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Abstract  
Text chunking is one of the basic tasks in natural language processing. Most proposed models in recent years were 

employed on chunking and other sequence labeling tasks simultaneously and they were mostly based on Recurrent Neural 

Networks (RNN) and Conditional Random Field (CRF). In this article, we use state-of-the-art transformer-based models in 

combination with CRF, Long Short-Term Memory (LSTM)-CRF as well as a simple dense layer to study the impact of 

different pre-trained models on the overall performance in text chunking. To this aim, we evaluate BERT, RoBERTa, 

Funnel Transformer, XLM, XLM-RoBERTa, BART, and GPT2 as candidates of contextualized models. Our experiments 

exhibit that all transformer-based models except GPT2 achieved close and high scores on text chunking. Due to the unique 

unidirectional architecture of GPT2, it shows a relatively poor performance on text chunking in comparison to other 

bidirectional transformer-based architectures. Our experiments also revealed that adding a LSTM layer to transformer-

based models does not significantly improve the results since LSTM does not add additional features to assist the model to 

achieve more information from the input compared to the deep contextualized models. 
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1- Introduction 

Assigning appropriate labels to each particular token in 

text has always been a critical issue in Natural Language 

Processing (NLP). One of the most challenging tasks in 

sequence labeling is text chunking which entails detecting 

different phrases in unlabeled data. Finding distinct 

phrases in text could play an important role in various 

semantic and contextual analysis since each chunk usually 

contains a precious piece of information. This means that 

extracting the phrases from a particular corpus would 

endow the main idea and purpose of it. However, in spite 

of other sequence labeling tasks, detecting phrases in text 

is sometimes so sophisticated that it requires language 

experts' assistance. 

Generally, phrases follow special semantic and syntactic 

patterns in text, which enables models to predict them 

automatically in large corpuses. To be more specific, 

linear statistical models like Hidden Markov Models 

(HMM) [10] or CRF [16] have been used frequently in 

sequence labeling tasks. There are many papers in 

previous years that combined CRF with more complicated 

models such as Long short-term memory (LSTM) [14] and 

Bidirectional LSTM (BiLSTM) [11]. Over the last couple 

of years, the emergence of transformer-based models has 

assisted researchers to take a huge step in handling various 

complicated NLP tasks more accurately and achieve state-

of-the-art results on challenging datasets. 

In this article, we employed state-of-the-art pretrained 

transformer-based models for sequence chunking. As these 

models are trained on a huge amount of textual data, they 

offer valuable contextual information that could be useful 

for various NLP tasks. We also use CRF and LSTM-CRF, 

a recent state-of-the-art model for sequence labeling tasks, 

after getting output from transformer-based models to 

evaluate the effect of classification module together with 

transformers. This research provides a comprehensive 

comparative study on the impact of transformer-based 

representations on chunking. Although different studies 

focused on text chunking, we still suffers from the lack of 

information from different perspectives: (1) the available 

models have not provided information about the 

differences between different representation models in text 

chunking, (2) in case of any difference, which type of 

representation performs the best is not clear, (3) in case of 

using any transformer-based representation model, it is not 

studied well if we still need the well-known LSTM-CRF 

architecture or we can benefit from a simpler module for 

classification. 

In the rest of the paper, first, we introduce related works 

about sequence chunking in Section 2. Our model will be 

specified in Section 3. In Sections 4 and 5, we will 
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elaborate the training procedure and experimental results. 

Finally, we will draw the conclusion in Section 6. 

2- Related Works 

Considering the sequential behavior of textual data, 

various NLP tasks, such as parts of speech tagging, named 

entity recognition and chunking work based on sequence 

labeling models. 

Most traditional sequence labeling approaches use 

rudimentary language-specific methods [13]. 

Probabilistic graphical models, such as HMM and CRF 

have been widely used for these tasks. Different types of 

Recurrent Neural Networks (RNN) are more recent 

approaches that have played an important role in sequence 

labeling including chunking tasks. RNN was first designed 

by Rumelhard et al. [31] to carry the information of a 

sentence by passing through it. Hochreiter et al. [14] and 

Cho et al. [4] introduced more complicated versions of 

RNN, called LSTM and GRU, which enables the model to 

keep crucial information of certain tokens in sentence 

without the problem of vanishing or exploiting gradients 

occurred in previous RNNs. To benefit from the 

information of both sides of a sentence, BiLSTM was 

introduced by Graves et al. [11], enabling models to 

capture more information during training which achieved 

better results in the chunking task. 

Ma et al. [23] and Huang et al. [15] used BiLSTM to 

obtain word representations with respect to both right and 

left context and a subsequent CRF layer to consider 

sentence level tag information. Huang et al. [15] also used 

SENNA [6] pre-trained embeddings. Moreover, in the 

proposed model of Ma et al. [23], a max-pooling and a 

convolutional layer were used to obtain character 

embeddings for each word. They also used the 

concatenation of character representations, linguistic 

features like POS and NER labels, and word embeddings 

to create a general embedding before feeding to BiLSTM. 

An attention-based RNN was used for chunking by Li et al 

[19]. A context window was defined to generate 

embeddings and this assisted RNN to consider more local 

dependency. Attention component ct helps to selectively 

obtain information from encoding layers instead of totally 

relying on a particular hidden state. 

Attention segmental recurrent neural networks (ASRNN) 

was used by Lin et al. [20] for text chunking. The 

hierarchical architecture employed in their model helps the 

model to capture both character and word-level 

information from the text and also separate important and 

less information while building the segmental 

representation. Wei et al. [39] used a novel attention-based 

model called position-aware self-attention to extract both 

successive and discrete dependencies of each word in 

sequences. 

There are many works employing semi-supervised and 

unsupervised learning to enhance their results. In the 

proposed model of Rei et al [30], a secondary 

unsupervised section for language modeling was used to 

enhance performance in sequence labeling tasks including 

chunking by learning more complicated features. Peters et 

al. [25] designed a bidirectional language model TagLM 

and trained it on unlabeled data. Then, they used pre-

trained embeddings achieved from TagLM for the 

chunking task. Clark et al. [5] also proposed a semi-

supervised approach working on both unlabeled and 

labeled data.  

Wang et al. [38] employed a meta self-training approach 

for sequence labeling tasks in order to overcome the lack 

of annotated data challenge. Using meta self-training, they 

only needed to use a small amount of labeled data along a 

large unlabeled corpus, which helped their model to 

benefit from the information within the huge amount of 

unlabeled data. 

Multi-task learning was another approach used by Liu et 

al. [21], Sogaard et al. [34], and Hashimoto et al. [13] to 

improve the performance of the model in chunking. Liu et 

al. [21] fine-tuned word-level pre-trained GLOVE
1
 

embeddings and also used character-level embeddings to 

build a language model alongside handling chunking. 

Sogaard et al. [34] used BiRNNs [33] for different 

sequence labeling tasks including shallow parsing by 

employing SENNA embeddings. Hashimoto et al. [13] 

devised a Joint Many-Task (JMT) model whose goal is 

handling different NLP tasks in a deep neural architecture. 

They also used two types of embeddings, Skip-gram [24] 

and character embeddings. 

Zhai et al. [41] designed three models to handle 

segmentation and labeling tasks simultaneously. They also 

concatenated two embeddings: SENNA and embeddings 

gathered by adopting CNN on character embeddings of 

words to achieve final embeddings. Xin et al. [40] 

designed IntNet to learn the internal structure of words by 

their composing characters. Afterwards, in order to capture 

context information and handle sequence labeling and 

chunking, they feed these embeddings to LSTM-CRF. 

Character-level language models have been also used to 

obtain highly contextualized word embeddings for 

sequence labeling tasks including chunking. After training 

the character-level language model, Akbik et al. [1] 

concatenated their own word embeddings to pre-trained 

GLOVE embeddings and passed them to a BiLSTM-CRF 

network. 

Akhundov et al [2] combined byte embeddings extracted 

by Byte BiLSTM with word embeddings and fed the result 

to another BiLSTM to get word-level scores and use a 

CRF layer to handle sequence tags. 

                                                           
1
 http://nlp.stanford.edu/projects/glove/ 
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Obviously, most well-known works on the chunking 

tasks are based on statistical models like CRF beside 

various kinds of recurrent neural networks such as LSTM, 

BiLSTM, as well as pre-trained static word embeddings 

which are appropriate to be fed into the aforementioned 

models. 

Transformer-based models have also been studied in 

recent works in sequence labeling tasks. Although the 

proposed models by Tsai et al. [36] and Chawla et al. [3] 

benefit from state-of-the-art representation models, they 

only focused on one specific representation and a specific 

classification model. They did not compare the impact of 

different available models for each of the representation 

and classification components of text chunking. 

%However, the novel contextualized transformer-based 

models started with Vawsani et al. [37] which have 

revolutionized many NLP tasks in recent years have not 

been explored for chunking. 

In the next section, we analyze the performance of the 

newest transformer-based pre-trained models in the 

chunking task by providing a comparative analysis on 

different models. 

3- Models 

Our approach consists of two major parts: (1) a pre-trained 

transformer-based model to capture contextual features of 

tokens, (2) a probabilistic graphical model and a neural 

network model, such as CRF and LSTM-CRF, which 

receives the output of pre-trained models to learn the 

labels and their dependency. In this part, we first briefly 

introduce the pre-trained models which build the former 

part of our architecture. Then we continue with the latter 

part. 

3-1- Transformer-based Models 

With the emergence of transformers [37], a great step has 

been taken in the NLP area for achieving outstanding 

results in different tasks. The unique architecture of 

transformers assists models to learn much more 

sophisticated contextual information from text and 

outperform embedding models like Word2Vec and ELMo 

[26], and other RNN based architectures like LSTM. Over 

the last couple of years, some special transformer-based 

architectures have been developed, which enhanced 

experimental results in various NLP tasks. We used those 

versions of transformer-based models that have between 

300 to 500 million parameters in order to compare their 

performance in a relatively equal situation. Here, we 

describe the models that are used in our proposed 

architecture for shallow parsing. 

3-1-1 BERT 

Devlin et al. [9] designed a deep bidirectional transformers 

architecture pre-trained on a tremendous amount of 

unlabeled text, BookCorpus [42] and Wikipedia, for two 

specific tasks of masked language modeling and next 

sentence prediction. At the beginning stage, BERT sums 

three embeddings: token, segment, and position 

embeddings to create final input embeddings. It helps the 

model to consider the position of input tokens in sentence 

and the segmentation part of them before feeding them 

into the bidirectional transformer layers. In the masked 

language modeling pre-training task, the model is forced 

to predict some masked tokens in input sequence by the 

context of other inputs. Another pre-training task for 

BERT is next sentence prediction in which two sequential 

sentences were fed to the model and the model is expected 

to predict whether two sentences are contextually related 

or not. Pre-trained parameters could be fine-tuned for 

various NLP tasks such as sequence labeling by giving 

labeled data to the model. 

3-1-2 XLM 

Lample et al. [17] proposed a bidirectional transformer-

based model trained on both supervised and unsupervised 

tasks. Like BERT, masked language modeling is the 

unsupervised objective for XLM which forces the model 

to predict some masked input tokens by considering other 

words in the sentence. Predicting the next token is another 

unsupervised task designed for XLM to be trained on 

monolingual data. By considering the previous input 

tokens in a sentence, the model is forced to predict the 

next token. They also trained the model by translation 

language modeling, a more flexible version of masked 

language modeling that uses multilingual parallel 

sentences in two different languages to predict masked 

tokens. For instance, to handle translation language 

modeling, the model could use the tokens in the French 

sentence to predict masked inputs in the English sentence. 

In this way, the model was forced to learn how to use 

translations for predicting masked words. XLM is another 

transformer-based model that encouraged us to be used for 

the shallow parsing task. 

3-1-3 GPT2 

GPT2 is a unidirectional transformer-based model first 

introduced by Radford et al. [27]. The purpose of GPT2 is 

predicting the next word which is called causal language 

modeling. Due to the special unidirectional architecture 

and causal language modeling task, GPT2 is an ideal 

model for text generation and predicting next words of a 

sentence by considering previous ones. The original GPT2 

model is trained on 8 million web pages and contains 1.5 

billion parameters. We chose the medium version of GPT2 

as one of our transformer-based models to create 
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appropriate embedding for each word. It should be 

mentioned that the medium version of GPT2 consists of 

345 million parameters, which has roughly the same 

number of parameters that large versions of other 

transformer-based models have. 

3-1-4 RoBERTa 

RoBERTa is introduced by Liu et al. [22] to improve some 

aspects of BERT. The RoBERTa architecture is 

completely similar to BERT. However, Liu et al. [22] 

designed some different scenarios during the pre-training 

phase of RoBERTa. The next sentence prediction 

objective is removed from pre-training targets since they 

proved that eliminating next sentence prediction would 

result in improving the model downstream task 

performance. Masked language modeling is kept as a 

major pre-training objective for the model. RoBERTa was 

trained on a larger amount of data rather than BERT 

including CC-News
1
, OpenWebText

2
, and STORIES [35] 

in addition to Book Corpus [42] and English Wikipedia 

data. RoBERTa also has some differences in 

implementation. Liu et al. [22] used larger batches for 

RoBERTa than BERT. RoBERTa uses a different 

tokenizing scheme than BERT called byte-pair encoding 

which is similar to GPT2’s tokenizer. Similarities and 

differences between RoBERTa and BERT motivated us to 

opt RoBERTa as one of candidate transformer-based 

models in order to compare its performance on the 

chunking task with other pre-trained models specially 

BERT. 

3-1-5 BART 

Lewis et al. [18] proposed an architecture composed of a 

bidirectional transformer-based encoder (like BERT) and a 

unidirectional decoder (like GPT2). BART is pre-trained 

by five major tasks including masked language modeling, 

token deletion, token infilling, sentence permutation, and 

document rotation. In the masked language modeling task, 

like other models such as BERT, BART is forced to 

predict the masked words in the sentence. In the token 

deletion task, in contrast to masked language modeling, 

some tokens are deleted in a sentence and the model duty 

is to determine the positions of deleted tokens. Another 

innovative task, token infilling, is replacing spans of 

tokens with one single mask token and obliging the model 

to learn how many words are in that single masked token. 

Sequence permutation shuffles the sentences in the 

document and feeds them to the model. In the document 

rotation task, each time, a single token is randomly 

selected and the document is rotated in a way to set that 

particular token as the beginning token of the document. 

                                                           
1
 http://commoncrawl.org/2016/10/newsdataset-available 

2
 http://Skylion007.github.io/OpenWebTextCorpus 

This task teaches the model to predict the starting of each 

document. Although the main goal of the BART model is 

text generation and its related tasks, other NLP tasks like 

sequence labeling and shallow parsing could be handled 

by employing BART as well. We decided to use the large 

BART as a candidate of state-of-the-art transformer-based 

models for our chunking task. 

3-1-6 XLM-RoBERTa 

XLM-RoBERTa was proposed by Conneau et al. [7]. They 

set masked language modeling for their model to predict 

masked tokens of the input. Lample et al. [17]'s model is 

employed to enhance the model in some particular issues. 

To be more specific, they designed the model to be 

multilingual and they trained it on 100 different languages, 

requiring a great amount of data. For this, they also built a 

huge dataset, CommonCrawl, containing 2 terabytes of 

text data from 100 languages. The similarities between 

XLM and XLM-RoBERTa and the huge multilingual data 

that it was trained on motivated us to include XLM-

RoBERTa in our transformer-based models for text 

chunking. 

3-1-7 Funnel Transformer 

Funnel Transformer is a new-brand bidirectional 

transformer-based model proposed by Dai et al. [8]. It 

consists of two major parts, an encoder and a decoder. In 

encoder, there are pooling layers between transformer 

layers, reducing the size of the initial input and endowing 

lower computation cost to the whole model. In tasks like 

sentence summarization or text classification, using just 

the encoder part of the Funnel Transformer model could 

be sufficient. To handle token classification and sequence 

labeling tasks like chunking, designers added a decoder 

module to the model in order to resize the reduced input 

by upsampling from encoded layers. Similar to BERT, the 

objective of the Funnel Transformer is masked language 

modeling; i.e., the purpose of pre-training is predicting the 

masked tokens in input sequence. Consequently, this 

unique architecture makes Funnel Transformer an 

appropriate option for sequence labeling tasks. 

3-2- Learning with LSTM and CRF 

After receiving the outputs from transformer-based 

models, we fed them to a sole CRF layer or a sequence of 

LSTM-CRF layers. CRF considers past and future labels 

in a sequence to predict the label of a particular token. 

CRF computes the best possible tag sequence between all 

possible sequences by minimizing the objective function 

presented in Equation 1. 

 

    ( )  ∑  ( ̃)

 ̃  

 (1) 
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where Y represents all possible tag sequences and the goal 

is to find the sequence that minimizes the formula for a 

given input sequence. 

CRF has two matrix parameters A
{k x k}

, P
{n x k}

, where k 

represents the number of tags and n is the length of each 

sequence. A is transition scores between different tags and 

P determines the probability of each tag in a position. The 

score of a tag sequence y = {y1, ... , yn}, yi ∈ {1, ... , K} 

and a given input sequence x = {x1, ... , xn} is calculated 

based on Equation 2. 

 

 (    )  ∑        

 

   

 ∑     

 

   

 (2) 

 

We also study another architecture, LSTM-CRF, 

which has been a great success story in sequence labeling 

tasks, such as parts of speech tagging, named entity 

recognition, and text chunking for several years 

[15,40,23,2]. 

We passed the outputs of transformer-based models 

to LSTM to observe the impact of combining recurrent 

neural models with state-of-the-art transformers. 

 

 

Fig. 1  BERT LSTM-CRF model. After passing through the BERT 

transformer-based model, token embeddings are given to a LSTM-CRF 
layer to detect their chunk labels. 

Figure 1 shows the combination of one of our transformer-

based models, BERT, with a LSTM-CRF layer. In the first 

stage, a pre-trained BERT model with multi-layer 

bidirectional transformer-based architecture converted 

tokens to fine input embeddings and passed them through 

the transformer layers. We feed the outputs of BERT to an 

LSTM layer to evaluate how the combination of LSTM 

and BERT could affect the quantity and the quality of 

information extracted from input. At the last layer, CRF is 

utilized to enhance the model performance in predicting 

output chunk labels by considering the dependency 

between chunk tags. 

 

Fig. 2  Funnel Transformer CRF model. After giving tokens to an 
encoder-decoder transformer-based architecture, outputs will be given to 

a CRF layer in order to predict chunk labels. 

 

 

Fig. 3  GPT2 CRF model. Unidirectional transformer-based architecture 
of the GPT2 model caused a relatively poor performance against other 

transformer-based models BERT, XLM, and Funnel Transformer. 

 

 

Fig. 4 Bart CRF model. Bart is composed of two parts, a bidirectional 

encoder (BERT) and an unidirectional decoder (GPT2). For fine-tuning, 

uncorrupted inputs should be given to both encoder and decoder and final 
hidden states of the decoder should be considered as output. 

 

In Figure 2, the encoder-decoder architecture of Funnel 

Transformer is shown. By passing through the encoder 

section, pooling layers gradually reduce the dimension of 

transformer layers to encode the information in relatively 

smaller size. The decoder part resizes the encoded 

information to their original size, which makes the model 

appropriate for token classification tasks such as chunking 
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and named entity recognition. At the final stage, we use a 

CRF layer for predicting target labels. 

Figure 3 shows the combination of Open AI GPT2 model 

with a CRF layer to predict chunk sequences. The 

unidirectional transformer-based architecture of GPT2 is 

also shown in the diagram. Although this characteristic has 

made GPT2 a great smart in text generation, we will see in 

the next section how this architecture affects the 

performance of the model in chunking. 

In Figure 4, BART-CRF model is shown. Two major parts 

of BART, bidirectional encoder and unidirectional 

decoder, are very important during pre-training of the 

model. To handle the span masking objective, corrupted 

inputs were fed to the encoder (BERT) and uncorrupted to 

the decoder (GPT2). Then, BART had to learn masked 

spans by the information that bidirectional and 

unidirectional architectures of BERT and GPT2 represent. 

4- Experiments 

4-1- Dataset 

We evaluate our approaches on the standard chunking 

dataset from CoNLL2000 [32]  which contains 11 distinct 

phrase types. The detailed statistics of the dataset is 

presented in Table 1. Chunk labels in CoNLL2000 are 

based on the IOB scheme introduced by Ratnaparkhi et al. 

[29]. In the next section, we explain how we changed the 

IOB scheme to IOBES [28]. In Table 2, we present one 

example of each type of phrase existing in CoNLL2000. 

 

Table 1: Size of sentences, tokens, and labels in CoNLL2000 datasets 

train  

 

# of sentences 

# of tokens 

8936 

211727 

test 
# of sentences 

# of tokens 

2012 

47377 

 # of labels 22 

 

 

 

 

 

 

 

 

 

Table 2: One phrase example for every label existing in the CoNLL2000 

dataset. 

Phrase Label 

their current 15% level B-NP I-NP I-NP I-NP 

has been eroded  B-VP I-VP I-VP 

because of  B-PP I-PP 

even though  B-SBAR I-SBAR 

similar and conservative B-ADJP I-ADJP I-ADJP 

at least B-ADVP I-ADVP 

have to serve B-VP I-VP I-VP 

Good morning B-INTJ I-INTJ 

as well as B-CONJP I-CONJP I-CONJP 

 

4-2- Setup of Experiments 

Due to the many reported experiments, replacing the IOB 

scheme with IOBES would yield better final accuracy 

[25,19,2]. As a result, we decided to use the IOBES 

scheme to evaluate the impact of transformer-based 

models for sequence chunking. In addition to regular 

Outside (O), Inside (I), and Beginning (B) labels, we 

added two End (E) and Single (S) tags, which contain 

more detailed information in terms of the labeling scheme. 

To this aim, in the IOB format, in case of having B label 

with no I label, we converted the B label to S. Also the last 

I label in each chunk is converted to E label.  

For all experiments, we trained our model on the train set 

and reported the final results on the test set. Since 

CoNLL2000 does not give an explicit validation set, we 

randomly selected 10% of the sentences from train data as 

our validation set. 

To employ pre-trained models and build CRF and LSTM-

CRF layers, we used the transformers package
1

 and 

Pytorch
2
. Due to the purpose of BERT, XLM and Funnel 

Transformer pre-trained models, TokenClassification 

module has been already implemented for these models 

and we used it to generate embeddings of input tokens. We 

also manually add the TokenClassification module to 

GPT2 and BART models to see their performance on the 

chunking task. 

We set the probability of the dropout layer to 0.3, 0.4, 0.5 

and injected it between the pre-trained model and target 

CRF or LSTM-CRF layer. Adam optimizer was used for 

training parameters of CRF and LSTM-CRF layers and 

fine-tuning the parameters of pre-trained transformer-

based models. Learning rate was fixed in 1e-5 during the 

training process. Max length of sentences was fixed to 110 

and batch-sizes were set to 4, 8, 16 regarding the pre-

trained model used to split data during training. 

                                                           
1
 https://huggingface.co/ 

2
 https://pytorch.org/ 
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4-3- Experimental Results  

Table 3 presents the results of all described models. Our 

BERT-CRF model achieved 96.72 F1 score and BERT-

LSTM-CRF received 96.70 F1 score. RoBERTa’s 

performance on shallow parsing was slightly better. 

RoBERTa-CRF model’s F1 score is 96.82 and RoBERTa-

LSTM-CRF layer achieved 96.84. The performance of 

XLM on the chunking task outperformed our BERT-based 

models despite their similar bidirectional transformer-

based architecture except XLM’s translation language 

modeling objective during pre-training. XLM-CRF and 

XLM-LSTM-CRF models both achieved 96.83 F1 scores. 

Table 3: One phrase example for every label existing in the CoNLL2000 

dataset. 

Pre-trained Models 

CRF LSTM-CRF 
CRF 

LSTM-

CRF 

Dense 

Layer 

BERT 96.72 96.70 96.07 

RoBERTa 96.82 96.84 96.34 

XLM 96.83 96.83 96.50 

XLM-RoBERTa 96.92 96.92 96.62 

Funnel Transformer 96.83 96.53 96.50 

BART 96.30 96.03 93.58 

GPT2 85.00 84.46 82.57 

 

XLM-RoBERTa achieved the highest scores between our 

transformer-based models. Both XLM-RoBERTa-CRF 

and XLM-RoBERTa-LSTM-CRF models received 96.92 

F1 score. Funnel Transformer with its unique encoder-

decoder transformer-based architecture achieved 96.83 F1 

score in combination with CRF layer. The Funnel-LSTM-

CRF model achieved 96.53 F1 score on IOBES mode. 

The worst performance is reported based on GPT2. Due to 

the unidirectional architecture of GPT2, the model is 

adapted to learn left-to-right context of the text and its 

main goal is for text generation tasks; while in sequence 

labeling models, need to obtain left-to-right and right-to-

left contextual information in order to achieve an 

acceptable result. The GPT2-CRF and the GPT2-LSTM-

CRF models achieved 85 and 84.46 F1 scores, 

respectively. 

Likewise, the unidirectional architecture of BART’s 

decoder results in a relatively lower F1 score regarding 

bidirectional transformer-based models BERT, RoBERTa, 

XLM, XLM-RoBERTa, and Funnel Transformer. The 

results of BART, however, are significantly better than 

GPT2. The BART-CRF model achieved 96.30 and the 

BART-LSTM-CRF model result is 96.03. 

We also tried a third possible architecture with a dense 

layer at the final stage. In this scenario, BERT achieved 

96.07, RoBERTa’s score is 96.34 and both Funnel 

Transformer and XLM received 96.50 and XLM-

RoBERTa achieved 96.62, higher than others in this mode. 

BART achieved 93.58 and GPT2’s score is 82.57. 

As we expected, adding a LSTM layer to our CRF target 

layer not only did not improve our results, but caused them 

to drop in most cases. Since contextualized transformer-

based models are stronger in extracting context 

information of text, adding a LSTM layer could not 

improve the ability of our model in capturing more 

information. In other words, the LSTM layer models 

similar information as transformers and it does not capture 

additional information compared to transformers. 

Moreover, considering the more advanced architecture of 

transformers in sequence modeling, using an LSTM 

network besides a transformer does not provide any 

benefit in the architecture. On the other hand, the CRF 

layer captures another type of information from the 

sequences of words by considering the relation between 

labels. As a result, models with just one CRF layer mostly 

outperformed their LSTM-CRF counterparts. Better results 

of the models with CRF in comparison with the models 

with just a dense layer in output was another expected 

observation as CRF has valuable information about the 

dependencies between tags which is not available in the 

other parts of the architecture.  

In the next step, we compared our results with the state-of-

the-art models in the literature as presented in Table 4. As 

can be seen, our model outperforms state-of-the-art models 

in the field, except the proposed model by Clark et al. [5] 

which is marginally better than ours. The main reason is 

that this model works based on multi-task learning and 

benefits from training data from other sequence modeling 

approaches in text chunking. 

Overall, by comparing various transformer-based models 

and different architectures that are used after the 

embedding part, the following observations from the 

reported results are notable: 

 Using novel transformer-based pre-trained 

models enhances the overall F1 score on text 

chunking due to the fact that they endow the 

precious information that they had learned by 

being trained on a huge amount of data to the 

model. 

 Different pre-trained models which benefit from 

different architectures (except GPT2) have close 

performances on chunking and it is difficult to 

define an absolute winner. 

 Despite other transformer-based models, GPT2’s 

performance was relatively poor on text 

chunking, due to the fact that although the 

unidirectional architecture of GPT2 has made it a 

perfect model for text generation, it causes GPT2 
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to achieve lower results because predicting chunk 

labels require information from both sides of a 

particular token. 

 A CRF layer in the final stage assists the 

contextualized pre-trained embedding models to 

consider the labels of other tokens when they are 

predicting the label of each particular word and 

enhances the overall performance. 

 In the models in which contextualized pre-trained 

models were used, adding an LSTM layer does 

not improve the performance of the model, which 

could imply that removing LSTM could be a 

wiser decision since it does not help the model to 

capture more from the input tokens. 

Overall the best results achieved by the XLM-

RoBERTa model followed by a CRF layer, which 

achieved superior results compared to the state-of-the-art 

models in the field. 

 

Table 4: One phrase example for every label existing in the CoNLL2000 
dataset. 

Model F1 score 

Collobert et al. [2011]  94.32 

Huang et al. [2015]  94.46 

S_gaard and Goldberg [2016]  95.28 

Rei [2017]  93.88 

Zhai et al. [2017]  94.72 

Liu et al. [2017]  95.96 

Peters et al. [2017]  96.37 

Xin et al. [2018]  95.29 

Akbik et al. [2018]  96.72 

Clark et al. [2018]  97.00 

Akhundov et al. [2018]  94.74 

Lin et al. [2021]  93.70 

Wei et al. [2021]  95.15 

Ours: XLM-RoBERTa + CRF 96.92 

 

5- Conclusions 

We provided various architectures based on state-of-the-

art transformer-based models for the chunking task. Well-

known CoNLL2000 dataset was used for evaluating our 

models by F1 score. We compared our models’ 

performance with other works done for sequence labeling 

tasks. Most previous models employed different types of 

RNNs such as LSTM and BiLSTM, CNN and character 

and word embeddings. We used novel transformer 

architectures like Funnel Transformer, XLM-RoBERTa, 

and BART as well as BERT, RoBERTa, XLM, and GPT2 

to evaluate the effect of contextual embeddings and the 

combination of them with CRF and LSTM-CRF layers in 

shallow parsing. 

In future, we will use the transformer-based models 

for other similar sequence labeling tasks like name entity 

recognition and parts of speech tagging. Due to the 

similarity of most sequence labeling tasks and the models 

that have been proposed for them, combining transformer-

based models with previous state-of-the-art models could 

yield significant performance specially on rare languages. 
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