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Abstract  
Identifying hazards from human error is critical for industrial safety since dangerous and reckless industrial worker 

actions, as well as a lack of measures, are directly accountable for human-caused problems. Lack of sleep, poor nutrition, 

physical deformities, and weariness are some of the key factors that contribute to these risky and reckless behaviors that 

might put a person in a perilous scenario. This scenario causes discomfort, worry, despair, cardiovascular disease, a rapid 

heart rate, and a slew of other undesirable outcomes. As a result, it would be advantageous to recognize people's mental 

states in the future in order to provide better care for them. Researchers have been studying electroencephalogram (EEG) 

signals to determine a person's stress level at work in recent years. A full feature analysis from domains is necessary to 

develop a successful machine learning model using electroencephalogram (EEG) inputs. By analyzing EEG data, a time-

frequency based hybrid bag of features is designed in this research to determine human stress dependent on their sex. This 

collection of characteristics includes features from two types of assessments: time-domain statistical analysis and 

frequency-domain wavelet-based feature assessment. The suggested two layered autoencoder based neural networks 

(AENN) are then used to identify the stress level using a hybrid bag of features. The experiment uses the DEAP dataset, 

which is freely available. The proposed method has a male accuracy of 77.09% and a female accuracy of 80.93%. 
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1- Introduction 

For engineering wellbeing, detecting consequences from 

human error is essential because unsafe and irresponsible 

manners of employees involved in manufacturing are 

clearly accountable for human-caused troubles. Among 

several key factors of these dangerous and irresponsible 

activities, lack of proper sleep leads a person to an extreme 

stressful situation. Stress initiates irritation, fear, sadness, 

vascular illness and numerous additional injurious effects 

[1], [2]. Numerous forms of brain signals, i.e., functional 

magnetic resonance imaging (fMRI), near-infrared 

spectroscopy (NIRS), Electrocorticography (ECoG), and 

electroencephalogram (EEG), are utilized for evaluating 

emotional conditions of individual [3]. Among all of these 

forms of data, EEG can be assessed non-intrusively [4]. 

The principal objective of this research is to categorize the 

emotional situation of an individual based on the sex by 

evaluating pre-processed freely accessible EEG signals.  

Several surveys have exhibited relationships between EEG 

signals and several emotional situations [5–10]. In [5], an 

EEG-based assessment on the frontal channel with support 

vector machine (SVM) is designed. In [9], an in-depth 

analysis of power spectral density (PSD) is proposed to 

classify the emotional state by SVM. Among these 

researches, the common attribute is to consider all the 

features for classifier.  

 

In this research, an EEG signal-driven emotional state 

classification method is established to evaluate whether a 

person is experiencing stress. By evaluating the signal, a 

hybrid feature bag is designed to create a dynamic and 

robust feature list. This process is divided into two parts: 

(1) statistical analysis from the time domain, and (2) 

wavelet-based feature assessment from the frequency 

domain. In the EEG signals, for the presence of the 

artifacts [11], it is hard to find the absolute feature 

information. This study examined pre-processed signals 

from the Database for Emotion Analysis Using 

Physiological Signals (DEAP) dataset [12]. The time 
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domain features are defined in detail in Section 3. As the 

EEG signal has five indistinguishable bandwidths [13], 

[14], wavelet decomposition is studied to determine the 

frequency domain features, which are depicted in Section 

III. From these designed bag of hybrid features, instead of 

providing all of them to the classifier, some built-in feature 

reduction mechanism embedded classifier is used to utilize 

only the most significant features for final classification. 

Deep networks can obtain extremely characteristic features 

via their multi-layered model architectures. Moreover, 

they keep only the most representative information in each 

layer to reduce the dimensionality and also to improve the 

classification performance by selecting only the most 

intrinsic feature information [15]. In this research, a three 

layered autoencoder based neural network (AENN) is 

proposed for different emotional state classification. To 

prove the strength of the suggested technique, few 

comparisons are made with the approaches discussed into 

[5], and [9]. This paper's primary contributions can be 

summarized as follows: 

(1) Statistical analysis in the time domain and 

wavelet-based feature assessment in the frequency domain 

combine to create a hybrid bag of features. 

(2) A two layered AENN is proposed to learn and 

utilize only the important features through the embedded 

feed-forward feature selection architecture to improve the 

final classification accuracy.  

 

The remainder of this paper will be organized as follows. 

The DEAP dataset is readily available, and the 

recommended approach is explained in Section 2. Section 

3 contains the data agreement, evaluation of the 

experimental findings, and discussion, and Section 4 

concludes the paper. 

2- Proposed Method 

In Fig. 1, a block diagram proposed approach is provided. 

The proposed approach is divided into four sections: (1) 

pre-processed data gathering [12], (2) data arrangement, (3) 

creation of hybrid bag of features, and (4) AENN-based 

classification. 

The data is first down sampled to 128 Hz, and then the 

artifacts are eliminated from the data, as seen in this 

diagram. The current study's annotation was completed 

after filtering the data using bandpass frequency and 

common segmentation. The statistical features from the 

time domain and wavelet-based frequency domain are then 

examined and retrieved from each class sample. Finally, 

an Autoencoder-based Neural Network is presented for 

classification. 

 

 

Fig. 1 Complete pipeline of the proposed approach. 

2-1- Dataset Details 

For this study, pre-processed EEG signals from the DEAP 

dataset [12]. This dataset incorporates emotional responses 

stimulated by music videos. The information related to the 

considered dataset is listed into Table 1. The placement of 

attached sensors for collecting the EEG data, with the real 

experimental setup is depicted into Fig. 2. 
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Table 1: Details of the considered dataset 

Area Information 

Number of participants 32 

Age range 19 – 37 years 

Number of male participants 17 

Number of female participants 15 

Recorded time for EEG 1 minute 3 seconds 

Pre-train baseline 3 seconds 

Final considered signal length 1 minute 

Electrode placement system 10 – 20 system of electrode 

 

Each contributor viewed 40 music videos. The dataset 

retains pre-processed data that down sample the recorded 

signals to 128 Hz. In this research, the pre-processed EEG 

signals are considered. For this experimentation, the 

dataset has to be annotated. From the analyzed valence and 

arousal level from the recorded EEG response calm and 

stress states have been specified by Equation (1) and (2) 

[8], [16]. 

 

     (           )  (         ) (1) 

       (         )  (         ) (2) 

 

Seven participants do not indicate any mental state of calm 

or stress after separating the data into two categories. The 

dataset is ready for the categorization mission, which is 

represented in Section 3, with the remaining over 25 

contributors. 

2-2- Hybrid Bag of Features 

From time domain, the obtained numerical features are 

root mean square (F1), kurtosis (F2), skewness (F3), shape 

factor (F4), and impulse factor (F5). In addition to these, 

the mobility (F6) of the signal is also counted, which 

includes the information of the frequency spectrum [11], 

[17], [18]. The statistical details of these 6 features are 

described into Table 2. 

EEG signals are distributed into 5 frequency bands, i.e., 

delta, theta, alpha, beta, and gamma [13], [14]. Here, as the 

sampling frequency of considered dataset is 128 Hz, level 

5 wavelet decomposition facilitates to accumulate these 5 

frequency bands. From the analyzed wavelet coefficients, 

wavelet energy (F7) and standard deviation (F8) is 

considered. 

2-3- Classification by Autoencoder based Neural 

Network (AENN) 

Autoencoder is mainly an unsupervised algorithm which 

learns the representation of the data by minimizing the 

reconstruction error from the layered architecture. It takes  

 

an input value  and then by using a function  in encoded 

the input value as  . Then, that encoded value turns into an 

output value  ̂, which is identical to the input. The main 

goal of autoencoder is to make the output value very 

similar to the input value by minimizing the reconstruction 

error. When it finally can be able to make the best 

reconstruction output, then the encoded value y from the 

encoded layer, learns the best data representation. In other 

words, it recreates the input from the encoded output 

appear in the encoded layer. Encoded layer produces a 

brand-new bag of features which is a mixture of the initial 

features. The encoded layer can be expressed by Equation 

(3): 

 

 k g wx b   (3) 

 

Here, x  is the input with the dimension of d , and then 

the encoded layer maps the input data to encoded latent 

variable k , where dimension reduced to 
kd . w is weight 

and b is the bias here. 

In this work, the same mechanism is deployed [15], [19]. 

The encoded layer latent feature representation is then 

passed to the SoftMax classifier for final classification. In 

the proposed AENN, two layers are used to learn the latent 

feature space in unsupervised way. The main architecture 

of the proposed AENN is illustrated into Fig. 3. 

 

Fig. 2 Real experimental testbed with subject for collecting EEG data. 
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Table 2: Statistical explanation of the measured time-domain features 

Feature Equation Feature Equation Feature Equation 
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Here, x is the time-domain raw signal. N is the total number of samples. 

Table 3: Particulars of the considered dataset 

Dataset 

(Sex-based) 

Sub-set Participant ID An Experimental ID System That Reflects the Unique State 

Calm Stress 

Male 1 1 9,14 17,32,34,35,36,37 

2 5 13,29 23,30,37 

3 12 16,17,28 25,29,32,33,35,36,37,38 

4 16 6,12,16,21,36 1,15,17,24,26,27,34 

5 18 22,26,34 30 

6 19 15,26,27 29,38 

7 20 16,26,27,28,40 23,25,29 

8 21 3,21,26,34,35 20,22,24 

9 26 30 34 

10 27 5,15,19,26,27,28,33,40 27 

11 28 15,22,24,25 35,38 

12 29 15,17 30,31,33,35 

Female 1 2 5,7,10,22,24,36 29,30,32,37,38 

2 4 2,6,18 24,28,32 

3 8 10,37,39 31,36 

4 10 15,17,20,22,26,27,28 21,30,35,36,37,38,39 

5 11 2,12,16,19,25,26,28,40 27,35,37,38,39 

6 13 12,15,16 7,21,23,31,34,35,36,37,38,39 

7 14 22,27 10,21,23,24,29,30,32,34,35,36,38 

8 15 7,16,22,26 24,25,30,38 

9 22 1,6,12,15,16,28 23,24,29,30,32,33,35,36,37,38,39 

10 24 33,40 21,23,24,30,31,38,39 

11 25 4,5,26,27,28,34 2,10,23,29,31,32,33,37,38,39 

12 31 17,22,24,27,28,29 23,32,34,37,38,39 

13 32 2,6,15,26,33 24,30,37 
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Fig. 3 AENN model architecture. 

 

 

Fig. 4 10-fold cross validation [10]. 

3- Experimental Result Analysis 

3-1- Arrangement of Dataset 

Among 32 contributors [11], contributor numbers 3, 6, 7, 9, 

17, 23, and 30 did not signify the attributes of considered 

emotional states. So, the left over 25 contributors are 

counted for the final dataset. 32 EEG channels are 

considered for considering the data with a 128Hz sampling 

frequency. The particulars of the considered dataset are 

given in Table 3. The Table reveals that each sub-dataset 

has a distinctive experimental ID, and for each ID, 

different music videos are reliable for calm and stress state. 

Therefore, for sex-based state analysis according to the 

identity of sex; two main datasets are considered for final 

classification, i.e., dataset male (consisting of 12 sub-sets, 

merged together to form male dataset as a whole), and 

dataset female (consisting of 13 sub-sets, merged together 

to form male dataset as a whole). 

3-2- Performance Analysis of AENN 

Each dataset is split into two parts: training and testing, 

with a 70/30 split between the two. Equation (4) 

establishes the class-dependent accuracy. 

 

                       

 
            

                          
 

(4) 

 

To ascertain the final average accuracy, Equation (5) is 

utilized. 

 

                
                          

                       
 

(5) 

 

Using 10-fold cross-validation, the ultimate accuracy is 

calculated. K-fold [10] cross-validation, as illustrated in 

Figure 4, involves randomly dividing the training set into 

ten groups, or folds. The ultimate accuracy is calculated 

using 10-fold cross-validation. The training dataset is then 

divided into two parts: P for training and Q for validation. 

Training folds P are used to create the model, while 

validation fold Q is used to validate it. The AENN's 

parameters are tuned using the validation fold B. Every 

iteration (10 times), the validation fold is rotated, and the 

remaining data is utilized to train the AENN. The specifics 

of the final accuracy after 10-fold cross-validation are 

provided in Table 4. 

Table 4: Classification accuracy of the proposed method 

Dataset Class-wise Accuracy (%) Average Accuracy 

(%) Calm Stress 

Male 78.25 75.93 77.09 

Female 79.42 82.44 80.93 

Average 

(%)  

  79.01 

 

The feature embeddings extracted from the AENN 

encoded layer (2 features values are extracted from 

encoded layer) is displayed into Fig. 5 for both of the 

datasets. 

 In addition to these, to establish the robustness of this 

approach, few comparisons are made with [5] , and  

[9].The details of this comparative analysis are depicted 

into Table 5. 

Table 5: Relative evaluation of various methodologies  

Methods Average 

Accuracy (%) 

Decrement from the Proposed 

Method (%) 

[5] 68.23 10.78 

[9] 72.44 6.57 

Proposed 79.01 - 
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Fig. 5 AENN feature embedding from encoded layer for (a) male dataset, 
and (b) female dataset. 

3-3- Discussion 

From Table 4, it is visible that the female is performing 

better than the male dataset. From Table 3, it is visible that 

the female dataset contains 13 sub-sets where the male 

dataset contains 12 sub-sets. To get a better performance 

from deep networks, amount of dataset is a vital issue. 

Moreover, for female dataset case, stress state is giving 

higher accuracy than the calm state. From Table 3, it is 

clearly visible that the stress state data is larger than the 

calm state data for female dataset (61 cases for calm state 

and 84 cases for stress state).  

From Fig. 5, for both of the dataset, the feature 

embeddings are overlapped. That indicates the separation 

of identical features are not good. The main underlying 

reasons behind this is little analytical. If the sub-sets are 

being analyzed from Table 3, for each sub-set, the 

experiment IDs of calm and stress state are different. In 

addition, sometimes it is imbalanced as well. So, in this 

dataset not any particular experiment ID is responsible for 

clam or stress state. It makes difficult to find out the most 

intrinsic class-wise information in a very accurate manner. 

For comparative analysis, the proposed model 

outperformed the approach described in [5] by 10.78%, 

and the approach described in  [9] by 6.57%. 

4- Conclusions 

This paper proposed a sex-based stress state classification 

method by analyzing EEG signals from brain. First it 

created a bag of features from the statistical analysis of 

time-domain and wavelet-based analysis of frequency 

domain. Therefore, the hybrid bag of features was 

forwarded to the proposed AENN to identify the stress 

state by feed-forward architecture based selective features. 

The proposed approach achieved an accuracy of 77.09% 

for male dataset and 80.93% for female dataset. In 

addition to that, it outperformed several existing methods 

related to this study by at least 6.57%. 
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