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Abstract  
People may change their opinions as a consequence of interacting with others. In the literature, this phenomenon is 

expressed as opinion formation and has a wide range of applications, including predicting social movements, predicting 

political voting results, and marketing. The interactions could be face-to-face or via online social networks. The social 

opinion phases are categorized into consensus, majority, and non-majority. In this research, we study phase transitions due 

to interactions between connected people with various noise levels using agent-based modeling and a computational social 

science approach. Two essential factors affect opinion formations: the opinion formation model and the network topology. 

We assumed the social impact model of opinion formation, a discrete binary opinion model, appropriate for both face-to-

face and online interactions for opinion formation. For the network topology, scale-free networks have been widely used in 

many studies to model real social networks, while recent studies have revealed that most social networks fit log-normal 

distributions, which we considered in this study. Therefore, the main contribution of this study is to consider the log-normal 

distribution network topology in phase transitions in the social impact model of opinion formation. The results reveal that 

two parameters affect the phase transition: noise level and segregation. A non-majority phase happens in equilibrium in 

high enough noise level, regardless of the network topology, and a majority phase happens in equilibrium in lower noise 

levels. However, the segregation, which depends on the network topology, affects opinion groups‟ population. A 

comparison with the scale-free network topology shows that in the scale-free network, which have a more segregated 

topology, resistance of segregated opinion groups against opinion change causes a slightly different phase transition at low 

noise levels. EI (External-Internal) index has been used to measure segregations, which is based on the difference between 

between-group (External) links and within-group (Internal) links. 
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1- Introduction 

Analytical sociology has emerged as an approach for 

understanding the social world, concerning important 

social facts such as network structures, patterns of 

residential segregation, typical beliefs, cultural tastes, and 

common ways of acting [1]. Understanding the 

relationship between micro behavior and macro outcomes 

is one of the principal concerns of analytical sociology to 

explain relationships between properties of collectivities or 

aggregates (such as groups, organizations, markets, and 

cities) and individuals, their behavior, and how the 

interaction between them is organized [2].  

Opinion formation, a collective behavior process, is a 

subject of interest in many areas, e.g., psychology, 

sociology, economics, finance, and politics, which 

describes group members‟ actions following a set of rules 

and its effects on social level [3, 4]. Several opinion 

formation models have been proposed for opinion 

formation [3, 5] since the first opinion formation 

introduced by French, the psychologist, in 1956 [6].  

In this research, we used the social impact model of 

opinion formation [7], based on the psychological theory 

of social impact, formulated by Bibb Latané [8]. This 

model is a discrete opinion model, assuming opinion as 

binary values, e.g., agree/disagree. The model is 

appropriate for modeling social referendums such as 

Brexit [9] or investigating people‟s positive/negative 

opinions about presidential candidates. Like many other 

opinion formation models, noise is also considered in this 

model to describe individuals‟ stochastic behavior in 

opinion change[10]. 

A phase transition is a change of a whole system from one 

behavior to another [11], initially discussed in physics, 

e.g., magnetization and thermodynamics. Very analogous 



    

Mansouri & Taghiyareh, Phase Transition in the Social Impact Model of Opinion Formation in Log-Normal Networks 

 

 

 

2 

to the phases in physics‟ magnetization field, an opinion 

formed in the social level could be described as phases, 

including majority and non-majority phases at the highest 

level [12, 13]. Very analogous to the continuous (or 

second order) phase transition in magnetization [14], phase 

transition in opinion formation describes conditions where 

opinion phases may transfer to each other. 

One of the key parameters in opinion formation is network 

topology[15]. Scale-free network with power-law node 

degree distributed network topology [16] has been widely 

used for modeling real time networks, including networks 

for opinion formation[17]. However, recent studies reveal 

that strongly scale-free structures are empirically rare, 

while for most social networks, log-normal distributions fit 

the data better than power-law distributions [18, 19]. 

In this research, we consider phase transitions in opinion 

formation using the social impact model in log-normal 

distribution networks. We have used agent-based modeling 

and simulation approach for this study. 

We have organized the remainder of this paper as follows: 

first, we briefly review the related background in Section 

2; then we explain the research method in Section 3; 

subsequently, we present the results in Section 4 and 

discuss the results in Section 5; and finally, we conclude 

the paper in Section 6. 

2- Background 

In this section, the main concepts of this study are briefly 

overviewed. 

2-1- Analytical Sociology and Social Simulation 

As a traditional discipline of social sciences, sociology 

studies all forms of human and social dynamics and 

organization at all levels of analysis, including cognition, 

decision making, behavior, groups, organizations, 

societies, and the world system [20]. Analytical sociology 

aims to explain complex social processes by dissecting 

them, focusing on their most important constituent 

components, and constructing appropriate models that help 

us understand why we observe what we observe [21]. 

Mathematics has sometimes been used as a means of 

modeling and formalization in the social sciences but has 

never become widespread. However, there are some 

reasons why simulation is more appropriate for modeling 

social science theories: simulation programming languages 

are more expressive and less abstract than most 

mathematical techniques; simulation programs can be 

modular so that major changes can be made in one part 

without changing other parts of the program; and 

simulation systems could include heterogeneous agents, 

while it is usually relatively difficult using mathematics 

[22]. Therefore, analytical sociology benefits widely from 

agent-based simulations as computational tools [2], and 

many researchers have used agent-based modeling 

approaches to study sociology phenomena, including 

opinion formation [23-25]. Over the last decade, the 

number of papers on using agent-based models to describe 

how opinions emerge in a group of people has grown at an 

overall annual rate of 16%, though not continually [3]. 

2-2- Opinion Formation Models 

People may change their opinions due to their interactions 

with others. Therefore, opinions can be formed and revised 

through social influence. Opinion formation models 

describe opinion dynamics and deal with how opinions 

may be formed and evolved in a social network. Many 

researchers in social psychology, statistical physics, 

mathematics, and computer science have focused on the 

opinion formation models as an interesting challenge in 

the last few decades [26]. 

The French opinion formation model introduced in 1956 

by French, the psychologist, is the first opinion formation 

model[6]. After French‟s model, some other opinion 

formation models have been introduced. Two main 

characteristics of every opinion formation model are the 

opinion space and time model. In the discrete opinion 

space, opinion values are from a set of discrete values, 

while in the continuous opinion space, opinion values are 

from a range of real values. Time modeling also includes 

continuous time and discrete time. In the continuous time 

models, time is considered a continuous range, and the 

opinion formation model is usually presented using a 

differential equation. While in the discrete time models, 

time is considered some (equal or non-equal) steps. The 

discrete time models are more suitable for simulation, 

including agent-based modeling and simulation; 

furthermore, difference equations are used instead of 

differential equations for mathematical representations. 

The most famous opinion formation models are 

summarized in Table 1, including their opinion space, time 

modeling, the main points(s) of opinion dynamics, 

publication year, and the reference(s). Each opinion 

formation model‟s opinion dynamics specify how 

interacting individuals/agents influence each other‟s 

opinions. 

2-3- The Social Impact Model of Opinion 

Formation  

In this research, we have used the social impact model of 

opinion formation [7], a discrete opinion model, with 

binary value for opinion, e.g., agree/disagree or yes/no. 

The model is also suitable for modeling opinion formation 

in online social networks and online communities in which 

a topic is raised, and users discuss for or against it. 
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Table 1: Some Famous Opinion Formation Models 
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The main point(s) 

of opinion 

dynamics 
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R
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c
e (s) 

French C D 
average of the neighbors' 

opinions 
1956 [6] 

Abelson C C 
weighted average of the 

neighbors' opinions 
1964 [27] 

DeGroot C D 
weighted average of the 

neighbors' opinions 
1974 [28] 

Voter D 
D/

C 

adopting the opinion 

according to the opinion 
of a randomly chosen 

neighbor 

1975 [29] 

Social 

impact 
D 

D/

C 

impacts from two groups 
to change or persist on 

the current opinion 

1981 [7] 

FJ (Friedkin- 

Johnsen) 
C D 

influencing by his own 

opinion with weight gi 
and others‟ opinion with 

weight 1-gi 

1990 
[30, 
31] 

Axelrod D D 

diversity of opinions and 
cultures as a 

consequence of 

homophily 

1997 [32] 

Sznajd D D 
based on Ising model, 
one dimensional 

2000 [33] 

Stauffer D D 
based on Sznajd model, 

two dimensional 
2000 [34] 

Deffuant C D 

opinions of two 

randomly selected 

individuals if are not far 
away from each other 

move toward each other 

2000 
[35-

37] 

HK 

(Hegselmann 

– Krause) 

C D 

influence by weighted 

average of all others‟ 
opinions 

2002 [38] 

Majority rule D D 

the individual adopts the 

opinion that has a larger 
value of the sum of the 

neighbors‟ opinions 

2002 [39] 

Altafini C 
D/

C 

there are some 
antagonistic interactions  2012 

[40-

42] 

 

The social impact model of opinion formation [7] is based 

on the social impact theory formulated by Latané [8]. 

According to this theory, the impacts on individuals are 

exerted by the real, implied, or imagined presence or 

actions of one or more people or even groups. The impact 

of source individuals on a subject individual depends on 

three factors: 1) the (spatial, closeness, time, or 

abstraction) distance of the source individuals from the 

subject individual, 2) the source individuals‟ strength of 

persuasion, and 3) the number of source individuals. The 

social impact model of opinion formation consists of N 

individuals or agents. Any agent i (i=1, 2, . . , N) is 

assigned one of two possible opinion values, -1 or +1 at 

any time step, oi=1. Moreover, any agent i is 

characterized by two strengths: persuasiveness strength 

(pi) and supportiveness (si) strength. The pi is the 

capability to persuade another agent with the opposite 

opinion to change its current opinion, and the si is the 

capability to persuade another agent with the same opinion 

to stay on its current opinion. Any agent i experiences total 

impact Ii from other interacting agents, js, formulated as 

(1), in which dij denotes the distance between two 

individuals i and j, and  determines how fast the impact 

decreases with the distance dij. The social impact between 

any two interacting agents is similar to the physical force 

that governs gravity between any two objects by Newton‟s 

law, F=G(m1m2)/r
2
, in which G is the universal gravitation 

constant, m1 and m2 are masses of two objects (similar to 

persuasion strengths pj and sj in (1)), r is the separation 

between the objects (similar to dij in (1)). The power of 2 

of d in Newton‟s law is similar to the parameter  in (1). 

Some implementations of (1) [43-45] have also assumed 

=2. 

 (1) 

The summations at the right-hand side of (1) calculate the 

impact of interacting agents trying to persuade agent i to 

change its opinion and the impact of interacting agents on 

agent i to persist in its current opinion, respectively. Thus, 

the overall impact on agent i to change (or persist on) its 

current opinion is calculated by (1). 

Eq. (1) expresses the deterministic part of interacting 

agents‟ social impact on agent i, while there is a non-

deterministic part affecting agent i, called noise, hi. This 

non-deterministic part is initiated from the environment 

(e.g., public media) and the individuals' characteristics that 

determine how every individual is influenced by others 

(depending on many psychological factors). Thus, the 

social impact model of opinion formation formulates the 

opinion dynamics as (2), indicating the opinion of agent i 

at time step t+1 regarding the impact from interacting 

agents at time step t and all other non-deterministic factors 

summarized in noise parameter hi. The non-deterministic 

part of the model usually has no bias toward any opinion. 

Therefore, hi is usually regarded as white noise and is 

implemented as a random variable from a uniform 

distribution with a mean value equal to zero. The sign 

function in (2) maps negative values to -1 and positive 

values to +1. 
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2-4- Log-Normal Distributed Network 

Scientists from different fields are trying to understand the 

structure and properties of real-world networks. A new 

branch of mathematics called random graph theory 

focusses on the probabilistic methods to model real-world 

networks. In many scientific domains of networks, it is 

claimed that most of the real-world networks are scale-

free, varying in some details, and generally, a network is 

scale-free if the fraction of nodes with degree k follows a 

power-law distribution k
-

, where >1 [18]. However, 

scale-free networks‟ universality is controversial, and 

some recent studies reveal that log-normals often fit 

degree distribution as well or better than power-laws [18, 

46, 47].  

2-5- Phase Transition 

The term phase transition was initially used by physicists 

to describe a change from one behavior to another in the 

thermodynamic or macroscopic limit [11]. Changing the 

values of a set of parameters, e.g., the temperature in 

physical systems may cause a transition from one phase to 

another. For example, changing between solid, liquid, and 

gaseous state of matter [48], or temperature may cause a 

change in the ferromagnetic state in materials such as iron, 

nickel, or cobalt [49]. Similarly, the phase transition is 

used in other sciences, including social systems [50, 51]. 

In this research, we consider the social phases from 

opinion formation viewpoint very similar to those defined 

in [12], as follows: 

 Majority phase: population of agents with each opinion 

are not equal and could be recognized as a majority 

opinion and (probably) a minority opinion: 

- Consensus: All of the agents have the same opinion. 

- Frozen majority: continuing time steps cause no 

change in opinion of any agent. 

- Orderly fluctuated majority: some agents change 

their opinion in every time steps (and other agents do 

not change their opinion). Fig. 1 illustrates how this 

fluctuation may happen in a network of agents 

following the social impact model with the same 

persuasiveness and supportiveness strengths. 

- Non-orderly fluctuated majority: at least some agents 

change their opinions with no specific pattern. 

 Non-majority phase: populations of agents with each 

opinion are (roughly) equal, such that no opinion could 

be recognized as the majority opinion of society. Very 

similar to the defined majority phase, the following 

three states may occur in this case: 

- Frozen non-majority, 

- Orderly fluctuated non-majority, 

- Non-orderly fluctuated non-majority. 

 

 

 

Fig. 1  An example of orderly fluctuating agents with two opinions (black 

and white) in the social impact model with the same strengths 

2-6- Segregation and Measuring using EI Index 

One of the phenomena affecting opinion formation is 

segregation. Segregation is defined as “the degree to which 

two or more groups live separately from one another” [52]. 

Segregation depends on the network structure. In a highly 

segregated network with two opinion groups, there are two 

sub-network. All of the nodes (individuals/ agents) of each 

sub-network have the same opinion. There are some links 

between nodes of the same group and no link between 

nodes from different groups. Therefore, no opinion will 

change due to interaction with a node from the other 

opinion group. 

There are various approaches to measuring segregation in 

social networks [52]. In this research, we have used the EI 

(External-Internal) index, which determines a value for the 

whole network based on the number of links between 

nodes from different groups, or external links (EL) and the 

number of links between nodes of the same groups, or 

internal links (IL), according to (3): 

)/()( ILELILELEI     (3) 

Indeed, the EI index is defined as the difference between 

between-group links and within-group links, divided by 

the total number of links for normalization. EI takes a 

value between -1 (all links are within-group links, 

thoroughly segregated) and +1 (all links are between-

group links, not segregated). 

2-7- Noise in opinion formation models 

The complex human being in various behaviors, including 

opinion formation, could not be represented by a simple 

deterministic model. Therefore, to be more realistic, 

almost opinion formation models have a non-deterministic 

or stochastic part. In the language of statistical mechanics, 

the stochastic component is called noise, which is added to 

the deterministic dynamics of an opinion formation model 

[10]. 

Some studies on the effect of noise in various opinion 

formation models have been published, mainly focusing 

on the effect of noise on phase transitions, e.g., [12, 53] for 

the social impact model, [10, 54-57] for the Deffuant 

model [35], [58] for the Sznajd model [59], and [60-62] 

for the HK model [38].  
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3- Method 

To study phase transitions in opinion formation according 

to the social impact model in log-normal distributed 

random networks, we implemented an agent-based model. 

Some details of the method are described in this section. 

3-1- Generating Log-Normal Random Networks 

 To generate random networks with N nodes and log-

normal node degree distribution, we have used the 

Bianconi-Barabási algorithm [63], an algorithm using 

growth and preferential attachment mechanisms. The 

growth mechanism means that the network continuously 

expands gradually by adding new nodes to the network, 

attaching to the current nodes in the network, and 

preferential attachment means that a new node links with 

higher probability to the nodes with higher degrees. In the 

Bianconi-Barabási algorithm, m0 and m determine the 

number of initial nodes and the number of edges added 

with any newly added node, respectively. By setting the 

algorithm's fitness parameter, the generated network's 

node degree distribution fits the desired distribution, 

including the log-normal distribution we used in this 

research. The generate_BB function from PAFit package 

[64], implemented in R has been used to generate 

networks in this research. Since the simulation has been 

considered for 1000 agents (N=1000) and every agent is 

assigned to one of the generated random network nodes, 

network size As shown in Table 2, In this research, we 

assumed m0=2 and m=2. 

3-2- Implementation of the Simulation 

Eq. (1) and Eq. (2) for the social impact model contain 

some parameters. In this subsection, value assignments to 

those parameters are described. The persuasiveness and 

supportiveness parameters, pi and si in Eq. (1), for each 

agent are assigned using a uniform random variable in the 

range (0..Pmax) and (0.. Smax), respectively. We assumed 

both Pmax and Smax are equal to 100. 

In this research, the distance between any two connected 

agents i and j, dij in Eq. (1), equals 1. Therefore, regardless 

of the value of , dij

=1 for any connected agents i and j.  

Since some random variables play important roles in the 

simulation, the simulation runs Nrun (=30) times for each 

input parameter set, and the statistics of output values 

(trend and final), including the mean values and standard 

deviations, are calculated and reported. 

 

 

 

 

 

 

Table 2: Constant Parameters of The Simulation 

Parameter Value Parameter Description 

N 1000 The number of agents 

MaxStep 1000 Time steps for every simulation run 

Pmax 100 The maximum value of persuasiveness 

power 

Smax 100 The maximum value of supportiveness 

power 

dij
 1 

The same distance (=1) assumed between 

any two connected nodes (agents) i and j; 

therefore, equal dij
 values (=1) regardless 

of  value 

m0 2 The nunber of initial nodes for generating 

log-normal network 

m 2 
The number of edges added with any new 

added node during generating log-normal 

network  

Nrun 30 The number of runs for any unique 

parameter combinations to derive statistics 

 

Table 2 summarizes the above mentioned parameters and 

the assigned values in the simulation. 

The following parameters are used as the independent or 

input parameters: 

 h: The noise level of the social impact model. Indeed, 

hi for agent i in Eq. (2) is a random value from the 

uniform random variable Uniform(-h, +h), whose mean 

value equals zero. The simulation has been run for 

various noise levels from 0 to 2000 with steps 200. 

 : Indicates the percentage of agents with opinion „-1‟; 

therefore, other agents‟ opinions are „+1‟. Any 

simulation start with a  value showing the initial 

combination of both opinion groups. Then  values 

may change during simulation time steps until the last 

time step (MaxStep) at which opinion combination 

reaches final. The values of initial  for various 

simulation runs are 0%, 10%, 20%, 30%, 40%, and 

50%. The system behavior for initial  values more 

than 50% are the same as for 1- and changing the 

initial assignment of opinions to the agents („-1‟ 

instead of „+1‟ and „+1‟ instead of „-1‟). 

Fig. 2 shows the pseudo code of the agent-based model. 

To more clarification, the equivalent flowcharts are also 

shown in Fig. 3 and Fig. 4.  

For every Nrun simulation repetitions with different random 

seed values of any combination of independent parameters 

h and initial , the  values in every time steps are 

measured and saved as trend. Then for every input 

parameters h, initial , and Nrun the output trend is 

available for reporting statistics and drawing the figures 

showing the system behavior. 
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Fig. 2  Pseudo code of the simulation

 

 

 

Algorithm 1: Pseudo code for the simulation                                                                                                       . 
1: procedure SIMULATE 
2:   for h from 0 to 2000 by 200 step do [noise levels] 
3:    for   from  to 5 by 1 step do [initial percentage of agents with opinoin `-1'] 
4:     for run_counter from 1 to Nrun do [simulation runs with different random number sequences] 
5:      initialize rand_seed to a new seed value [to generate new random number sequence] 
6:      trend[run_counter] = RUN_SIMULATION(h, , run_counter) 
7:     end for 
8:     save h, , and trend 
9:    end for 
10:   end for 
11:   draw output diagrams using the saved variables h, , and (the corresponding) trend 
12: end procedure 

 
13: Function RUN_SIMULATION (h, , run_counter) [run_counter affects rand_seed which in turn affects creation of random  

  network and assigning random values for persuasiveness and supportiveness strengths of the agents] 
14:   N = 1000 [The number of agents] 
15:   Log_Norm_Graph = Create_Log_Normal(N, m0, m)[N nodes, m0 initial nodes, m edges added with any new node] 
16:   create N agents and randomly assign each agent to one node of Log_Norm_Graph 
17:   randomly assign -1 opinion to  percent of the agents, assign others' opinions to +1 
18:   initialize _arr[0] to (the current initial)  value (at time step #0) [_arris an array of  values for each time step  

  from initial time step (0) to MaxStep] 
19:   for each agent Ai do 
20:    generate pi and si using uniform random distributions Uniform(0, Pmax) and Uniform(0, Smax) respectively 
21:   end for 
22:   for time_step from 1 to MaxStep do 
23:    for every agent Ai do 
24:     Ai_con = agents connected to Ai according to Log_Norm_Graph [assume Ai connects to itself] 
25:     Ii_pers = Ii_sup = 0 [initialize sum of the impacts from persuading and supporting agents] 
26:     for every Aj in Ai_con do 
27:      if Aj's opinion = Ai's opinion 
28:       Ii_sup = Ii_sup + sj [to calculate the sum of supportive impacts] 
29:      else 
30:       Ii_pers = Ii_pers + pj [to calculate the sum of persuading impacts] 
31:      end if 
32:      Ii = 2*Ii_pers - 2*Ii_sup [Eq. (1)] 
33:      hi = a random value from Uniform(-h, +h) 
34:      if Ii + hi > 0 [opposite opinion overcomes the agent's current opinion] 
35:       Ai's next opinion = -1 * Ai's opinion [change the opinion in next time step] [Eq. (2)] 
36:      end If 
37:     end for [every Aj in Ai_con] 
38:    end for [every agent Ai] 
39:    for every agent Ai do 
40:     Ai's opinion = Ai 's next opinion 
41:    end for [every agent Ai] 
42:    current_ = the percentage of the current agents with opinion '-1' 
43:    _arr[time_step] = current_ 
44:   end for [time_step] 
45:   return _arr 
46:  end function   
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Initialize variables:
N=1000 (the number of Agents)
MaxStep=1000
Pmax=Smax=100 (maximum persuasiveness and supportiveness)
Nrun=30 (the number of Simulation iterations for every 
combination of h and )

h>2000?

Start

h=0

trend[run_counter]= 
RUN_SIMULATION 

(h, , run_counter)

h=h+200

No

Stop

>50%?

 =0%

=+10%

No

run_counter>Nrun?

run_counter=1

run_counter=run_counter+1

No

rand_seed = a new Random Seed

Counter to run Nrun 
times with different 
random seeds

Save h, , and trend

Draw output diagrams using 
the saved variables h, , and 

(corresponding) trend)

 initial percentage of the 
agents with opinion ‘-1’, 
others with opinion ‘+1’

Noise level

Yes

Yes

Yes

Every trend is a two-dimentional 
array as a result of Nrun repetitions 
of simulation running for one 
combination of parameters h and . 
Two dimentions of trend are:
 -Nrun rows for simulation repetitions 
with various random seeds
- MaxStep+1 columns for  values at 
every time step (from 0 to MaxStep) 
resulted from calling 
RUN_SIMULATION 

Fig. 3  Simulation flowchart, calling Run_Simulation function for Nrun 

times for any combination of input parameters h, , and finally drawing 

trend of  values 

4- Results 

The results of running the simulation algorithm described 

in the previous section are presented in this section. 

 We use error fill plots to show the results. To clarify the 

presentation style of the results in error fill plots in this 

section, Fig. 5 shows the result of a subset of the results as 

an example, in which h=0,  starts from 30%, simulation 

repetitions is eight (instead of all 30 repetitions), and the 

number of time steps is 20 (instead of all 1000 time steps). 

RUN_SIMULATION

(h, , run_counter)

RETURN _arr

Create a random Log-Normal network, 
Log_Norm_Graph with N nodes 

Create N agents and 
randomly assign each agent to one 

node of Log_Norm_Graph

randomly assign -1 opinion to  
percent of the agents, assign 

others' opinions to +1

Initialize _arr[0] to (the current 
initial)  value (at t ime step #0)

Randomly assign persuasive and 
supportive values to the agents

time_step = 1

Find the agents connected to agent Ai

i = 1 Index for the agents (1..N)

Calculate Ii, the Impact on Ai 
Using Equation (1)

Calculate Oi(time_step+1)
(opinion of Ai in the next time step)

Using Equation (2)

i = i+1

i>N?No

Update agents’ opinions for next time 
step using calculated Oi(time_step+1)

time_step = time_step+1

time_step>MaxStep?No

Yes

Yes

_arr is an array of 
values for each time step 
from initial time step (0) 

to MaxStep

Calculate current_ using agents’ 
updated opinions 

_arr[time_step] = current_

N=1000 (the Number of agents)

Fig. 4  The flowchart of Run_Simulation function of Fig.3 for calculating 
the agents‟ opinion at the next time step 

The top figure shows values during time steps for each 

repetition of simulation. The down figure shows the 

corresponding error fill plot, which shows the curve of the 

mean values of the  values at each time step with a 

shaded area showing its standard deviation (SD). In this 
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case, an orderly fluctuation, discussed in section II (Fig. 

1), causes a regular fluctuation after a few time steps. Such 

a fluctuation in some of the next figures for whole time 

steps (1000) are seen as thick lines. As another example, 

with the same parameters as Fig. 5 and changing starting  

to 50% results in the plots shown in Fig. 6, where orderly 

fluctuation happens. 

 

Fig. 5  Top:  values of eight simulation repetitions for h=0, initial 

=30%, for 20 time steps; down: corresponding error fill plot. 

 

Fig. 6  A sample subset of simulation repetitions, the same parameters as 

Fig. 5, but =50% (instead of 30%) 

When the noise level increases, some agents randomly 

change their opinion due to the system's more stochastic 

behavior. Therefore, the observed fluctuation for the error 

fill curve is not regular. Fig. 7 and Fig. 8 show examples 

for this case for  h=600  and  starting  from   =30%  and  

 =50%, respectively. 

 

 

Fig.7  Top:  values of eight simulation repetitions for h=600, initial 

=30%, for 20 time steps; down: corresponding error fill plot. 

 

Fig. 8  A sample subset of simulation repetitions, the same parameters as 

Fig. 7, but =50% (instead of 30%) 
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For high enough noise levels, the system behaves more 

stochastically. Fig. 10 and Fig. 11 show the results for 

h=2000, again for eight simulation repetitions for the first 

20 time steps, starting from  =30% and  =50%, 

respectively. 

 

Fig. 9 A sample subset of simulation repetition for h =2000, starting from 

=30%, running for 20 time steps; top: details of  values for eight 

sample run repetitions, down: corresponding error fill plot for the top run 

repetitions. 

 

Fig. 10  A sample subset of simulation repetitions, the same parameters 

as Fig. 9, but =50% (instead of 30%) 

Now, the results for the whole 30 repetitions of simulation 

runs and all 1000 time steps are presented. Fig. 11 shows 

the values of  for the case where there is no noise, h=0. 

The left diagram shows the mean value and (shaded) 

standard deviation of  in every time step for Nrun 

simulation run from start to MaxStep. Since the shaded 

area showing the standard deviations overlap and are not 

clear, the standard deviations of final ( values at the final 

time step, MaxStep) for each initial   is shown in the right 

diagram (black bars) in companion with min-max (red 

bars), and medians (blue bars). As the figure shows, since 

the system is noise-free in this case, the majority phase 

(frozen or orderly fluctuated) happens very soon in the few 

initial steps. 

Similarly, for the next step of noise h, the simulations‟ 

result is shown in the following figures: Fig. 12 for h=200, 

Fig. 13 for h=400, Fig. 14 for h=600, Fig. 15 for h=1000, 

and Fig. 16 for h=2000. 

 

 

Fig. 11  h=0, noise-free simulation: Left: the mean value and (shaded) 

standard deviation of  for time steps, Right: Mean (circle marker), 
standard deviation (black bars), min-max (red bars), and median (blue 

bars) of final. 

 

Fig. 12  h=200: Left: the mean value and (shaded) standard deviation of  

for time steps, Right: Mean (circle marker), standard deviation (black 

bars), min-max (red bars), and median (blue bars) of final. 
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Fig. 13  h=400: Left: the mean value and (shaded) standard deviation of  

for time steps, Right: Mean (circle marker), standard deviation (black 

bars), min-max (red bars), and median (blue bars) of final. 

 

Fig. 14  h=600: Left: the mean value and (shaded) standard deviation of  
for time steps, Right: Mean (circle marker), standard deviation (black 

bars), min-max (red bars), and median (blue bars) of final. 

 

Fig. 15  h=1000: Left: the mean value and (shaded) standard deviation of 

 for time steps, Right: Mean (circle marker), standard deviation (black 

bars), min-max (red bars), and median (blue bars) of final. 

 

Fig. 16  h=2000: Left: the mean value and (shaded) standard deviation of 

 for time steps, Right: Mean (circle marker), standard deviation (black 

bars), min-max (red bars), and median (blue bars) of final. 

Fig. 17 shows the results of the simulations from another 

viewpoint. In this figure, for each value of  a diagram is 

depicted. The horizontal axis shows initial  values, and 

the vertical axis shows final Values. The black curve 

shows the mean value of final with associated standard 

deviation in shaded form. Similarly, the red curve shows 

the result of simulations with the same parameter values, 

but network topology is scale-free Barabási-Albert random 

network as in [12] instead of log-normal. The results will 

be compared in the next section. 

5- Discussion 

As Fig. 11 shows, the behavior of the social system is fully 

deterministic in the noise-free case, starting from 

consensus (=0%) results in a consensus (final=0%) 

because there is no opposite opinion and no stochastic 

behavior to cause any agent to change its opinion. For 

other  values, the system reaches the equilibrium state of 

a frozen or orderly fluctuated majority phase in a few time 

steps. Indeed, when the system starts with noise-free or 

very small noisy conditions, a frozen or orderly fluctuated 

phase happens in equilibrium because there is no noise to 

cause any spontaneous opinion change. 

When the simulation starts from 0%<<50%, it results in 

final< because the majority opinion group dominates the 

minority group, and the minority group‟s population 

shrinks down, but the segregation phenomenon causes no 

consensus (except =0%, which means starting from 

consensus). In most of the noise-free cases, starting from 

=50% causes a majority phase, in some cases toward „-1‟ 

opinion, and in some cases toward „+1‟ opinion. In some 

rare cases starting from =50, the system may reach 

(frozen or orderly fluctuated) non-majority phase with 

final=50%. As Fig. 11 shows, the mean value of final is 

roughly equal to 50%, but the min-max and standard 

deviation have a relatively wide range. 
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Fig. 17  The mean and (shaded) standard deviation of final for various  
and noise levels for log-normal Bianconi-Barabási network (black) and 

scale-free Barabási-Albert network (red) topologies. 

Increasing the noise level to 200 causes some segregated 

groups to break due to the agents‟ stochastic behavior. 

Therefore, in Fig. 12, more majority opinion groups 

emerge on average. Even starting from =0%, it is less 

probable to reach a consensus phase. Moreover, the 

orderly fluctuation is less probable due to the stochastic 

behavior; therefore, the fluctuations are mostly non-

orderly. 

As the system noise level increases to 400 (Fig. 13) and 

600 (Fig. 14), the non-orderly majority phase happens, but 

with less population in comparison with lower noise 

levels. In these cases, the more stochastic behavior of the 

agents causes some agents to change their opinion without 

a persuasiveness impact from interacting agents, and this 

spontaneous opinion changes may cause breaking the 

segregated groups the agents belong to. Therefore, more 

stochastic behavior causes less population of majority 

opinion group in the (non-orderly) majority phase. 

Increasing the noise level to h=1000, as shown in Fig. 15, 

causes more domination of stochastic behavior, and the 

majority opinion group‟s population is not very 

discriminating from the population of the minority opinion 

group.  

Finally, increasing the noise to higher levels, e.g., 2000, 

starting from any  values, the system reaches an 

equilibrium non-orderly non-majority phase, in which the 

population of both opinion groups is roughly the same 

with some small fluctuations. 

Fig. 17 compares the system behavior starting from 

different  values with various noise levels for the log-

normal network topology studied in this research (the 

black curves) and the scale-free Barabási-Albert network 

topology studied in [12] (the red curves). The networks in 

both studies have been generated using preferential 

attachment algorithms, starting from two nodes (m0=2) and 

adding two edges (m=2) with every addition of a new 

node. For the scale-free network with power-law node 

degree distribution, the Barabási-Albert algorithm [16] has 

been used, which is very similar to the Bianconi-Barabási 

algorithm [63] we used for the log-normal networks. The 

networks of both topologies have the same number of 

nodes and the same number of edges; therefore, the mean 

value of node degrees are the same in both cases.  

The comparison of simulation with both log-normal and 

scale-free network topologies is shown in Fig. 17. As the 

figure shows, starting from =50% results in a non-

majority phase (roughly final=50%) for both network 

topologies. The other starting  values are discussed as 

follows: 

 For very high noise levels (>1200), a non-majority 

phase occurs (final=50%) in both topologies regardless 

of starting  values.  

 For some lower noise levels (600< h <1200), final in 

scale-free topology is closer to 50% than log-normal 

topology. The reason is that in the scale-free topology 

with power-law node degree distribution, there are few 

highly connected nodes (strong hubs) which are more 

connected in comparison with highly connected nodes 

in the log-normal topology. The strong hubs in the 

scale-free topology in the presence of high enough 

noise cause more segregated groups break, and final is 

more closer to 50% in comparison to the log-normal 

topology. In other words, the stronger hubs in the 

scale-free network cause weaker majority phases than 

the same conditions in the log-normal topology. 

 For even lower noise levels (0< h <600), the noise 

level is not enough to break many segregations. In this 

case, if a network is more segregated, it will more 

resist against opinion changes due to interactions. The 

mean value and standard deviation of EI indexes for 

measuring segregation of the Nrun networks used for 

simulation sample runs are shown in Table 3. The table 

shows scale-free networks are more segregated at the 

starting point of the simulation runs than the log-

normal networks due to more negative values of EI 

indexes. Therefore, since the scale-free networks are 
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more segregated than the log-normal networks, in the 

log-normal networks, final is closer to 50% compared 

to the scale-free networks. In other words, starting 

from the same  values, scale-free networks results in a 

more majority phase in equilibrium. 

6- Conclusion 

This research considered the phase transition due to the 

various noise levels in the social impact model of opinion 

formation in the log-normal network topology. Phase 

transition in the scale-free network topology, with power-

law distributed networks, has been considered in previous 

studies[12]. Since some recent studies have revealed that 

the log-normal networks are more realistic models for real 

world social networks, we considered the log-normal 

network in this study on phase transition in the social 

impact model of opinion formation. 

The results show that the segregation phenomenon is a 

main parameter affecting the phase transition for different 

noise levels, the level of the stochastic behavior of the 

social system. Two main phases are possible: the majority 

and the non-majority. The non-majority phase happens 

when there is high enough noise levels and causes 

approximately the same population of both possible 

opinions in the equilibrium. The majority phase occurs in 

lower noise and no-noise level, where the segregation of 

opinion groups inhibits consensus to occur, but the more 

populated opinion group becomes larger, and the less 

populated group shrinks down. 

In this research, the log-normal network topology has also 

been compared with the scale-free network topology to 

study differences in phase transition behavior in both 

topologies based on EI index [52]. The experiments show 

that the scale-free networks are more segregated than the 

log-normal networks with the same number of nodes and 

edges. The more segregation in the scale-free topology 

causes more majority phases to occur in equilibrium in 

comparison with the log-normal topology, and weaker 

majority phases in some higher noise levels before enough 

high noise levels that cause non-majority phases. 

Similar to many other studies in the complutational social 

science, the results of this study help us to understand 

some real world social behaviors. However, future studies 

may focus more on the various parameters assumed in this 

research, including persuasiveness and supportiveness 

strengths, determining individuals‟ leadership power. 

Furthermore, we assumed a fixed network topology during 

any simulation repetition; however, combining the opinion 

dynamics with the dynamics of the network structure 

(changing network links) could be a challenge to be 

studied in the future. Moreover, the results of similar 

studies using traditional sociological tools could be very 

worthy to be compared with the results of this study. 

Table 3: The Mean Value(and the Standard Deviation) of EI Index for 30 

Samples of Initial Log-Normal and Barabási-Albert Random Networks 
for Opinion Formation Simulation Repetitions 

 
Log-Normal 

Network 

Barabási-Albert 

Network 

0 -1.00 (0.00) -1.00 (0.00) 

10 -0.62 (0.26) -0.66 (0.03) 

20 -0.34 (0.25) -0.37 (0.04) 

30 -0.12 (0.19) -0.16 (0.03) 

40 -0.03 (0.10) -0.04 (0.02) 

50 0.00 (0.02) -0.01 (0.02) 
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