

 Afshin Rezakhani

rezakhani@abru.ac.ir

Journal of Information Systems and Telecommunication
Vol.11, No.2, April-June 2023, 135-148

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

’

1
. Department of Computer Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran

Received: 24 Dec 2021/ Revised: 16 Apr 2022/ Accepted: 17 May 2022

Abstract
The data are stored on the memory of the classical computer in small units of classical bits, which could be either 0 or 1.

However, on a Quantum Computer, The Quantum States of each Quantum Bit (Qbit), would be every possible number

between 0 and 1, including themselves. By placing the photons on a special state, which is a spot located at the middle of

the two-dimensional space vectors (

) and (

) on the Unit Circle, which is called Superposition and we can take

advantage of properties of this state when we place lots of vectors of N-dimensional spaces in superposition and we can do

a parallelization and factorization for getting significant speedup. In fact, in Quantum Computing we are taking advantage

of Quantum Dynamic Principles to process the data, which Classical Computers lack on, by considering the limitations of

logical concepts behind them. Through this paper, we expand a quantum algorithm for the number of n Qbits in a new way

and by implementing circuits using IBM-Q Experience, we are going to have some practical results, which are more

obvious to be demonstrable. By expanding the Quantum Algorithms and using Linear Algebra, we can manage to achieve

the goals at a higher level, the ones that Classical Computers are unable to perform, as machine learning problems with

complicated models and by expanding the subject we can mention majors in different sciences like Chemistry (predicting

the Structure of proteins with higher percentage accuracy in less period), Astronomy and so on.

Keywords: Quantum Computer; Quantum Dynamics; Unit Circle; N-dimensional Space; IBM-Q Experience.

1- Introduction

Nowadays, the act of factorization in mathematics is so

popular among scientists and also engineers due to the

extensive applications coming with it. Applications such

as the optimization of the processing algorithms, which

are exclusively written to be processed on Graphics

Processing Units, which can run a lot faster than Central

Processing Units due to their special parallelization and

so on [1, 2]. Another capability of factorization is that it

can help us solve differential matrix equations on a large-

scale and would be practical in Linear Algebra [3],

therefore it would be practical in computer science by

considering the foundation of computers, which every

classical bit is defined by matrices and the operation on

them would be matrices and matrices are coming from

Linear Algebra [4], therefore it is directly related to

computer science. For example, it has been proved we

can pull out more functional properties of some specific

data across non-linear mappings, negative valued data

processing, and also reviewing the data with only known

relationships with them and all the three mentioned

properties have been obtained by using the non-negative

matrix factorization in a publication [5]. This subject is

not related just to some specific branches of science and

it is useful in many subjects. As an example, the

simulation of materials is so important, given that if it

would be possible to simulate the exact construction of a

specific protein, then we would be able to cure many

diseases since many of them are caused by the lack of

some protein or shortages in the structure proteins [6].

By considering the amino acids, which are the main

formational units of proteins, they can create many

different types of proteins, according to the chemical

structure they have and the types of chemical structure

they can form. By expanding the data range, we are

Goodarzi, Rezakhani & Maleki, Representing a Novel Expanded Version of Shor’s Algorithm and a Real-Time Experiment using …

136

going to need much more power and resources to process

the data, but we can use some factorization methods to

factor and classify data, which would be easier for

computers to process and simulate but sometimes it

becomes impossible to do such calculations using the

classical computers, the ones which are working with

classical bits [7].

Classical computers are too weak to process a huge

amount of data using some algorithms and it may take

thousands of years to get the results, so it would be

useless in that case. This occurs due to their classical

properties and their physical limitations [8]. we are going

to be more precise on this subject, we are going to check

a paper, which has been published and it is concentrated

on reviewing some machine learning methods to

calculate the protein secondary structure prediction.

Proteins are molecules, which carry out essential

subordinates in almost all operations in the human body.

They are made up of amino acid macromolecules and

there are about 500 amino acids out there but 20 of them

are coded by the genome to construct the necessary

proteins for the human body. In summary, by

considering a collection of n amino acids, 2n types of

proteins with different constructions are possible to build.

As a result, for 250 amino acids, we are going to have,

2250 proteins, which is a large number of species and it

needs a very long time, so many powerful hardware and

so much power source to calculate every possible state,

which is not efficient [9].

Decades ago, a scientist presented another method of

computation varying from classical computation and it is

called Quantum Computation, which uses Qbits rather

than Classical bits. As we know, classical bits can be in

either two states of 0 or 1, which are presented by (

) as

0 and (

) as 1 and there are the only states, which a

classical bit can be at a time, but in quantum computation

a Qbit, which has the same functionality as the bits in

Classical Computing, but it can be in more states at a

time. A Qbit can be 0 or 1 or both the 0 and 1 together,

which is a quantum property of the underlying atomic

particles. This is called ―Super Position‖ in Quantum

Mechanics [10]. Scientists are using these properties to

their advantage. Superposition means, that an Electron

could be in both of the 0 and 1 states at once. According

to the cause, Quantum Bits include Classical Bits as

special states. These underlying atomic particles have

more weird properties such as ―Entanglement‖ and

―supremacy‖ [11], which we are not going to talk about

and the superposition is the most important part of our

research. Another useful feature of a Quantum Computer

is, that it is reversible, which works this way, because of

its physical properties and limitations and we are going

to take advantage of this property later on. There are four

primary operations, which can be done on a single bit of

information including, Identity, Negation, Constant-0

and Constant-1, which we are going to have more focus

on, later in this paper. For an introduction, Identity and

Negation are reversible, but Constant-0 and Constant-1

are irreversible and we are going to have to write them in

a reversible way. By knowing a factor like being

reversible or irreversible of an unknown function, we can

do the factorization to get more properties of that

function, which is very useful, as described earlier. In a

classical computer, it can take 2 queries to process it by

having one bit as an input to know if our unknown

function is irreversible or not, whereas a quantum

computer would do it on a single query, which is a

massive speedup. As a result, for every 2 bits, we are

going to need a single query, which is half the time and

at the end, we are going to need √(2^n) queries for n

bits.

At first, we had an abstract of the whole paper. After that,

we considered four sections in the introduction. In the

first part of the introduction, we checked the importance

and the capabilities of the factorization operation, then

we reviewed the lack of classical computers in

calculating the properties of unknown functions in order

to factor and classify those properties. After that, by

addressing the quantum mechanics and quantum

computer properties, we claimed we are able to do a

calculation to get the mentioned property on a quantum

computer with half the time for getting the same result

on a classical computer. Now we are reviewing the

sections of the paper and then we are going to have the

algorithm of doing the calculation on a quantum

computer on paper and the result of an experiment on a

real quantum computer using the cloud-base framework

IBM has introduced for the researchers to have access to

real quantum computers by aiming the real experiments

on real quantum computers. At last, we are going to have

a discussion and then the references. By using the

mentioned methods and, at most of them, we must do the

whole calculations of the existing entities of the function

to get to know more about the features of the function in

order to do some factorizations regarding to increase the

pace of further calculations.

2- Related Works

Major In general, mathematical thinking and

computation has been doing an important role in our

lives and the advancement of various sciences. We are

going to discuss a number of the related research jobs,

which has been done in this area a few years ago and we

are going to know the importance of the discussed

subject in the following section. Our special subject in

Journal of Information Systems and Telecommunication, Vol.11, No.2, April-June 2023

137

the discussion would be the pros of mathematical

factorization on algorithms and the approach to it.

A recent work, which has been done earlier, shows the

benefits of Maximization-Factorization Statics on an

advance in computer science, which is Blockchain

Technology and also Internet-of-Things, which has been

published in IEEE Internet of Things Journal. The pros

include using less memory and power and also they are

the less iteration to converge to the consensus solution

and easiness to configure the complete mathematical

model as per the requirement [12]. Another work has

been published on PPoPP '21: Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, in which the authors have

proposed a method of deriving parallel I/O lower bounds

for the programs and they derive COnfLUX, an LU

algorithm with the parallel I/O cost of

N3/([EQUATION]) communicated elements per

processor - only 1/3× over our established lower bound,

which would be considered as a massive speedup [13].

Through another one, the authors show, that the D-Wave

2X can be effectively used as part of an unsupervised

machine learning method. The used method takes a

matrix as input and produces two low-rank matrices as

output—one containing latent features in the data and

another matrix describing how the features can be

combined to approximately reproduce the input matrix.

Despite the limited number of bits in the D-Wave

hardware, this method is capable of handling a large

input matrix. The D-Wave only limits the rank of the two

output matrices. They applied their method to learn the

features from a set of facial images and compare the

performance of the D-Wave to two classical tools [14].

Another job, which has been published on IEEE Access,

proposes two techniques for overcoming load-imbalance

encountered when implementing so-called look-ahead

mechanisms in relevant dense matrix factorizations for

the solution of linear systems. The first technique

promotes worker sharing (WS) between the two tasks,

allowing the threads of the task that completes first to be

reallocated for use by the costlier task. The second

technique allows a fast task to alert the slower task of

completion, enforcing the early termination (ET) of the

second task, and a smooth transition of the factorization

procedure into the next iteration [15]. In another research,

a person named Reid Atcheson, who is a Ph.D. in

Computational and Applied Mathematics, proposed a

way to use non-Euclidean norms to formulate a QR-like

factorization which can unlock interesting and

potentially useful properties of non-Euclidean norms -

for example, the ability of l1 norm to suppresses outliers

or promote sparsity. At the end of his paper, he

confirmed the results using python [16]. Through another

work, the authors propose a novel solution to this

problem: at the mathematical level, we reduce the

computational requirement by exploiting the data

sparsity structure of the matrix off-diagonal tiles utilizing

low-rank approximations; and, at the programming-

paradigm level, we integrate PaRSEC, a dynamic, task-

based runtime to reach unparalleled levels of efficiency

for solving extreme-scale linear algebra matrix

operations. The paper has been published on PASC '20:

Proceedings of the Platform for Advanced Scientific

Computing Conference [17]. In another research, the

authors have proposed to factorize the matrix using a

―lattice HH-matrix‖ format that generalizes the BLR

format by storing each of the blocks (both diagonals and

off-diagonals) in the HH-matrix format. These blocks

stored in the HH-matrix format are referred to as lattices.

Thus, this lattice format aims to combine the parallel

scalability of BLR factorization with the near-linear

complexity of HH-matrix factorization. At the very first

step, they compared factorization performances using the

HH-matrix, BLR, and lattice HH-matrix formats under

various conditions on a shared-memory computer. The

performance results show that the lattice format has

storage and computational complexities similar to those

of the HH-matrix format, and hence a much lower cost of

factorization than BLR [18]. In another research, the

authors describe efficient algorithms for computing rank-

revealing factorizations of matrices that are too large to

fit in RAM, and must instead be stored on slow external

memory devices such as solid-state or spinning disk hard

drives (out-of-core or out-of-memory). They propose

separate methods. The first is a blocked version of

column pivoted Householder QR, organized as a "left-

looking" method to minimize the number of write

operations (which are more expensive than reading

operations on a spinning disk drive). The second method

results in a so-called UTV factorization which expresses

a matrix A as A=UTV× where U and V are unitary, and

T is triangular. This method is organized as an

algorithm-by-blocks, in which floating-point operations

overlap read and write operations [19]. In another work,

the authors proposed a distributed high-performance

parallel implementation of the BPMF using Gibbs

sampling on shared and distributed architectures. They

have shown by using efficient load balancing using

work-stealing on a single node, and by using

asynchronous communication in the distributed version

they beat state-of-the-art implementations [20]. Through

another paper, which has been published in IEEE

Transactions on Services Computing, they addressed a

privacy bug in clouds by presenting a novel outsourced

scheme for NMF (O-NMF), which aims to lessen clients'

computing burden and tackle security problems faced by

outsourcing NMF [21]. Through another research, which

has been published in 2017 IEEE International Parallel

and Distributed Processing Symposium Workshops

(IPDPSW), Batch matrix operations address the case of

Goodarzi, Rezakhani & Maleki, Representing a Novel Expanded Version of Shor’s Algorithm and a Real-Time Experiment using …

138

solving the same linear algebra problem for a very large

number of very small matrices. They focused on

implementing the batch Cholesky factorization in CUDA,

in single-precision arithmetic, for NVIDIA GPUs and

also the benefits of using noncanonical data layouts,

where consecutive memory locations store elements with

the same row and column index in a set of consecutive

matrices [22]. In another work, the authors provide a

comprehensive survey of mixed-precision numerical

linear algebra routines, including the underlying concepts,

theoretical background, and experimental results for both

dense and sparse linear algebra problems [23]. Through

another work, the authors provide techniques for

Supernodal Sparse Cholesky factorization on a hybrid

multicore platform consisting of a multicore CPU and

GPU. The techniques are the subtree algorithm,

pipelining and, multithreading. The subtree algorithm

minimizes PCIe transmissions by storing an entire

branch of the elimination tree in the GPU memory (the

elimination tree is a tree data structure describing the

workflow of the factorization) and also reduces the total

kernel launch time by launching BLAS kernels in

batches [24]. In another job, the authors highlight the

necessary development of new instrumentation tools

within the PaRSE task-based runtime system to leverage

the performance of low-rank matrix computations. They

demonstrate the benefits of these amenable tools while

assessing the performance of TLR Cholesky

factorization from data distribution, communication-

reducing, and synchronization-reducing perspectives.

The mentioned tool-assisted performance analysis results

in three major contributions: a new hybrid data

distribution, a new hierarchical TLR Cholesky algorithm,

and a new performance model for tuning the tile size.

The new TLR Cholesky factorization achieves an 8X

performance speedup over existing implementations on

massively parallel supercomputers, toward solving large-

scale 3D climate and weather prediction applications

[25]. And finally, in the last mentioning paper, the

authors present a multithreaded method for Supernodal

Sparse Cholesky factorization on a hybrid multicore

platform consisting of a multicore CPU and GPU. The

mentioned algorithm can utilize concurrency at different

levels of the elimination tree by using multiple threads in

both the CPU and the GPU. The elimination tree is a tree

data structure describing the workflow of the

factorization. The results on a platform consisting of an

Intel multicore processor along with an Nvidia GPU

indicate a significant improvement in performance and

energy over a single-threaded Supernodal algorithm [26].

Table 1: Presenting the Related Works with Details

Number Publication Description Efficiency

1 Kumar, G. et. al.,

Discussing an efficient
statistical method with

a proof-of-work
consensus approach for

cloud and fog
computing

Less iteration to converge to the consensus solution and easiness to configure the complete
mathematical model as per the requirement and also less energy and memory are needed

2
Kwasniewski,

G. et. al.,

Presenting a method of
deriving parallel I/O

lower bounds for Dense
linear algebra programs

Running on 1,024 nodes of Piz Daint, COnfLUX communicates 1.6× less than the second-
best implementation and is expected to communicate 2.1× less on a full-scale and run on

Summit

3 Lang, N. et. al.,

Proposing efficient
algorithms for solving

large-scale matrix
differential equations

better performance of the proposed methods compared to earlier formulations

4
Likharev, K.K.

et. al.,

The discussion of
Fundamental

limitations on the
energy dissipated

during one elementary
logical operation

The limits due to classical and quantum statistics are shown to lie well below the earlier
estimates, k B T and ηϑ, respectively

5
Malley, D.O. et.

al.,

Representing a novel
computational

architecture and have
attracted significant

interest

The D-Wave 2X can be effectively used as part of an unsupervised machine learning
method

https://ieeexplore.ieee.org/author/38236896100
javascript:void(0);
javascript:void(0);
https://www.sciencedirect.com/science/article/pii/S0024379515002219#!
https://link.springer.com/article/10.1007/BF01857733#auth-K__K_-Likharev

Journal of Information Systems and Telecommunication, Vol.11, No.2, April-June 2023

139

6
Ostrouchov. et.

al.,

Explaining the
observed performance

of sparse matrix
factorization algorithms
on parallel computers

Finishing with a parameterized model that is capable of reproducing the full range of
behavior within these bounds, including the speedups observed in practice

7
Prijatmoko, D.

et. al.,

Quantifying changes in
body composition and
compare methods for

measuring body
composition in

alcoholic cirrhosis

With increasing severity of cirrhosis, total body water increased, whereas total body protein
decreased with a significant decrease in serum albumin levels

8 Steffen, P. et. al.,

Updating the compiler
to include a parallel

backend, launching a
large number of

independent threads

Speedups ranging from 6.1× to 25.8× on an Nvidia GTX 280 through the CUDA libraries

9
MengTang. et.

al.,

Presenting a
multithreaded method
for Supernodal sparse
Cholesky factorization
on a hybrid multicore

platform consisting of a
multicore CPU and

GPU

Improvement in performance and energy over single-threaded Supernodal algorithm

10
MengTang. et.

al.,

presenting techniques
for Supernodal sparse
Cholesky factorization
on a hybrid multicore

platform consisting of a
multicore CPU and

GPU

Improvement in performance and energy over CHOLMOD

11
Theurer, T. et.

al.,

Introducing a rigorous
resource theory

framework for the
quantification of

superposition of a finite
number of linear

independent states

Establishing a strong structural connection between superposition and entanglement

12
VanderAa, T. et.

al.,

Proposing a distributed
high-performance

parallel implementation
of the BPMF using
Gibbs sampling on

shared and distributed
architectures

Beating the state of the art implementations by using efficient load balancing and
asynchronous communication

13
Wardah, W. et.

al.,

Improving protein
secondary structure
prediction accuracy

using neural networks

Producing better protein secondary structure prediction from higher architecture complexity

14
Windley, P. F. et.

al.,

The problem of
transposing a matrix in
the store of a computer

Storing the data on the memory of a computer

https://www.osti.gov/search/author:%22Ostrouchov,%20L%20S%22
https://www.osti.gov/search/author:%22Ostrouchov,%20L%20S%22
https://www.sciencedirect.com/science/article/abs/pii/001650859391083T#!
https://www.sciencedirect.com/science/article/abs/pii/001650859391083T#!
https://www.sciencedirect.com/science/article/pii/S1877050917308918#!
https://www.sciencedirect.com/science/article/abs/pii/S1877750317312164#!
https://www.sciencedirect.com/science/article/pii/S187705091730501X#!
https://www.sciencedirect.com/science/article/abs/pii/S1476927118305012#!
javascript:;

Goodarzi, Rezakhani & Maleki, Representing a Novel Expanded Version of Shor’s Algorithm and a Real-Time Experiment using …

140

15
Yamazaki, I. et.

al.,

Parallelizing the LU
factorization of a

hierarchical low-rank
matrix (HH-matrix) on
a distributed-memory

computer

Lower cost of factorization, which leads to a faster one

16

Zhang, D. et. al.,

Extend the original
non-negative matrix

factorization to kernel
NMF

Extracting more efficient features, dealing with data through knowing the relations,
processing negative values

3- Proposed Method

3-1- Problem Statement

As we all know, the four primary operations on a single bit

of information are Identity, Negation, and Constants,

including Constant-0, and Constant-1. As an intro, Identity

and Negation are reversible but the Constants are

irreversible. The proof is specified. A bit of information,

which is either 0 or 1 and is stored on a Classical

Computer and are considered as vectors. They are

presented by (

) and (

), which are presenting the state 0

and 1 in order. The operations are also considered by

matrices. By considering the multiplication of an operation

into a bit, we are going to have a vector, which is the new

state of the mentioned bit. Regardless of the state of the

entry bit, the Constants Matrices and the results are going

to be the same in every possible way, due to the essence of

their construction, so they are irreversible and the vice

versa applies to Identity and Negation. We can do some

factorization by knowing the features of a function, which

would give us the ability of faster processing. It can even

make some impossibilities, possible due to the physical

limitations of our processing units. To know if a function

is reversible or not, it can take up to thousands of years to

do the whole process on a classical computer. Imagine we

have a single bit of entry information, it would take two

queries for us to get to know if the function is reversible or

not (by considering that we do not much information of

our function, which would be so valuable in many areas in

different sciences as Analytical Chemistry since it could

help us generating new constructions of materials by

solving useful equations). We should input 0 and 1 each

time to get the results and then we can recognize if it is

reversible or not by comparing the outputs of each query.

For two bits, again we should test every possible state of

each bit, which would be 4 queries. In summary, we

should have two to the power of n (2n) for n bits of entry

information. Now consider we have a function with

thousands of entries and we want to know if it is reversible

or not. In a simple word, we cannot calculate it, because it

takes thousands of years to be processed and we are going

to represent a way to calculate the mentioned factor of a

function with n bits of entry information in a single query

on a quantum computer, which would take infinite years of

calculations on a classical one [27].

Fig. 1 Proposed beam former

3-2- Necessary Basics of Quantum Computing

In quantum computing, unlike the classical one, we have

more than two states for each bit. A Quantum bit could be

in the states of 0 and 1 and both and every possible

number between them as states. According to this

definition, the states of a classical bit would be a part of

the states of a quantum bit, which is more recognizable in

figure 2.

 Fig. 2 The comparison of a classical bit (Cbit) with a quantum bit (Qbit)

https://journals.sagepub.com/doi/abs/10.1177/1094342019861139

Journal of Information Systems and Telecommunication, Vol.11, No.2, April-June 2023

141

3-3- Tensor Product

We represent the quantum state of 0 by |0⟩ and 1 by |1⟩. As

we discussed earlier, we represent states of a bit using

vectors, which is an m×1 matrix, in which m=2^n and we

are able to represent it as the Tensor Products of n 2×1

vectors, which would be a lot helpful later on [28]. A

Tensor Product of n vectors is:

(1)

Fig. 3 The representation of Tensor Product using shapes (which is
similar to the chemical structure of materials)

3-4- Quantum Gates

There are a number of quantum gates out there, but we

need a few of them and we will discuss them [29].

3-4-1 CNOT Gate

CNOT gate is a 4×4 matrix and it changes the last two

elements of the 4×1 matrix (Tensor Product of two

vectors) [30]. It is represented by:

(2)

3-4-2 Bit-Flip Operator

It is the Negation in Classical Computing and is used to

produce the symmetry of the input state [31]. The matrix

is:

(3)

3-4-3 Hadamard Gate

This gate takes the input into a superposition, which is one

of the four states:

(4)

3-4-4 Identity and Constants

These are represented and called as the same as Classical

Computing environment. Identity, Constant-0 and

Constant-1 are represented in order:

(5)

3-5- Irreversible Quantity

Quantum Computers are irreversible devices, which means

we do not have the ability to perform irreversible

operations in the same way of reversible ones, as we were

acting on classical computers [32]. It is not permitted by

the physical reality according to the quantum mechanics

and properties of a quantum computer. To solve this

problem, we can have two Qbits as an entry instead of one.

Fig. 4 The solution for having irreversible functions on a reversible

computer

The input, which is labeled by output could be either 0 or

1 and there is not much difference between them, because

the answer would be symmetry if we use the other one. In

this particular subject, we use |0⟩. The important output to

us would be the one, which has been labeled by output,

which the function would operate on. Now we can

reversibly use Constants.

3-6- Method

Now we are going to calculate an algorithm on a single

Qbit using one query to get to know if the unknown

𝑎0
𝑎1
…
𝑎𝑛

 ⊗

𝑏0
𝑏1
…
𝑏𝑛

 ⊗ … ⊗

𝑧0
𝑧1
…
𝑧𝑛

 =

𝑎0 ∗ 𝑏0 ∗ … ∗ 𝑧0
𝑎1 ∗ 𝑏1 ∗ … ∗ 𝑧1

…
𝑎𝑛 ∗ 𝑏𝑛 ∗ …∗ 𝑧𝑛

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Goodarzi, Rezakhani & Maleki, Representing a Novel Expanded Version of Shor’s Algorithm and a Real-Time Experiment using …

142

function is reversible or not in which we should have two

queries on a classical computer [33]. We are going to need

two Qbits as entries for each Qbit. At first, we are going to

get them through a Bit-Flip operator and then a Hadamard

Gate, and after that we will apply our unknown function

and at the end another Hadamard Gate and finally

measuring the results. So it would look like this:

 Fig. 5 The implemented Quantum Gates

4- Results and Discussion

At first, we apply the Bit-Flip and then the Hadamard Gate

which gives the down results (by considering both the

inputs at the state of |0⟩):
Output

1
:

(6)

Input:

(7)

Now we apply each of the four primary gates and the

Hadamard on them separately.

Constant-0:

Output:

(8)

Input:

(9)

So the result of measuring Constant-0 would be |11⟩.
Constant-1:

1 A matrix can be represented in several ways. The best way to do this on

a paper is to write it linearly. For example, the matrix

𝑎 𝑎 … 𝑎 𝑛
𝑏 𝑏 … 𝑏
… … … …
𝑧𝑛 𝑧𝑛 … 𝑧𝑛

 , which is a m × n matrix and it could be

represented by:

[(a11,a12,…,a1m) (b21,b22,…,b2m)… (zn1,zn2,…,znm)]T, which saves
a lot of space.

Output:

(10)

Input:

(11)

As we see, the result of measuring Constant-1 would be

|11⟩ too.

Identity:

Output:

(12)

Input:

(13)

As a result, the measurement result of Identity was | ⟩
Negation:

Output:

(14)

Input:

(15)

The result was the same as Identity, which is |01⟩. As you

saw, the results of the Identity and Negation were equal

(|01⟩), and the same happened for Constants (|11⟩). It is

now proved that we can run the whole process on a single

query, in which we need two queries on a classical

computer. For one entry Qbit if the result comes out |01⟩,
then the function is reversible, but if we get |11⟩, then the

function would be irreversible. We are going to discuss the

n Qbits through the next table.

[(0,1)(1,0)]T × [1,0]T = [0,1]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [0,1]T = [1/√2 , -1/√2]T

[(0,1)(1,0)]T × [1,0]T = [0,1]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [0,1]T = [1/√2 , -1/√2]T

[1/√2 , -1/√2]T (No changes are applied) , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2 , -1/√2]T =

[0,1]T = |1⟩

[1/√2 , -1/√2]T (No changes are applied) , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2 , -1/√2]T =

[0,1]T = |1⟩

[(0,1)(1,0)]T × [1/√2 , -1/√2]T = [-1/√2 , 1/√2]T ,

 [(1/√2, 1/√2)(1/√2, -1/√2)]T × [-1/√2 , 1/√2]T = [0,1]T = |1⟩

[1/√2 , -1/√2]T (No changes are applied) , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2 , -1/√2]T = [0,-

1]T = |1⟩

[1/√2 , -1/√2]T (No changes are applied) , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [-1/√2 , 1/√2]T = [0,1]T

= |1⟩

[(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0)] ×[[1/√2, -1/√2]T ⊗ [1/√2, -1/√2]T]T

= [1/√2, 1/√2]T ⊗ [1/√2, -1/√2]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2, 1/√2]T = [0,1]T

= |0⟩

[(0,1)(1,0)]T × [1/√2, -1/√2]T = [-1/√2, 1/√2]T , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [-1/√2, 1/√2]T =

[0,-1]T = |1⟩

[(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0)] ×[[1/√2, -1/√2]T ⊗ [1/√2, -1/√2]T]T

= [1/√2, 1/√2]T ⊗ [1/√2, -1/√2]T , , [(1/√2, 1/√2)(1/√2, -1/√2)]T × [1/√2, 1/√2]T = [0,1]T

= |0⟩

Journal of Information Systems and Telecommunication, Vol.11, No.2, April-June 2023

143

Table 2: Expanding the algorithm for n Qbits

Number

of Qbits
Reversible Irreversible

1
|01⟩ |11⟩

2 |0011⟩ |1111⟩

3 |000111⟩ |111111⟩

… … …

n |00…011…1⟩ |11…1⟩

By considering the calculations, we can say for n Qbits as

entry, we are going to need 2×n Qbits of memory due to

the properties, which discussed earlier, and then we would

apply the algorithm and we will face two conditions, a

state including 2×n of 1s which is |11…1⟩ and we can

conclude that the function is irreversible, but if we face a

state including n×0s and n×1s which would be

|00…011…1⟩, then the function is reversible. We got it in

a single query.

5- Main Difference Between the Method and

Shor’s Algorithm

As you have observed, we have proven it is possible for

the purposed method to function as well as Shor’s

algorithm, by the difference that other existing methods

require much more complicated circuits than the method

given in this paper. We will be comparing a few of them

with the method brought up in this paper at the following

table. The table is consisting of the best existing

algorithms by considering required random access

memory and the estimated time to implement the

algorithm in order to get the hidden features of the given

function, and as it is observable, the one brought up on this

paper is going to get us going less than a minute by

considering the implemented circuit and also the number

of qubits, which we are going to need and in this case it

would be two Qbits.

Table 3: Publications in this area

Publication

Number of

bits/Qbits

required for

the

implementation

of n bits/Qbits

Estimated

time (s)

Kumar, G. et. al.,
1024

(≈) > 150

Kwasniewski,
G. et. al.,

512

(≈) > 70

Lang, N. et. al.,
128

(≈) > 20

Likharev, K.K.
et. al.,

16

(≈) > 4

Our proposed
method

2

(≈) > 1

6- Applying the Method on a Real Quantum

Computer

IBM is a high-tech industry, which does an important role

in the United States economy [34]. The concentration of

such high-tech companies is on the combination of

Science, Technology, Engineering, and Mathematics,

which is called STEM for short [35]. It is one of the fewest

industries, which has Quantum Computers. They provided

a framework for scientists and engineers to do their

research on real Quantum Computers online. It is called

Qiskit, which has been written in python and is open

source and free to use [36]. By creating an account on the

IBM website, we got access to real Quantum Computers

and have done a short process, due to the number of

processes and also physical limitations, so we could do it

on two Qbits, which has been considered for a single bit of

entry. We have done it by defining the necessary gates and

entries to get it into a lineup, which has been established

by IBM and when it is our turn, after getting checked by

their agents, they processed it on a real Quantum

Computer and sent us back the results. We have calculated

the results of each primary operation on a single Qbit, in

which we need two of them and we have exported all the

data we entered including the source codes and the

graphical figure of the implemented gates and also we

exported the results we got from the calculations including

the plots of the probabilities and amplitudes on

computational basis states and an extra 3D Q-sphere,

which is the exact state of the Qbit and it is represented in

a 3D plot but we are unable to put it on the paper, due to

its 3D feature, but we put a 2D version of it on the paper.

6-1- Constant-0

The source code of the four designed circuits is available

at:

https://github.com/sepehrgoodarzi6/The-four-primary-

operations-on-a-Qbit.git

By measuring the results of the Qbits, we got the results

showing on plots a 3D-sphere. According to the

probability states and also amplitude, the measured

probability of states of Qbits is a hundred percent |11⟩1

(which we have demonstrated in the previous section).

1
 There is no certainty in Quantum Mechanics and in fact, the probabilities are all we got,

which are able to measure them so much faster than the certain results using classical

computers and the point is that we are able to get to a point, which we can ensure we

found the result we are looking for by repeating the calculation a few more time, which is

still so much faster than any Classical Algorithm implemented on Classical Computers.

https://ieeexplore.ieee.org/author/38236896100
javascript:void(0);
javascript:void(0);
https://www.sciencedirect.com/science/article/pii/S0024379515002219#!
https://link.springer.com/article/10.1007/BF01857733#auth-K__K_-Likharev
https://github.com/sepehrgoodarzi6/The-four-primary-operations-on-a-Qbit.git
https://github.com/sepehrgoodarzi6/The-four-primary-operations-on-a-Qbit.git

Goodarzi, Rezakhani & Maleki, Representing a Novel Expanded Version of Shor’s Algorithm and a Real-Time Experiment using …

144

Fig. 8 The implemented circuit for the Constant-0 test

Fig. 9 The prediction of the probability states of Qbits of Constant-0 test

Fig. 10 The amplitude on computational basis states of Constant-0 test

Fig. 11 2D version of the 3D-sphere of Constant-0 test

6-2- Constant-1

According to the probability states and also amplitude, the

measured probability of states of Qbits is a hundred

percent |11⟩, exactly the same as the results we got from

testing Constant-0.

Fig. 12 The implemented circuit for the Constant-1 test

Fig. 13 The prediction of the probability states of Qbits of Constant-1

test

Journal of Information Systems and Telecommunication, Vol.11, No.2, April-June 2023

145

Fig. 14 The amplitude on computational basis states of Constant-1 test

Fig. 15 2D version of the 3D-sphere of Constant-1 test

6-3- Identity

According to the probability states and also amplitude, the

measured probability of states of Qbits is a hundred

percent |10⟩, which varies from the results of the

Constants.

Fig. 16 The implemented circuit for the Identity test

Fig. 17 The prediction of the probability states of Qbits of Identity test

Fig. 18 The amplitude on computational basis states of Identity test

Goodarzi, Rezakhani & Maleki, Representing a Novel Expanded Version of Shor’s Algorithm and a Real-Time Experiment using …

146

Fig. 19 2D version of the 3D-sphere of Identity test

6-4- Negation

According to the probability states and also amplitude, the

measured probability of states of Qbits is a hundred

percent |10⟩, which varies from the results of the Constants

and is the same as Identity.

Fig. 20 The implemented circuit for the Negation test

Fig. 21 The prediction of the probability states of Qbits of Negation test

Fig. 22 The amplitude on computational basis states of Negation test

Fig. 23 2D version of the 3D-sphere of Negation test

6-5- Results Review

By measuring the results of the Qbits, we got the results

showing on plots a 3D-sphere. According to the

probability states and also amplitude, the measured

probability of states of Qbits is a hundred percent |11⟩
(which we have demonstrated in the previous sections).

According to the probability states and also amplitude, the

measured probability of states of Qbits is a hundred

percent |11⟩, exactly the same as the results we got from

testing Constant-0. By considering the probability states

and also amplitude, the measured probability of states of

Qbits of Negation is a hundred percent |10⟩, which varies

from the results of the Constants.

Journal of Information Systems and Telecommunication, Vol.11, No.2, April-June 2023

147

According to the probability states and also amplitude, the

measured probability of states of Qbits is a hundred

percent |10⟩, which varies from the results of the Constants

and is the same as Identity.

By having this information, we are going to be able to

predict the results of these sorts of functions by testing two

opponents of them.

7- Conclusions

In summary, we can model every single quantum bit of

information existing all around the world, including the

quantum world or many observable entities in a

mathematical way, which would be Linear Algebra and by

taking advantage of the principles of Quantum Dynamics,

we can speed up the calculations by outperforming the

best classical algorithms, which are implemented on the

classical computers. By having these kinds of information,

we are going to be able to predict the results of these sorts

of functions by testing two opponents of them instead of

calculating the whole entities, and by this method, we are

going to be able to increase the pace of the calculations at

a high rate. By speeding up the calculations, we can

achieve the results of the most complex problems, which

we are dealing with now, the ones we were not able to

solve even in years and they took thousands of years like

the ability to predict every possible Secondary Structure of

Proteins and so on. But since the middle of the late 90th

century, scientists have proved we can process them in a

short amount of time if we have the real Quantum

Computers with real Quantum Processors and now, we are

achieving that goal. The only restriction of this method is

that we cannot use it for Non-Quantum processing, and

also they are not applicable in all subject of areas. In a few

years, we are going to have a massive revolution in all the

subject areas of Science and Technology.

References
[1] P. Steffen, R. Giegerich, and M. Giraud, "GPU

parallelization of algebraic dynamic programming," in

International Conference on Parallel Processing and Applied

Mathematics, 2009: Springer, pp. 290-299.

[2] S. Asano, T. Maruyama, and Y. Yamaguchi, "Performance

comparison of FPGA, GPU and CPU in image processing,"

in 2009 international conference on field programmable logic

and applications, 2009: IEEE, pp. 126-131.

[3] N. Lang, H. Mena, and J. Saak, "On the benefits of the LDLT

factorization for large-scale differential matrix equation

solvers," Linear Algebra and its Applications, vol. 480, pp.

44-71, 2015.

[4] P. Windley, "Transposing matrices in a digital computer,"

The Computer Journal, vol. 2, no. 1, pp. 47-48, 1959.

[5] D. Zhang, Z.-H. Zhou, and S. Chen, "Non-negative matrix

factorization on kernels," in Pacific Rim International

Conference on Artificial Intelligence, 2006: Springer, pp.

404-412.

[6] D. Prijatmoko et al., "Early detection of protein depletion in

alcoholic cirrhosis: role of body composition analysis,"

Gastroenterology, vol. 105, no. 6, pp. 1839-1845, 1993.

[7] L. S. Ostrouchov, M. Heath, and C. Romine, "Modeling

speedup in parallel sparse matrix factorization," Oak Ridge

National Lab., TN (USA), 1990.

[8] K. Likharev, "Classical and quantum limitations on energy

consumption in computation," International Journal of

Theoretical Physics, vol. 21, no. 3, pp. 311-326, 1982.

[9] W. Wardah, M. G. Khan, A. Sharma, and M. A. Rashid,

"Protein secondary structure prediction using neural networks

and deep learning: A review," Computational biology and

chemistry, vol. 81, pp. 1-8, 2019.

[10] T. Theurer, N. Killoran, D. Egloff, and M. B. Plenio,

"Resource theory of superposition," Physical review letters,

vol. 119, no. 23, p. 230401, 2017.

[11] G. Gour and C. M. Scandolo, "Dynamical

Entanglement," Physical Review Letters, vol. 125, no. 18, p.

180505, 2020.

[12] G. Kumar, R. Saha, M. K. Rai, R. Thomas, and T.-H.

Kim, "Proof-of-work consensus approach in blockchain

technology for cloud and fog computing using maximization-

factorization statistics," IEEE Internet of Things Journal, vol.

6, no. 4, pp. 6835-6842, 2019.

[13] G. Kwasniewski, T. Ben-Nun, A. N. Ziogas, T.

Schneider, M. Besta, and T. Hoefler, "On the parallel I/O

optimality of linear algebra kernels: near-optimal LU

factorization," in Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming, 2021, pp. 463-464.

[14] D. O’Malley, V. V. Vesselinov, B. S. Alexandrov, and

L. B. Alexandrov, "Nonnegative/binary matrix factorization

with a d-wave quantum annealer," PloS one, vol. 13, no. 12,

p. e0206653, 2018.

[15] S. Catalán, J. R. Herrero, E. S. Quintana-Ortí, R.

Rodríguez-Sánchez, and R. Van De Geijn, "A case for

malleable thread-level linear algebra libraries: The LU

factorization with partial pivoting," IEEE access, vol. 7, pp.

17617-17633, 2019.

[16] R. Atcheson, "A Generalization of QR Factorization

To Non-Euclidean Norms," arXiv preprint arXiv:2101.09830,

2021.

[17] Q. Cao et al., "Extreme-scale task-based cholesky

factorization toward climate and weather prediction

applications," in Proceedings of the Platform for Advanced

Scientific Computing Conference, 2020, pp. 1-11.

[18] I. Yamazaki, A. Ida, R. Yokota, and J. Dongarra,

"Distributed-memory lattice h-matrix factorization," The

International Journal of High Performance Computing

Applications, vol. 33, no. 5, pp. 1046-1063, 2019.

[19] N. Heavner, P.-G. Martinsson, and G. Quintana-Ortí,

"Computing rank-revealing factorizations of matrices stored

out-of-core," arXiv preprint arXiv:2002.06960, 2020.

[20] T. Vander Aa, I. Chakroun, and T. Haber, "Distributed

Bayesian probabilistic matrix factorization," Procedia

Computer Science, vol. 108, pp. 1030-1039, 2017.

[21] A. Fu, Z. Chen, Y. Mu, W. Susilo, Y. Sun, and J. Wu,

"Cloud-based outsourcing for enabling privacy-preserving

Goodarzi, Rezakhani & Maleki, Representing a Novel Expanded Version of Shor’s Algorithm and a Real-Time Experiment using …

148

large-scale non-negative matrix factorization," IEEE

Transactions on Services Computing, 2019.

[22] M. Gates, J. Kurzak, P. Luszczek, Y. Pei, and J.

Dongarra, "Autotuning batch Cholesky factorization in

CUDA with interleaved layout of matrices," in 2017 IEEE

International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017: IEEE, pp. 1408-1417.

[23] A. Abdelfattah et al., "A survey of numerical linear

algebra methods utilizing mixed-precision arithmetic," The

International Journal of High Performance Computing

Applications, p. 10943420211003313, 2021.

[24] M. Tang, M. Gadou, S. Rennich, T. A. Davis, and S.

Ranka, "Optimized sparse Cholesky factorization on hybrid

multicore architectures," Journal of computational science,

vol. 26, pp. 246-253, 2018.

[25] Q. Cao et al., "Performance analysis of tile low-rank

cholesky factorization using parsec instrumentation tools," in

2019 IEEE/ACM International Workshop on Programming

and Performance Visualization Tools (ProTools), 2019: IEEE,

pp. 25-32.

[26] M. Tang, M. Gadou, and S. Ranka, "A Multithreaded

Algorithm for Sparse Cholesky Factorization on Hybrid

Multicore Architectures," Procedia Computer Science, vol.

108, pp. 616-625, 2017.

[27] M. Green, K. Glover, D. Limebeer, and J. Doyle, "AJ-

Spectral Factorization Approach to H_∞," SIAM Journal on

Control and Optimization, vol. 28, no. 6, pp. 1350-1371,

1990.

[28] P. Smolensky, "Tensor product variable binding and

the representation of symbolic structures in connectionist

systems," Artificial intelligence, vol. 46, no. 1-2, pp. 159-216,

1990.

[29] D. P. DiVincenzo, "Quantum gates and circuits,"

Proceedings of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, vol. 454,

no. 1969, pp. 261-276, 1998.

[30] D. M. Zajac et al., "Resonantly driven CNOT gate for

electron spins," Science, vol. 359, no. 6374, pp. 439-442,

2018.

[31] D. Riste et al., "Detecting bit-flip errors in a logical

qubit using stabilizer measurements," Nature

communications, vol. 6, no. 1, pp. 1-6, 2015.

[32] F. Benatti and R. Floreanini, Irreversible quantum

dynamics. Springer Science & Business Media, 2003.

[33] S. Gulde et al., "Implementation of the Deutsch–Jozsa

algorithm on an ion-trap quantum computer," Nature, vol.

421, no. 6918, pp. 48-50, 2003.

[34] M. Wolf and D. Terrell, "The high-tech industry, what

is it and why it matters to our economic future," 2016.

[35] A. P. Carnevale, N. Smith, and M. Melton, "STEM:

Science Technology Engineering Mathematics," Georgetown

University Center on Education and the Workforce, 2011.

[36] A. Cross, "The IBM Q experience and QISKit open-

source quantum computing software," in APS March

Meeting Abstracts, 2018, vol. 2018, p. L58. 003.

