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Abstract  
Reversible logic has been emerged as a promising computing paradigm to design low power circuits in recent years. The 

synthesis of reversible circuits is very different from that of non-reversible circuits. Many researchers are studying methods 

for synthesizing reversible combinational logic. Some automated reversible logic synthesis methods use optimization 

algorithms Optimization algorithms are used in some automated reversible logic synthesis techniques. In these methods, the 

process of finding a circuit for a given function is a very time-consuming task, so it‟s better to design a processor which 

speeds up the process of synthesis. Application specific instruction set processors (ASIP) can benefit the advantages of both 

custom ASIC chips and general DSP chips. In this paper, a new architecture for automatic reversible logic synthesis based 

on an Application Specific Instruction set Processors is presented. The essential purpose of the design was to provide the 

programmability with the specific necessary instructions for automated synthesis reversible. Our proposed processor that 

we referred to as ARASP is a 16-bit processor with a total of 47 instructions, which some specific instruction has been set 

for automated synthesis reversible circuits. ARASP is specialized for automated synthesis of reversible circuits using 

Genetic optimization algorithms. All major components of the design are comprehensively discussed within the processor 

core. The set of instructions is provided in the Register Transform Language completely. Afterward, the VHDL code is 

used to test the proposed architecture. 
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1- Introduction 

Application specific instruction set processors (ASIP) can 

compromise the advantages of custom ASIC chips and 

general DSP chips. In other words, ASIP chips utilize high 

performance and low power of ASIC chips and flexibility 

of DSP chips [1][2][3][4][5].  

There is a tradeoff between cost and speed in ASIPs.  

Programmability is the main advantage of ASIPs, which 

gives more flexibility to software developers. Other 

advantages are more convenient in the design and 

debugging process, predictability, and shorter time to 

market. Hardware and software are two aspects of ASIPs 

rather than one aspect of the task being dominant.  Besides, 

compared to general-purpose processors, ASIP benefits 

from having specific instructions to perform a specific task 

faster and reduce programmer errors. Accordingly, 

efficiency and programmability are both advantages of 

ASIPs compared to general-purpose processors. 

In this paper, a novel ASIP-based processor for the 

synthesis of reversible circuits is proposed. This processor 

is used to synthesize reversible circuits using optimization 

algorithms. VHDL code is used to simulate and test the 

proposed architecture. The main objective of the proposed 

design is programmability as it is the major concept of 

ASIP. In addition, the suggested structure reduces 

hardware complexity. 

The organization of the rest of the paper is as follows. The 

next section and subsequent sections present a background 

on the synthesis of reversible circuits. Section 3 details the 

proposed ASIP architecture model for the synthesis of 

reversible circuits. The testing process describes in section 

4. Finally, section 5 concludes the paper. 
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2- Background 

Reversible logic has applications in low power computing, 

quantum computing, nanotechnology, optical computing, 

and DNA computing. The design of the reversible circuits 

is quietly different from the design of conventional 

irreversible logic circuits [6] because of the different gates 

that are available in reversible logic. 

The synthesis of reversible circuits differs significantly from 

synthesis using traditional irreversible gates. Many 

algorithms have been proposed for the synthesis of 

reversible circuits [7][8][9][10]. Dengli et al. proposed an 

improved KFDD based reversible circuit synthesis method 

[7]. Ahmed et al. suggested a synthesis approach using 

reorder algorithm [8]. Basak et al. presented an algorithm 

using the ESOP expressions [9]. Some automated reversible 

logic synthesis methods, such as genetic algorithms (GAs) 

are also presented [11][12][13][14][15][16]. These 

algorithms use optimization algorithms. 

In optimization algorithms, the main process is generating 

some random circuits and then computing the output truth 

table of generated circuits. Then the hamming distance 

between the truth table of generated random circuits and 

the truth table of the given function is calculated. After 

that, according to the optimization algorithm the best 

circuit is selected. These operations are repeated while 

desired hamming distance is reached.  

To implement the automated reversible synthesis 

algorithm, a background on reversible gates is needed. The 

next section is illustrated to introduce reversible logic 

gates. After that, a general algorithm for the synthesis of 

all reversible circuits is presented. 

2-1- Reversible Gates 

Since a serious problem in modern VLSI designs is power 

consumption, Low power circuit design is one of the most 

attractive subjects for hardware designers. Landauer has 

shown that for irreversible logic computations, each bit of 

information lost, generates kTln2 joules of heat energy, 

where k is Boltzmann‟s constant and T is the absolute 

temperature at which computation is performed [17]. 

Bennett showed that kTln2 energy dissipation would not 

occur if a computation is carried out reversibly [18]. This 

part of energy dissipation is independent of what the 

underlying technology is. 

In reversible circuits, no bit of information is lost, and 

reversible computation in a system can be performed only 

when the system comprises reversible gates. 

In a reversible gate, there is a one-to-one correspondence 

between its inputs and outputs. As a result, the number of 

outputs of a reversible gate is the same as the number of 

inputs, and for each input vector, there is a unique output 

vector and vice versa. 

Some more common gates to design reversible logic 

circuits are Feynman Gate, FG [19], Toffoli Gate, TG [20], 

Fredkin Gate, FRG [21] are more common gates to design 

reversible circuits. 

A 2*2 Feynman Gate, also known as controlled-NOT 

(CNOT), is depicted in Fig.1.a. It implements the logic 

functions: P = A and Q = A⊗B. 

A 3*3 Toffoli Gate has 3 inputs: 2 control inputs, that are 

copied to the first 2 outputs and one other input that is 

complemented if all control inputs are 1s and are directly 

copied to the last output otherwise [20]. A 3- input, 3-

output Toffoli Gate is shown in Fig.1.b. The inputs „A‟ 

and „B‟ are passed as first and second outputs, respectively. 

The third output is controlled by „A‟ and „B‟ to invert „C‟. 

A 3*3 Fredkin Gate is depicted in Fig.1.c. Here the input 

„A‟ is passed as the first output. Inputs „B‟ and „C‟ are 

swapped to get the second and third outputs, which are 

controlled by „A‟. If A = 0, then the outputs are simply 

duplicating of the inputs; otherwise, if A = 1, then the two 

input lines (B and C) are swapped. 

 

Fig. 1 (a) Feynman gate, (b) Toffoli gate, and (c) Fredkin gate 

2-2- Synthesis of Reversible Circuits 

Synthesizing a reversible circuit using a searching 

algorithm is a complex problem with a large amount of 

searching space. The number of combinations for placing 

one Toffoli r×r gate in an n×n circuit (0<r<n-1) to 

synthesize a reversible n×n circuit is expressed by )1(: 
 

ρ=n. ∑ (   
 

)   
   =n.2

n-1
 (1) 

 

If the number of required gates to design a circuit is m, 

then the number of possible circuits is ρ
m
. If Fredkin and 

Press are added to the set of Toffoli r×r gates, then the 

number of possible circuits is (3ρ)
m
. So optimization 

algorithms, especially GA, are used to find the global 

minimum or maximum of a function, in an extensive 

searching space [11][12][13][14]. In the next subsection, a 

review of automated synthesis is presented. 

2-3- Automated Reversible Logic Synthesis 

The general algorithm for automated reversible logic 

synthesis is shown in Fig.2. This processor is used to 

synthesize reversible circuits. 

The algorithm starts by generating a random configuration 

(a random state) of a circuit with one gate. We consider 

the hamming distance between the truth table of this 

circuit and the truth table of a given function as the cost 

function. Then for each new configuration, it‟s necessary 
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to compute the truth table. So the main operations in such 

algorithms are computing the truth table of each circuit 

and then comparing its truth table with the destination 

truth table to select the best circuit, based on the desired 

algorithm. So in a given iteration, the algorithm generates 

n new circuits at a time. Each new circuit is derived from 

the old configuration. The hamming distances of the two 

circuits are then compared. 

After the process of finding a new circuit, comparing it to 

the current configuration, and either accepting or rejecting, 

it is done n times. 

After all, if the stopping criteria of the algorithm, zero 

hamming distance, is not reached, the number of gates will 

increase and the algorithm is repeated for a new circuit 

with extra gates. 

   Set NoG=1  //the number of gates being used for the 

synthesis 

   Set S=S0    // random initial state 

Loop1: 

    Initiate a random circuit S using NoG 

   While (up to max-iteration) 

{ 

    While(required number of circuits not generated) 

   { 

        Generate new circuit S‟ by perturbing S; 

        For (all rows of truth-table) 

                   E=E+HD(des[i]&mask , Syn[i]&mask); 

       ΔE=E(S‟)-E(S) 

      If (ΔE<=0)      

           S=S‟; 

     } 

    If (HD!=0) 

   { 

      NoG=NoG+1; 

      Goto Loop1; 

   } 

   else  

     Print circuit;     } } 

Fig. 2 Algorithm description 

3- Architecture Overview 

 

Fig. 3. ARASP processor 

This paper introduces an ASIP processor which is useful in 

the application domain of reversible circuits. This processor 

is called ARASP, an ASIP processor for automated 

reversible logic synthesis. The schematic of the ARASP 

processor is illustrated in Figure 2. The explanation of the 

proposed register configuration is in Figure 3. 

 

Fig. 4 ARASP register configuration 

We proposed a 16-bit wide ASIP architecture with 16-bit 

integer operations for common arithmetic operations and a 

specific function unit for the automated synthesis of a 

reversible circuit. 

3-1- Global View on ARASP 

Registers have clock inputs that are all connected to the 

main system clock. Each AC, DR, TR1, and TR2 are 16-bit 

registers that provide operands of ALU. The output of ALU 

is connected only to the AC. The instruction register, IR, 

provides the instruction bits for the controller. The 12-bit 

program counter register is called PC, this register provides 

an address for current instruction through the memory 

address register, AR. This register also is a 12-bit binary up 

counter. The arithmetic logic unit, ALU, is a combinational 

logic unit with two 16-bit inputs, four flag inputs, and 

control inputs that specify the integer operations. The output 

of this unit is connected to the input of AC.  
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The next part is a function unit for the automated synthesis of 

a reversible circuit. This unit works as follows. At first, a 

random circuit with some gates that the NOG (Number OF 

Gates) register specifies is generated.  The SyC (Synthesis 

Circuit) register bank maintains this random gate. The SyCP 

(Synthesis Circuit Pointer) register which is an 8-bit up-

counter is used to specify each register of this register bank 

(each reversible gate) in each step. Same as SyC, NeC 

register bank is used to hold the neighboring circuit of 

synthesis circuit in each step, the size of this register is as SyC, 

also NeCP (Neighboring Circuit Pointer) is used to define a 

register of NeC register bank in each step of the synthesis.  

DTT (Destination Truth Table) consists of 256 8-bit registers 

to maintain the truth table of a given function. As the 

algorithm generates a reversible circuit in each step, we need 

a register bank to maintain the truth table of the generated 

circuit. So STT (Synthesis Truth Table) is used for this aim. 

The size of this register bank is the same as DTT. TTP is 

an 8-bit up-counter that refers to each row of DTT or STT 

in each step of the algorithm.  

As said before the major time-consuming operation in the 

synthesis of a reversible circuit is calculating the output of 

the circuit for all combinations of inputs.  So the synthesis 

function unit that is a combinational circuit calculates each 

row of synthesis truth table of desired circuit, SyC or NeC.  

After synthesis of the desired circuit, we need to compare this 

truth table with the destination truth table, DTT. So we have 

to calculate the hamming distance between synthesis truth 

table STT and destination truth table DTT, as the cost 

function. After that, the calculated hamming distance will set 

the SHD or NHD depending on the circuit that is synthesized. 

The final step in the algorithm is selecting the best circuit. 

So we need to compare SHD and NHD registers and set 

HD register with one of these registers. 

4- Proposed Architecture 

In this paper, the proposed CPU is referred to as ARASP. 

The proposed processor employs a reduced hardware 

requirement and application specific instruction set. Due to 

the size of its data register and buses, ARASP is 

considered to be a 16-bit processor. It has direct and 

indirect addressing modes. ARASP also has specific 

instructions and input-output interrupts.  

4-1-  Main Memory Organization 

The ARASP is capable of addressing 4096 bytes of 

memory through its 12-bit address lines. This memory is 

addressed by a register called AR. 

4-2- Register Configurations 

The main data register of ARASP is AC, which is used in 

conjunction with most general instructions. This processor 

has overflow, carry, zero, and sign flags (o, c, z, and s). 

These flags may be modified by arithmetic operations. 

ARASP consists of two parts, global unit, and specific 

unit. The major components of the global unit are AR, PC, 

IR, DR, TR1, TR2, AC, LFSR, and ALU. Also, the 

components of the specific part are SyC and NeC register 

bank that consists of 256 9 bit registers. These register 

banks hold synthesis and neighboring circuits each 

consisting of at most 8 gates. DTT and STT register banks 

hold destination and synthesis truth tables respectively. 

According to the size of these register banks and hardware 

restrictions. The desired circuit can have at most 8 inputs 

(256 8-bit registers). HD, SHD, and HD registers that are 

8-bit registers are used for holding hamming distance of 

the circuit throughout the running synthesis algorithm.  

4-3- Instruction Types 

The ARASP has a total of 47 instructions totally, and the 

specific instructions are summarized in Table 3. The 

Proposed processor has two different types of instruction 

sets (Table 1). The Memory reference instructions need the 

main memory address to do their operations and the Non-

memory reference instruction set, which needs no memory 

for their operands. The ARASP‟S memory instruction set 

can be used by direct and indirect addressing modes.  

Table 1. Instruction Types and Addressing Modes of ARASP 

Instruction 

Type 
M I Address 

Addressing 

Mode 

Memory 1 0 No Direct 

Memory 1 1 No Indirect 

Others 0 × Yes - 

As presented in Fig. 5, in memory reference instructions most 

significant bit of instruction (bit 15) is set, to specify the 

memory reference instruction type. Bit 14 called I, specifies 

direct or indirect addressing mode (0 for direct and 1 for 

indirect).  The next 4 bits (bits 10-13) specify the operation of 

a memory reference instruction. As this type of instruction 

need a memory word for holding one of the operands, in these 

types of instructions we should refer to the main memory to 

read the operand. If it is set to 1 the operand‟s address is 

indirect and if it is set to 0 the operand‟s address is direct. 

 

Fig. 5 Memory reference instruction format 

These types of instructions occupy a byte whose most 

significant bit (bit 15) is 0. In this type of instruction, bit 

14 specifies output and register instructions or specific 

instructions (0 for output and register instructions and 1 

for specific instructions). The other 4 bits specify 

operations of instructions (Fig. 6). 

Address

add

add+1

Opcode

15 14 10 9 0

I

13

UnusedM
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Fig. 6. Non Memory reference instruction format 

The fetch, decode and calculation of effective address 

phases of the instruction cycle could be as follow: 

Interrupt : 
IEN(FGI+FGO) : R  1 

RT0 : AR  0  

RT1 : M[AR]  PC , PC  0 

RT2 : PC  PC+1, IEN  0 , R  0 , SC  0 

Fetch : 

 T0 : AR  PC , PC  PC+1 

 T1 : IR  M[AR] 

Decode : 

 T2 :  D31 … D0  IR[10-14] , AR  IR[0-8] , F  IR(9) , M  

IR(15) 

Address Fetch : 
MT3 :  AR  PC, PC  PC+1 

MT4 : AR  M[AR] 

M    T5  :  nothing 

M I T5 : AR  M[AR] 

4-4- Arithmetic Logic and Shift Unit 
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B

 
Fig. 7 Arithmetic Logic and Shift Unit 

 

The presented processor supports basic arithmetic, logic, 

and shift units which are presented in  

Table 2. ALU Operators 

S4 S3 S2 S1 S0 Unit Operation Function 

0 0 0 0 0 

AU 

ADD A+B 

0 0 0 0 1 SUB A-B 

0 0 0 1 0 DEC A-1 

0 0 0 1 1 INC A+1 

0 0 1 × × MUL A×B 

0 1 0 0 0 

LU 

AND AB 

0 1 0 0 1 OR AB 

0 1 1 0 0 XOR AB 

0 1 1 1 0 NOT B 

0 1 1 1 1 PASS A 

1 × × 0 0 

SU 

SHL SHL(B) 

1 × × 0 1 SHR SHR(B) 

1 × × 1 0 ROL ROL(B) 

1 × × 1 1 ROR ROR(B) 

The 5-bit opcode (S0 to S4) hierarchically selects the 

proper operation. Besides the main results, five arithmetic 

flags (Carry, Overflow, Zero, and Sign) are set by the 

ALU. Each flag obtains the proper value by the Eq.s 2 to 5 

considering that the input values are unsigned integer. AC, 

DR, TR1, and TR2 can be considered as both first and 

second operands. 
 

C-Flag = Cout when (Op.=ADD|SUB|DEC|INC|SHL|SHR) (2) 
O-Flag = „1‟ when (Op.=ADD|INC|SHL & Cout=„1‟) | (Op.= 

SUB|DEC & Cout=„0‟) | (Op.=MUL & 16-bit MSB≠0) 
(3) 

Z-Flag = „1‟ when (16-bit LSB=0) (4) 
S-Flag = „1‟ when (Op.=SUB|DEC & Cout=„0‟) (5) 

4-5- Instruction Set 

The instruction set for the ARASP is depicted in Table3. 

The objective of synthesizing a reversible circuit is to 

compute a circuit for a given function. So we need to have 

a destination truth table of a given function. LDTT 

instruction reads the truth table of the desired function 

from the main memory to the DTT register bank. This 

instruction is a specific instruction that needs to refer to 

the main memory for its operation. Because of the 

hardware restrictions, it assumes that each function could 

have at most eight inputs. So the process of reading the 

rows of the destination truth table from memory reads 

some rows with the number that NoTR defines. The value 

of this register is set by SNOTTR instruction according to 

the value of the NOG register. 

The STRC instruction stores the generated circuit of the 

synthesis process of a given function in the main memory. 

The RAND instruction generates a 16-bit random number.  

The CLRNOG instruction clears 8-bits of the NOG 

register, while INCNOG instruction increments the value 

of this register.  

The SNOI instruction initializes the NOI register by an 

immediate number. 

The GRNDC instruction generates a random circuit with 

some gates that are determined by the value of the NOG 

register. This instruction gets the value of the NOG 

register and the number of gates and sets a random value 

to some registers of SyC register bank according to the 

specified value of NOG. 

The GNBRCROS instruction performs the crossover 

operation on a circuit to generate a new circuit called 

neighboring circuit from synthesis circuit. The instruction 

selects two random gates from the synthesis circuit that are 

in the SyC register bank. After that, it exchanges the 

position of these two gates to generate a new circuit called a 

neighboring circuit that is placed on the NeC register bank. 

The other instruction that performs mutation operation is 

GNBRMUT. This instruction also generates a random new 

circuit from the existing circuit by mutation operation. The 

instruction selects a random gate from the synthesis circuit 

Madd Opcode

15 14 10 9 0

I

13

Immediate
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that is in the SyC register bank. After that, it exchanges the 

position of control and main inputs to generate a new 

circuit called a neighboring circuit that is also placed on 

the NeC register bank.  

To compute the truth table for each circuit it is necessary 

to set each row of the truth table with initial values 0 to 2
n
-

1. To achieve this goal, SIVDTT is used. 

MASK instruction generates a mask pattern for output.  

CALCSTT instruction computes the truth table of each 

generated circuit, SyC or NeC. In other words, this 

instruction, compute the value of the output for each 

combination of inputs in a circuit with some gate. By 

feeding the initial value of a given row of the truth table to 

the circuit as the first stage and synthesizing them the 

computation operation starts and then synthesis ALU 

calculates the output of this gate. The next gate gets the 

calculated output of the preceding gate and calculates the 

output. These operations continue while the output of the 

last gate is computed. This output will be replaced by the 

value of the given row. CALSTT repeats these operations 

for all combinations of inputs (all rows of truth table).  

To calculate the hamming distance between syntheses or 

neighboring truth tables and destination truth tables, 

CALCHD instruction is used. 

The SBC instruction selects the best circuits, a circuit with 

less hamming distance, between a circuit and a 

neighboring circuit. 

Finally, SIZHD is used to determine the zero value of the 

HD register.  

NOGTAC instruction is used to transfer the value of the 

NOG register to the AC. 

Table 2. ALU Operators 

S4 S3 S2 S1 S0 Unit Operation Function 

0 0 0 0 0 

AU 

ADD A+B 

0 0 0 0 1 SUB A-B 

0 0 0 1 0 DEC A-1 

0 0 0 1 1 INC A+1 

0 0 1 × × MUL A×B 

0 1 0 0 0 

LU 

AND AB 

0 1 0 0 1 OR AB 

0 1 1 0 0 XOR AB 

0 1 1 1 0 NOT B 

0 1 1 1 1 PASS A 

1 × × 0 0 

SU 

SHL SHL(B) 

1 × × 0 1 SHR SHR(B) 

1 × × 1 0 ROL ROL(B) 

1 × × 1 1 ROR ROR(B) 

5- Testing Process 

In this paper, the proposed CPU is referred to as ARASP. 

The proposed 

A structural VHDL code in Fig. 8 is used to test and verify 

the functionality of the given structure. Using the 

instruction set of the presented ARASP processor, the 

following code has to be programmed to generate a 

random circuit for the desired N×N function which is 

stored from the memory address Addr1. 

 

Fig. 8 VHDL code 

6- Conclusion 

We showed that synthesizing a reversible circuit using a 

search algorithm is a complex task with a large number of 

search spaces. So optimization algorithms, especially 

Genetic Algorithm, GA, are used to find the global 

minimum or maximum of a function, in an extensive 

searching space. As in such algorithms, the process of 

calculating values of outputs is a time-consuming 

operation. So, we need a processor to speed up the process 

of synthesis. As a result, application specific flexibility is 

mandatory to meet the performance requirements of 

synthesis reversible circuits.  

In this paper, we presented a novel design of the family of 

ASIP processors in the application domain of reversible 

circuits. The Providing programmability together with 

required specific instructions has been the main purpose of 

the automated synthesis of reversible circuits. The 

proposed processor that we referred to as ARASP is a 16-

bit processor with a total of 47 instructions totally, which 

some specific instruction has set for automated synthesis 

reversible circuits. ARASP is specialized for automated 

synthesis of reversible circuits using optimization 

algorithms such as GA or simulated annealing.  

The design steps of all the main components inside the 

processor core have been described in detail. Maximum 

specific instruction, GNBRMUT, needs 29 clock cycles 

for execution. Structural VHDL code has been used to test 

the proposed architecture. A pipeline technique could be 

used to enhance the speed and achieve a high throughput 

rate as future work.  

As future work, the processer can be comprehensively 

implemented of this processor that will specialize in 

simulated annealing algorithm. It is suggested that the 

proposed work will provide a new focus in the reversible 

field making hardware more specific for such applications. 

 



    

Journal of Information Systems and Telecommunication, Vol.10, No.4, October-December 2022 

  

 

 

285 

 

 

Appendix 

Table 3. ARASP instruction set 

Ii Instruction Name Description Ins. Reference IR(9) OpCode 

I0 INP Input AC(L)INPR I/O  000000 

I1 OUT Output OUTRAC(L) I/O  000001 

I2 SKI Skip if FGI FGI: PCPC+1 I/O  000010 

I3 SKO Skip if FGO FGO: PCPC+1 I/O  000011 

I4 ION IEN On IEN1 I/O  000100 

I5 IOF IEN Off IEN0 I/O  000101 

I6 CLA Clear Accumulator AC0 Register  000110 

I7 CLE Clear E E0 Register  000111 

I8 CMA Complement Accumulator AC      Register  001000 

I9 CME Complement E E  Register  001001 

I10 INC Increment Accumulator ACAC+1 Register  001010 

I11 ROL Rotate Left Accumulator ACROL AC Register  001011 

I12 ROR Rotate Right Accumulator ACROR AC Register  001100 

I13 SPA Skip if Positive Accumulator  :: PCPC+1 Register  001101 

I14 SZA Skip if Zero Accumulator Z: PCPC+1 Register  001110 

I15 SZE Skip if Zero E  : PCPC+1 Register  001111 

I16 HLT Halt SCDisable Register  010000 

I17 AND AND AC M[AR]AC Memory  100000 

I18 OR OR AC M[AR]AC Memory  100001 

I19 XOR XOR AC M[AR]AC Memory  100010 

I20 ADD Addition AC(L)M[AR]+AC Memory Int/Real 100011 

I21 SUB Subtraction AC(L)M[AR]-AC Memory Int/Real 100100 

I22 MUL Multiplication AC(L)M[AR]×AC Memory Int/Real 100101 

i23 DIV Division ACAC/DR Memory Int/Real 100110 

I24 MOD  ACAC % DR Memory Int 100111 

I25 POW Power ACACDR Memory Int/Real 101000 

I26 EXP ex ACe-DR Memory Real 101001 

I27 LDA Load Accumulator AC(L)M[AR] Memory  101010 

I28 STA Store Accumulator M[AR]AC Memory  101011 

I29 JMP Jump PCAR Memory  101100 

I30 BSR Branch and Save Return-address M[AR]PC, PCAR Memory  101101 

I31 DSZ Decrement and Skip if Zero 
M[AR]M[AR]-1 

Z: PCPC+1 
Memory  101110 

I32 RAND Generate a random number ACLFSR Specific  010001 

I33 CLRNOG Clear Number of Gate NOG0 Specific  010010 

I34 INCNOG Increment Number of Gate NOGNOG+1 Specific  010011 

I35 SNOI Set Number of Inputs NOIimmediate Specific  010100 

I36 SNOTTR Set Number of Truth Table Rows NOTR2NOI Specific  010101 

I37 GRNDC Generate Random Circuit 
SyC[0]Random Number 

SyC[NOG-1]Random Number 
Specific  010110 

I38 GNBRC 

Generate a Neighbor of Circuit 

(Select a random gate and 
exchange its main control and one 

of its input) 

NeCPerturbing SyC Specific  010111 

I39 SIVDTT 
Set Initial Value for Destination 

Truth Table 

STT[0]0 

. 

. 

. 

STT[2NOG-1] 2NOG-1 

Specific  011000 

I40 MASK Generate a Mask For Output MASK  Specific  011001 

I41 CALCSTT Calculate Synthesis Truth Table  Specific  011010 

I42 CALCHD 

Calculate Hamming Distance 

Between Synthesis Truth Table and 
Destination Truth Table 

SHD/NHD  Hamming Distance Specific  011011 

I43 SBC Select Best Circuit  Specific  011100 

I44 SETTEMP Set Temperature TEMP  immediate Specific  011101 

I45 DECTEMP Decrement Temperature TEMP  TEMP -1 Specific  011110 
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