

 Zeinab Kalantari

z.kalantari@iaurafsanjan.ac.ir

Journal of Information Systems and Telecommunication
Vol.10, No.4, October-December 2022, 279-286

http://jist.acecr.org
ISSN 2322-1437 / EISSN:2345-2773

1
. Department of Computer Engineering, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran

2
. Department of Computer Engineering, ShahreKord Branch, Islamic Azad University, ShahreKord, Iran

3
. Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran

Received: 04 Jun 2021/ Revised: 04 Jan 2022/ Accepted: 02 Feb 2022

Abstract
Reversible logic has been emerged as a promising computing paradigm to design low power circuits in recent years. The

synthesis of reversible circuits is very different from that of non-reversible circuits. Many researchers are studying methods

for synthesizing reversible combinational logic. Some automated reversible logic synthesis methods use optimization

algorithms Optimization algorithms are used in some automated reversible logic synthesis techniques. In these methods, the

process of finding a circuit for a given function is a very time-consuming task, so it‟s better to design a processor which

speeds up the process of synthesis. Application specific instruction set processors (ASIP) can benefit the advantages of both

custom ASIC chips and general DSP chips. In this paper, a new architecture for automatic reversible logic synthesis based

on an Application Specific Instruction set Processors is presented. The essential purpose of the design was to provide the

programmability with the specific necessary instructions for automated synthesis reversible. Our proposed processor that

we referred to as ARASP is a 16-bit processor with a total of 47 instructions, which some specific instruction has been set

for automated synthesis reversible circuits. ARASP is specialized for automated synthesis of reversible circuits using

Genetic optimization algorithms. All major components of the design are comprehensively discussed within the processor

core. The set of instructions is provided in the Register Transform Language completely. Afterward, the VHDL code is

used to test the proposed architecture.

Keywords: Reversible logic; Optimization Algorithms; Application Specific Instruction Set Processors; ASIP; RTL.

1- Introduction

Application specific instruction set processors (ASIP) can

compromise the advantages of custom ASIC chips and

general DSP chips. In other words, ASIP chips utilize high

performance and low power of ASIC chips and flexibility

of DSP chips [1][2][3][4][5].

There is a tradeoff between cost and speed in ASIPs.

Programmability is the main advantage of ASIPs, which

gives more flexibility to software developers. Other

advantages are more convenient in the design and

debugging process, predictability, and shorter time to

market. Hardware and software are two aspects of ASIPs

rather than one aspect of the task being dominant. Besides,

compared to general-purpose processors, ASIP benefits

from having specific instructions to perform a specific task

faster and reduce programmer errors. Accordingly,

efficiency and programmability are both advantages of

ASIPs compared to general-purpose processors.

In this paper, a novel ASIP-based processor for the

synthesis of reversible circuits is proposed. This processor

is used to synthesize reversible circuits using optimization

algorithms. VHDL code is used to simulate and test the

proposed architecture. The main objective of the proposed

design is programmability as it is the major concept of

ASIP. In addition, the suggested structure reduces

hardware complexity.

The organization of the rest of the paper is as follows. The

next section and subsequent sections present a background

on the synthesis of reversible circuits. Section 3 details the

proposed ASIP architecture model for the synthesis of

reversible circuits. The testing process describes in section

4. Finally, section 5 concludes the paper.

Kalantari, Gerami & Eshghi, ARASP: An ASIP Processor for Automated Reversible Logic Synthesis

280

2- Background

Reversible logic has applications in low power computing,

quantum computing, nanotechnology, optical computing,

and DNA computing. The design of the reversible circuits

is quietly different from the design of conventional

irreversible logic circuits [6] because of the different gates

that are available in reversible logic.

The synthesis of reversible circuits differs significantly from

synthesis using traditional irreversible gates. Many

algorithms have been proposed for the synthesis of

reversible circuits [7][8][9][10]. Dengli et al. proposed an

improved KFDD based reversible circuit synthesis method

[7]. Ahmed et al. suggested a synthesis approach using

reorder algorithm [8]. Basak et al. presented an algorithm

using the ESOP expressions [9]. Some automated reversible

logic synthesis methods, such as genetic algorithms (GAs)

are also presented [11][12][13][14][15][16]. These

algorithms use optimization algorithms.

In optimization algorithms, the main process is generating

some random circuits and then computing the output truth

table of generated circuits. Then the hamming distance

between the truth table of generated random circuits and

the truth table of the given function is calculated. After

that, according to the optimization algorithm the best

circuit is selected. These operations are repeated while

desired hamming distance is reached.

To implement the automated reversible synthesis

algorithm, a background on reversible gates is needed. The

next section is illustrated to introduce reversible logic

gates. After that, a general algorithm for the synthesis of

all reversible circuits is presented.

2-1- Reversible Gates

Since a serious problem in modern VLSI designs is power

consumption, Low power circuit design is one of the most

attractive subjects for hardware designers. Landauer has

shown that for irreversible logic computations, each bit of

information lost, generates kTln2 joules of heat energy,

where k is Boltzmann‟s constant and T is the absolute

temperature at which computation is performed [17].

Bennett showed that kTln2 energy dissipation would not

occur if a computation is carried out reversibly [18]. This

part of energy dissipation is independent of what the

underlying technology is.

In reversible circuits, no bit of information is lost, and

reversible computation in a system can be performed only

when the system comprises reversible gates.

In a reversible gate, there is a one-to-one correspondence

between its inputs and outputs. As a result, the number of

outputs of a reversible gate is the same as the number of

inputs, and for each input vector, there is a unique output

vector and vice versa.

Some more common gates to design reversible logic

circuits are Feynman Gate, FG [19], Toffoli Gate, TG [20],

Fredkin Gate, FRG [21] are more common gates to design

reversible circuits.

A 2*2 Feynman Gate, also known as controlled-NOT

(CNOT), is depicted in Fig.1.a. It implements the logic

functions: P = A and Q = A⊗B.

A 3*3 Toffoli Gate has 3 inputs: 2 control inputs, that are

copied to the first 2 outputs and one other input that is

complemented if all control inputs are 1s and are directly

copied to the last output otherwise [20]. A 3- input, 3-

output Toffoli Gate is shown in Fig.1.b. The inputs „A‟

and „B‟ are passed as first and second outputs, respectively.

The third output is controlled by „A‟ and „B‟ to invert „C‟.

A 3*3 Fredkin Gate is depicted in Fig.1.c. Here the input

„A‟ is passed as the first output. Inputs „B‟ and „C‟ are

swapped to get the second and third outputs, which are

controlled by „A‟. If A = 0, then the outputs are simply

duplicating of the inputs; otherwise, if A = 1, then the two

input lines (B and C) are swapped.

Fig. 1 (a) Feynman gate, (b) Toffoli gate, and (c) Fredkin gate

2-2- Synthesis of Reversible Circuits

Synthesizing a reversible circuit using a searching

algorithm is a complex problem with a large amount of

searching space. The number of combinations for placing

one Toffoli r×r gate in an n×n circuit (0<r<n-1) to

synthesize a reversible n×n circuit is expressed by)1(:

ρ=n. ∑ (

)
 =n.2

n-1
 (1)

If the number of required gates to design a circuit is m,

then the number of possible circuits is ρ
m
. If Fredkin and

Press are added to the set of Toffoli r×r gates, then the

number of possible circuits is (3ρ)
m
. So optimization

algorithms, especially GA, are used to find the global

minimum or maximum of a function, in an extensive

searching space [11][12][13][14]. In the next subsection, a

review of automated synthesis is presented.

2-3- Automated Reversible Logic Synthesis

The general algorithm for automated reversible logic

synthesis is shown in Fig.2. This processor is used to

synthesize reversible circuits.

The algorithm starts by generating a random configuration

(a random state) of a circuit with one gate. We consider

the hamming distance between the truth table of this

circuit and the truth table of a given function as the cost

function. Then for each new configuration, it‟s necessary

A

B

P=A

Q=A B

A

B

C

P=A

Q=B

R=AB C

A

B

C

P=A

Q=A’B+AC

R=AB+A’C

(a) (b) (c)

Journal of Information Systems and Telecommunication, Vol.10, No.4, October-December 2022

281

to compute the truth table. So the main operations in such

algorithms are computing the truth table of each circuit

and then comparing its truth table with the destination

truth table to select the best circuit, based on the desired

algorithm. So in a given iteration, the algorithm generates

n new circuits at a time. Each new circuit is derived from

the old configuration. The hamming distances of the two

circuits are then compared.

After the process of finding a new circuit, comparing it to

the current configuration, and either accepting or rejecting,

it is done n times.

After all, if the stopping criteria of the algorithm, zero

hamming distance, is not reached, the number of gates will

increase and the algorithm is repeated for a new circuit

with extra gates.

 Set NoG=1 //the number of gates being used for the

synthesis

 Set S=S0 // random initial state

Loop1:

 Initiate a random circuit S using NoG

 While (up to max-iteration)

{

 While(required number of circuits not generated)

 {

 Generate new circuit S‟ by perturbing S;

 For (all rows of truth-table)

 E=E+HD(des[i]&mask , Syn[i]&mask);

 ΔE=E(S‟)-E(S)

 If (ΔE<=0)

 S=S‟;

 }

 If (HD!=0)

 {

 NoG=NoG+1;

 Goto Loop1;

 }

 else

 Print circuit; } }

Fig. 2 Algorithm description

3- Architecture Overview

Fig. 3. ARASP processor

This paper introduces an ASIP processor which is useful in

the application domain of reversible circuits. This processor

is called ARASP, an ASIP processor for automated

reversible logic synthesis. The schematic of the ARASP

processor is illustrated in Figure 2. The explanation of the

proposed register configuration is in Figure 3.

Fig. 4 ARASP register configuration

We proposed a 16-bit wide ASIP architecture with 16-bit

integer operations for common arithmetic operations and a

specific function unit for the automated synthesis of a

reversible circuit.

3-1- Global View on ARASP

Registers have clock inputs that are all connected to the

main system clock. Each AC, DR, TR1, and TR2 are 16-bit

registers that provide operands of ALU. The output of ALU

is connected only to the AC. The instruction register, IR,

provides the instruction bits for the controller. The 12-bit

program counter register is called PC, this register provides

an address for current instruction through the memory

address register, AR. This register also is a 12-bit binary up

counter. The arithmetic logic unit, ALU, is a combinational

logic unit with two 16-bit inputs, four flag inputs, and

control inputs that specify the integer operations. The output

of this unit is connected to the input of AC.

ARASP

Processor

DataBUS
32bit

AddressBUS
12bit

Read

Write

FGO

Clock

Reset

FGI

DataOut

DataIn
8bit

Clock

Generator

Clock

Reset

RAM

4096x16bit

DataBUS

AddressBUS

8bit

Peripheral

Device

RAM

4096×16

AR

PC

IR

DR

ALU ACTR1

TR2

SyC

256×9

NeC

256×9

Synthesis

Function Unit

SyCP

SyCP

STT

256×8

DTT

256×8

TTP

BUS

B
U

S

B
U

S

NOG

NOI

NOTR

Address

LFSR

HD

SHD

NHD

SR

Kalantari, Gerami & Eshghi, ARASP: An ASIP Processor for Automated Reversible Logic Synthesis

282

The next part is a function unit for the automated synthesis of

a reversible circuit. This unit works as follows. At first, a

random circuit with some gates that the NOG (Number OF

Gates) register specifies is generated. The SyC (Synthesis

Circuit) register bank maintains this random gate. The SyCP

(Synthesis Circuit Pointer) register which is an 8-bit up-

counter is used to specify each register of this register bank

(each reversible gate) in each step. Same as SyC, NeC

register bank is used to hold the neighboring circuit of

synthesis circuit in each step, the size of this register is as SyC,

also NeCP (Neighboring Circuit Pointer) is used to define a

register of NeC register bank in each step of the synthesis.

DTT (Destination Truth Table) consists of 256 8-bit registers

to maintain the truth table of a given function. As the

algorithm generates a reversible circuit in each step, we need

a register bank to maintain the truth table of the generated

circuit. So STT (Synthesis Truth Table) is used for this aim.

The size of this register bank is the same as DTT. TTP is

an 8-bit up-counter that refers to each row of DTT or STT

in each step of the algorithm.

As said before the major time-consuming operation in the

synthesis of a reversible circuit is calculating the output of

the circuit for all combinations of inputs. So the synthesis

function unit that is a combinational circuit calculates each

row of synthesis truth table of desired circuit, SyC or NeC.

After synthesis of the desired circuit, we need to compare this

truth table with the destination truth table, DTT. So we have

to calculate the hamming distance between synthesis truth

table STT and destination truth table DTT, as the cost

function. After that, the calculated hamming distance will set

the SHD or NHD depending on the circuit that is synthesized.

The final step in the algorithm is selecting the best circuit.

So we need to compare SHD and NHD registers and set

HD register with one of these registers.

4- Proposed Architecture

In this paper, the proposed CPU is referred to as ARASP.

The proposed processor employs a reduced hardware

requirement and application specific instruction set. Due to

the size of its data register and buses, ARASP is

considered to be a 16-bit processor. It has direct and

indirect addressing modes. ARASP also has specific

instructions and input-output interrupts.

4-1- Main Memory Organization

The ARASP is capable of addressing 4096 bytes of

memory through its 12-bit address lines. This memory is

addressed by a register called AR.

4-2- Register Configurations

The main data register of ARASP is AC, which is used in

conjunction with most general instructions. This processor

has overflow, carry, zero, and sign flags (o, c, z, and s).

These flags may be modified by arithmetic operations.

ARASP consists of two parts, global unit, and specific

unit. The major components of the global unit are AR, PC,

IR, DR, TR1, TR2, AC, LFSR, and ALU. Also, the

components of the specific part are SyC and NeC register

bank that consists of 256 9 bit registers. These register

banks hold synthesis and neighboring circuits each

consisting of at most 8 gates. DTT and STT register banks

hold destination and synthesis truth tables respectively.

According to the size of these register banks and hardware

restrictions. The desired circuit can have at most 8 inputs

(256 8-bit registers). HD, SHD, and HD registers that are

8-bit registers are used for holding hamming distance of

the circuit throughout the running synthesis algorithm.

4-3- Instruction Types

The ARASP has a total of 47 instructions totally, and the

specific instructions are summarized in Table 3. The

Proposed processor has two different types of instruction

sets (Table 1). The Memory reference instructions need the

main memory address to do their operations and the Non-

memory reference instruction set, which needs no memory

for their operands. The ARASP‟S memory instruction set

can be used by direct and indirect addressing modes.

Table 1. Instruction Types and Addressing Modes of ARASP

Instruction

Type
M I Address

Addressing

Mode

Memory 1 0 No Direct

Memory 1 1 No Indirect

Others 0 × Yes -

As presented in Fig. 5, in memory reference instructions most

significant bit of instruction (bit 15) is set, to specify the

memory reference instruction type. Bit 14 called I, specifies

direct or indirect addressing mode (0 for direct and 1 for

indirect). The next 4 bits (bits 10-13) specify the operation of

a memory reference instruction. As this type of instruction

need a memory word for holding one of the operands, in these

types of instructions we should refer to the main memory to

read the operand. If it is set to 1 the operand‟s address is

indirect and if it is set to 0 the operand‟s address is direct.

Fig. 5 Memory reference instruction format

These types of instructions occupy a byte whose most

significant bit (bit 15) is 0. In this type of instruction, bit

14 specifies output and register instructions or specific

instructions (0 for output and register instructions and 1

for specific instructions). The other 4 bits specify

operations of instructions (Fig. 6).

Address

add

add+1

Opcode

15 14 10 9 0

I

13

UnusedM

Journal of Information Systems and Telecommunication, Vol.10, No.4, October-December 2022

283

Fig. 6. Non Memory reference instruction format

The fetch, decode and calculation of effective address

phases of the instruction cycle could be as follow:

Interrupt :
IEN(FGI+FGO) : R  1

RT0 : AR  0

RT1 : M[AR]  PC , PC  0

RT2 : PC  PC+1, IEN  0 , R  0 , SC  0

Fetch :

 T0 : AR  PC , PC  PC+1

 T1 : IR  M[AR]

Decode :

 T2 : D31 … D0  IR[10-14] , AR  IR[0-8] , F  IR(9) , M 

IR(15)

Address Fetch :
MT3 : AR  PC, PC  PC+1

MT4 : AR  M[AR]

M T5 : nothing

M I T5 : AR  M[AR]

4-4- Arithmetic Logic and Shift Unit

Arithmetic

Integer Unit

Arithmetic

Float Unit

MUX

2x1

16bit

AU

MUX

2x1

16bit

LU

ALU

SU

MUX

2x1

16bit

ALSU

AC

A

B

Fig. 7 Arithmetic Logic and Shift Unit

The presented processor supports basic arithmetic, logic,

and shift units which are presented in

Table 2. ALU Operators

S4 S3 S2 S1 S0 Unit Operation Function

0 0 0 0 0

AU

ADD A+B

0 0 0 0 1 SUB A-B

0 0 0 1 0 DEC A-1

0 0 0 1 1 INC A+1

0 0 1 × × MUL A×B

0 1 0 0 0

LU

AND AB

0 1 0 0 1 OR AB

0 1 1 0 0 XOR AB

0 1 1 1 0 NOT B

0 1 1 1 1 PASS A

1 × × 0 0

SU

SHL SHL(B)

1 × × 0 1 SHR SHR(B)

1 × × 1 0 ROL ROL(B)

1 × × 1 1 ROR ROR(B)

The 5-bit opcode (S0 to S4) hierarchically selects the

proper operation. Besides the main results, five arithmetic

flags (Carry, Overflow, Zero, and Sign) are set by the

ALU. Each flag obtains the proper value by the Eq.s 2 to 5

considering that the input values are unsigned integer. AC,

DR, TR1, and TR2 can be considered as both first and

second operands.

C-Flag = Cout when (Op.=ADD|SUB|DEC|INC|SHL|SHR) (2)
O-Flag = „1‟ when (Op.=ADD|INC|SHL & Cout=„1‟) | (Op.=

SUB|DEC & Cout=„0‟) | (Op.=MUL & 16-bit MSB≠0)
(3)

Z-Flag = „1‟ when (16-bit LSB=0) (4)
S-Flag = „1‟ when (Op.=SUB|DEC & Cout=„0‟) (5)

4-5- Instruction Set

The instruction set for the ARASP is depicted in Table3.

The objective of synthesizing a reversible circuit is to

compute a circuit for a given function. So we need to have

a destination truth table of a given function. LDTT

instruction reads the truth table of the desired function

from the main memory to the DTT register bank. This

instruction is a specific instruction that needs to refer to

the main memory for its operation. Because of the

hardware restrictions, it assumes that each function could

have at most eight inputs. So the process of reading the

rows of the destination truth table from memory reads

some rows with the number that NoTR defines. The value

of this register is set by SNOTTR instruction according to

the value of the NOG register.

The STRC instruction stores the generated circuit of the

synthesis process of a given function in the main memory.

The RAND instruction generates a 16-bit random number.

The CLRNOG instruction clears 8-bits of the NOG

register, while INCNOG instruction increments the value

of this register.

The SNOI instruction initializes the NOI register by an

immediate number.

The GRNDC instruction generates a random circuit with

some gates that are determined by the value of the NOG

register. This instruction gets the value of the NOG

register and the number of gates and sets a random value

to some registers of SyC register bank according to the

specified value of NOG.

The GNBRCROS instruction performs the crossover

operation on a circuit to generate a new circuit called

neighboring circuit from synthesis circuit. The instruction

selects two random gates from the synthesis circuit that are

in the SyC register bank. After that, it exchanges the

position of these two gates to generate a new circuit called a

neighboring circuit that is placed on the NeC register bank.

The other instruction that performs mutation operation is

GNBRMUT. This instruction also generates a random new

circuit from the existing circuit by mutation operation. The

instruction selects a random gate from the synthesis circuit

Madd Opcode

15 14 10 9 0

I

13

Immediate

Kalantari, Gerami & Eshghi, ARASP: An ASIP Processor for Automated Reversible Logic Synthesis

284

that is in the SyC register bank. After that, it exchanges the

position of control and main inputs to generate a new

circuit called a neighboring circuit that is also placed on

the NeC register bank.

To compute the truth table for each circuit it is necessary

to set each row of the truth table with initial values 0 to 2
n
-

1. To achieve this goal, SIVDTT is used.

MASK instruction generates a mask pattern for output.

CALCSTT instruction computes the truth table of each

generated circuit, SyC or NeC. In other words, this

instruction, compute the value of the output for each

combination of inputs in a circuit with some gate. By

feeding the initial value of a given row of the truth table to

the circuit as the first stage and synthesizing them the

computation operation starts and then synthesis ALU

calculates the output of this gate. The next gate gets the

calculated output of the preceding gate and calculates the

output. These operations continue while the output of the

last gate is computed. This output will be replaced by the

value of the given row. CALSTT repeats these operations

for all combinations of inputs (all rows of truth table).

To calculate the hamming distance between syntheses or

neighboring truth tables and destination truth tables,

CALCHD instruction is used.

The SBC instruction selects the best circuits, a circuit with

less hamming distance, between a circuit and a

neighboring circuit.

Finally, SIZHD is used to determine the zero value of the

HD register.

NOGTAC instruction is used to transfer the value of the

NOG register to the AC.

Table 2. ALU Operators

S4 S3 S2 S1 S0 Unit Operation Function

0 0 0 0 0

AU

ADD A+B

0 0 0 0 1 SUB A-B

0 0 0 1 0 DEC A-1

0 0 0 1 1 INC A+1

0 0 1 × × MUL A×B

0 1 0 0 0

LU

AND AB

0 1 0 0 1 OR AB

0 1 1 0 0 XOR AB

0 1 1 1 0 NOT B

0 1 1 1 1 PASS A

1 × × 0 0

SU

SHL SHL(B)

1 × × 0 1 SHR SHR(B)

1 × × 1 0 ROL ROL(B)

1 × × 1 1 ROR ROR(B)

5- Testing Process

In this paper, the proposed CPU is referred to as ARASP.

The proposed

A structural VHDL code in Fig. 8 is used to test and verify

the functionality of the given structure. Using the

instruction set of the presented ARASP processor, the

following code has to be programmed to generate a

random circuit for the desired N×N function which is

stored from the memory address Addr1.

Fig. 8 VHDL code

6- Conclusion

We showed that synthesizing a reversible circuit using a

search algorithm is a complex task with a large number of

search spaces. So optimization algorithms, especially

Genetic Algorithm, GA, are used to find the global

minimum or maximum of a function, in an extensive

searching space. As in such algorithms, the process of

calculating values of outputs is a time-consuming

operation. So, we need a processor to speed up the process

of synthesis. As a result, application specific flexibility is

mandatory to meet the performance requirements of

synthesis reversible circuits.

In this paper, we presented a novel design of the family of

ASIP processors in the application domain of reversible

circuits. The Providing programmability together with

required specific instructions has been the main purpose of

the automated synthesis of reversible circuits. The

proposed processor that we referred to as ARASP is a 16-

bit processor with a total of 47 instructions totally, which

some specific instruction has set for automated synthesis

reversible circuits. ARASP is specialized for automated

synthesis of reversible circuits using optimization

algorithms such as GA or simulated annealing.

The design steps of all the main components inside the

processor core have been described in detail. Maximum

specific instruction, GNBRMUT, needs 29 clock cycles

for execution. Structural VHDL code has been used to test

the proposed architecture. A pipeline technique could be

used to enhance the speed and achieve a high throughput

rate as future work.

As future work, the processer can be comprehensively

implemented of this processor that will specialize in

simulated annealing algorithm. It is suggested that the

proposed work will provide a new focus in the reversible

field making hardware more specific for such applications.

Journal of Information Systems and Telecommunication, Vol.10, No.4, October-December 2022

285

Appendix

Table 3. ARASP instruction set

Ii Instruction Name Description Ins. Reference IR(9) OpCode

I0 INP Input AC(L)INPR I/O 000000

I1 OUT Output OUTRAC(L) I/O 000001

I2 SKI Skip if FGI FGI: PCPC+1 I/O 000010

I3 SKO Skip if FGO FGO: PCPC+1 I/O 000011

I4 ION IEN On IEN1 I/O 000100

I5 IOF IEN Off IEN0 I/O 000101

I6 CLA Clear Accumulator AC0 Register 000110

I7 CLE Clear E E0 Register 000111

I8 CMA Complement Accumulator AC Register 001000

I9 CME Complement E E Register 001001

I10 INC Increment Accumulator ACAC+1 Register 001010

I11 ROL Rotate Left Accumulator ACROL AC Register 001011

I12 ROR Rotate Right Accumulator ACROR AC Register 001100

I13 SPA Skip if Positive Accumulator :: PCPC+1 Register 001101

I14 SZA Skip if Zero Accumulator Z: PCPC+1 Register 001110

I15 SZE Skip if Zero E : PCPC+1 Register 001111

I16 HLT Halt SCDisable Register 010000

I17 AND AND AC M[AR]AC Memory 100000

I18 OR OR AC M[AR]AC Memory 100001

I19 XOR XOR AC M[AR]AC Memory 100010

I20 ADD Addition AC(L)M[AR]+AC Memory Int/Real 100011

I21 SUB Subtraction AC(L)M[AR]-AC Memory Int/Real 100100

I22 MUL Multiplication AC(L)M[AR]×AC Memory Int/Real 100101

i23 DIV Division ACAC/DR Memory Int/Real 100110

I24 MOD ACAC % DR Memory Int 100111

I25 POW Power ACACDR Memory Int/Real 101000

I26 EXP ex ACe-DR Memory Real 101001

I27 LDA Load Accumulator AC(L)M[AR] Memory 101010

I28 STA Store Accumulator M[AR]AC Memory 101011

I29 JMP Jump PCAR Memory 101100

I30 BSR Branch and Save Return-address M[AR]PC, PCAR Memory 101101

I31 DSZ Decrement and Skip if Zero
M[AR]M[AR]-1

Z: PCPC+1
Memory 101110

I32 RAND Generate a random number ACLFSR Specific 010001

I33 CLRNOG Clear Number of Gate NOG0 Specific 010010

I34 INCNOG Increment Number of Gate NOGNOG+1 Specific 010011

I35 SNOI Set Number of Inputs NOIimmediate Specific 010100

I36 SNOTTR Set Number of Truth Table Rows NOTR2NOI Specific 010101

I37 GRNDC Generate Random Circuit
SyC[0]Random Number

SyC[NOG-1]Random Number
Specific 010110

I38 GNBRC

Generate a Neighbor of Circuit

(Select a random gate and
exchange its main control and one

of its input)

NeCPerturbing SyC Specific 010111

I39 SIVDTT
Set Initial Value for Destination

Truth Table

STT[0]0

.

.

.

STT[2NOG-1] 2NOG-1

Specific 011000

I40 MASK Generate a Mask For Output MASK  Specific 011001

I41 CALCSTT Calculate Synthesis Truth Table Specific 011010

I42 CALCHD

Calculate Hamming Distance

Between Synthesis Truth Table and
Destination Truth Table

SHD/NHD  Hamming Distance Specific 011011

I43 SBC Select Best Circuit Specific 011100

I44 SETTEMP Set Temperature TEMP  immediate Specific 011101

I45 DECTEMP Decrement Temperature TEMP  TEMP -1 Specific 011110

Kalantari, Gerami & Eshghi, ARASP: An ASIP Processor for Automated Reversible Logic Synthesis

286

References
[1] K. Kucukcakar, "An ASIP design methodology for embedded

systems," in Proceedings of the Seventh International Workshop

on Hardware/Software Codesign (CODES'99)(IEEE Cat. No.

99TH8450), 1999: IEEE, pp. 17-21.

[2] M. Gries and K. Keutzer, Building ASIPs: The Mescal

Methodology. Springer Science & Business Media, 2006.

[3] R. F. Mirzaee and M. Eshghi, "Design of an ASIP IDEA

crypto processor," in 2011 IEEE 2nd International

Conference on Networked Embedded Systems for Enterprise

Applications, 2011: IEEE, pp. 1-7.

[4] K. Shahbazi, M. Eshghi, and R. F. Mirzaee, "Design and

implementation of an ASIP-based cryptography processor for

AES, IDEA, and MD5," Engineering science and technology,

an international journal, vol. 20, no. 4, pp. 1308-1317, 2017.

[5] M. Venkanna, R. Rao, and P. C. Sekhar, "An Efficient

Design of ASIP Using Pipelining Architecture," in

International Conference on Intelligent Computing and

Applications, 2019: Springer, pp. 117-128.

[6] D. Große, X. Chen, G. W. Dueck, and R. Drechsler, "Exact

SAT-based Toffoli network synthesis," in Proceedings of the

17th ACM Great Lakes symposium on VLSI, 2007, pp. 96-101.

[7] D. Bu and P. Wang, "An improved KFDD based reversible

circuit synthesis method," Integration, vol. 69, pp. 251-265, 2019.

[8] T. Ahmed, A. Younes, and A. Elsayed, "Improving the

quantum cost of reversible Boolean functions using reorder

algorithm," Quantum Information Processing, vol. 17, no. 5,

pp. 1-16, 2018.

[9] A. Basak, A. Sadhu, K. Das, and K. K. Sharma, "Cost

Optimization Technique for Quantum Circuits," International

Journal of Theoretical Physics, vol. 58, no. 9, pp. 3158-3179, 2019.

[10] Z. Kalantari, M. Eshghi, M. Mohammadi, and S. Jassbi,

"Low-cost and compact design method for reversible

sequential circuits," The Journal of Supercomputing, vol. 75,

no. 11, pp. 7497-7519, 2019.

[11] M. Lukac, M. Perkowski, and M. Pivtoraiko, “Evolutionary

approach to quantum and reversible circuits synthesis,”

Artificial Intelligence Review Journal, vol. 20, no. 3–4, pp.

361–417, 2003.

[12] M. Lukac, M. Pivtoraiko, A. Mishchenko, and M.

Perkowski, "Automated synthesis of generalized reversible

cascades using genetic algorithms," 2002.

[13] M. Haghparast, M. Mohammadi, K. Navi, and M. Eshghi,

"Optimized reversible multiplier circuit," Journal of Circuits,

Systems, and Computers, vol. 18, no. 02, pp. 311-323, 2009.

[14] M. Mohammadi and M. Eshghi, "Heuristic methods to use

don‟t care in automated design of reversible and quantum

logic circuits," Quantum Information Processing, vol. 7, no. 4,

pp. 175-192, 2008.

[15] M. Y. Abubakar and L. T. Jung, "Synthesis of Reversible

Logic Using Enhanced Genetic Programming Approach," in

2018 4th International Conference on Computer and

Information Sciences (ICCOINS), 2018: IEEE, pp. 1-5.

[16] T. Atkinson, A. Karsa, J. Drake, and J. Swan, "Quantum

program synthesis: Swarm algorithms and benchmarks," in

European Conference on Genetic Programming, 2019:

Springer, pp. 19-34.

[17] R. Landauer, "Irreversibility and heat generation in the

computing process," IBM journal of research and

development, vol. 5, no. 3, pp. 183-191, 1961.

[18] C. H. Bennett, "Logical reversibility of computation," IBM

Journal of Research and Development, vol. 17, no. 6, pp.

525-532, 1973.

[19] R. P. Feynman, "Quantum mechanical computers,"

Foundations of Physics, pp. 507-531, 1986.

[20] M. P. Frank, "Introduction to reversible computing:

motivation, progress, and challenges," in Proceedings of the

2nd Conference on Computing Frontiers, 2005, pp. 385-390.

[21] E. Fredkin and T. Toffoli, "Conservative logic,"

International Journal of theoretical physics, vol. 21, no. 3, pp.

219-253, 1982.

