphere of Identity test 

6-4- Negation 

According to the probability states and also amplitude, the 

measured probability of states of Qbits is a hundred 

percent |10⟩, which varies from the results of the Constants 

and is the same as Identity. 

 

Fig. 20 The implemented circuit for the Negation test 

 

Fig. 21 The prediction of the probability states of Qbits of Negation test 

 

Fig. 22 The amplitude on computational basis states of Negation test 

 

 

Fig. 23 2D version of the 3D-sphere of Negation test 

6-5- Results Review 

By measuring the results of the Qbits, we got the results 

showing on plots a 3D-sphere. According to the 

probability states and also amplitude, the measured 

probability of states of Qbits is a hundred percent |11⟩ 
(which we have demonstrated in the previous sections). 

According to the probability states and also amplitude, the 

measured probability of states of Qbits is a hundred 

percent |11⟩, exactly the same as the results we got from 

testing Constant-0. By considering the probability states 

and also amplitude, the measured probability of states of 

Qbits of Negation is a hundred percent |10⟩, which varies 

from the results of the Constants. 
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According to the probability states and also amplitude, the 

measured probability of states of Qbits is a hundred 

percent |10⟩, which varies from the results of the Constants 

and is the same as Identity. 

By having this information, we are going to be able to 

predict the results of these sorts of functions by testing two 

opponents of them. 

7- Conclusions 

In summary, we can model every single quantum bit of 

information existing all around the world, including the 

quantum world or many observable entities in a 

mathematical way, which would be Linear Algebra and by 

taking advantage of the principles of Quantum Dynamics, 

we can speed up the calculations by outperforming the 

best classical algorithms, which are implemented on the 

classical computers. By having these kinds of information, 

we are going to be able to predict the results of these sorts 

of functions by testing two opponents of them instead of 

calculating the whole entities, and by this method, we are 

going to be able to increase the pace of the calculations at 

a high rate. By speeding up the calculations, we can 

achieve the results of the most complex problems, which 

we are dealing with now, the ones we were not able to 

solve even in years and they took thousands of years like 

the ability to predict every possible Secondary Structure of 

Proteins and so on. But since the middle of the late 90th 

century, scientists have proved we can process them in a 

short amount of time if we have the real Quantum 

Computers with real Quantum Processors and now, we are 

achieving that goal. The only restriction of this method is 

that we cannot use it for Non-Quantum processing, and 

also they are not applicable in all subject of areas. In a few 

years, we are going to have a massive revolution in all the 

subject areas of Science and Technology.  
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