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Abstract  
This paper presents an optimal auto-thresholding approach for the gravitational edge detection method in grey-scale images. 

The goal of this approach is to enhance the performance measures of the edge detector in clean and noisy conditions. To 

this aim, an optimal threshold is automatically found, according to which the proposed method dichotomizes the pixels to 

the edges and non-edges. First, some pre-processing operations are applied to the image. Then, the vector sum of the 

gravitational forces applied to each pixel by its neighbors is computed according to the universal law of gravitation. 

Afterwards, the force magnitude is mapped to a new characteristic called the force feature. Following this, the histogram 

representation of this feature is determined, for which an optimal threshold is aimed to be discovered. Three thresholding 

techniques are proposed, two of which contain iterative processes. The parameters of the formulation used in these 

techniques are adjusted by means of the metaheuristic grasshopper optimization algorithm. To evaluate the proposed 

system, two standard databases were used and multiple qualitative and quantitative measures were utilized. The results 

confirmed that the methodology of our work outperformed some conventional and recent detectors, achieving the average 

precision of 0.894 on the BSDS500 dataset. Moreover, the outputs had high similarity to the ideal edge maps. 

 

Keywords: Auto-thresholding; edge detection; force feature; the law of universal gravity; the grasshopper optimization 

algorithm. 

 

1- Introduction 

Edge detection is a fundamental step in the image-

understanding, which aims to locate the edge points in an 

image. An edge, is a point at which image brightness 

changes sharply. In other words, edges are boundary pixels 

connecting two sections with different amplitude 

attributes. Edges play a key role in image processing field 

and contain important information of objects in images 

[1]. Via edge detection, it is possible to find the boundaries 

and separate objects from the background. Successful edge 

detection can valuably simplify the analysis of the 

information contents in high-level processing tasks such as 

image segmentation, feature extraction and object 

identification [2]. However, correct edge recognition in 

images, depends on using the appropriate edge detector in 

the existing condition. Therefore, it is required to create an 

algorithm which discovers most accurate edges.  

Several edge detectors have been proposed by 

researchers. Some of the earliest works include the 

methods of Sobel [3], Prewitt [4], Canny [5], Roberts [6] 

and the Laplacian of Gaussian (LoG) [7]. Romani et al. [8] 

used an iterative method based on interpolation with 

variably scaled kernels for edge detection. Eser and Derya 

[9] designed a method based on neutrosophy set using 

maximum norm entropy for the edge detection. To this 

aim, they made use of various entropy types. Yuesheng 

and Lionel [10] proposed an edge detection system based 

on the physical law of diffusion. Their algorithm dealt 

with the edge detection as a character of an energy 

diffusion in media space. Finally, the energy information 

could be extracted. Bhogal and Agrawal [11] evaluated 

three algorithms for the image edge detection. They used 

Sobel, type-1 and interval type-2 fuzzy logic detectors. 

Their experimental result demonstrated that type-2 fuzzy 

edge detector achieved better output compared with the 

other two. Banharnsakun [12] proposed an enhancing edge 

detection technique via artificial bee colony (ABC) 

algorithm. In this method, first, an optimal edge filter was 

found; finally, the threshold value was optimized. Verma 

and Parihar [13] used a fuzzy system for the edge 

detection. They applied the ‘Uni-value Segment 

Assimilating Nucleus’ (USAN) area calculation. Then, the 

edge map was fuzzified and the bacterial foraging 

algorithm (BFA) was used for the membership functions 
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optimization. Ansari et al. [14] developed a new technique 

based on intuitionistic fuzzy divergence and entropy 

measures for the edge detection problem. Then, the results 

were compared to some other methods using mean square 

error (MSE) and peak signal-to-noise ratio 

(PSNR) measures. Shen et al.  [15], the authors utilized 

some hierarchal features learned by Convolutional Neural 

Networks. (CNN) to attain multi-scale representations. Xie 

et al. [16] introduced an end-to-end detection model that 

leveraged the outcomes from different intermediate layers 

with skip-connections. Xu et al. [17] presented a 

hierarchical deep model to compute multi-scale features 

and a gated conditional random field (CRF) to combine 

them. 

An effective approach to handle some complex 

engineering problems is to utilize nature-inspired 

algorithms. Newton’s law of universal gravitation [18] is 

one of the typical physical models, based on which, 

several image-processing algorithms have been proposed 

for applications including segmentation [19], multi-level 

thresholding [20] and color texture classification [21]. The 

edge detection method we present in this note is based on 

the original use of gravitational forces by Sun et. al. [22]. 

We will refer to this method as the gravitational approach. 

In this approach every pixel is considered as a celestial 

body, which has relationships with other neighboring 

pixels in the image. Afterward, the vector sum of all 

gravitational forces of a pixel applied on by pixels in a 

limited neighborhood is computed. Finally, a threshold for 

the force magnitude is considered, due to which pixels are 

separated to edges and non-edges. Several variations of 

this method are presented in the literature, due to the 

advantages of the gravity field. Lopez-Molina et al. [23] 

analyzed the effect of the substitution of the product 

operation by other triangular norms when computing the 

gravitational forces. They treated edge points as fuzzy sets 

and the membership degrees were computed from the 

resulting gravitational force on each pixel. Verma and 

Sharma [24] presented an approach for the edge detection 

using the universal law of gravity and ant colony 

optimization (ACO). They computed a heuristic function 

using law of universal gravity as a way to food sources for 

the ants to detect the edge pixels. Verma et al. [25] 

proposed an edge detector which combined the universal 

law of gravity and the gravitational search algorithm 

(GSA). They treated the edges as masses for which using 

the law of universal gravity and the GSA, movement of 

edges were computed. Deregeh and Nezamabadi-Pour [26] 

assumed image pixels to be celestial objects. Further, the 

edge points were found using a number of moving agents 

in the image space. The movement of agents were 

determined via the forces of objects located in their 

neighborhood region. Sun et al. [27] proposed an edge 

detector for hyperspectral images (HSI) using the 

gravitational theory. Each spatial-spectral vector pixel in 

an HSI was considered as a celestial body to which forces 

were exerted by its neighboring pixels. Thus, each body 

traveled until it reaches a stable equilibrium. Finally, the 

edges were distinguished by computing the gravitational 

potential energy.  

Wang et al. [28] proposed an edge detector based on the 

NAGD and MGMF methods. They decomposed each 

color image into six components in the RGB and HSV 

model and found the gradient amplitude of the image edge 

by the CLAHE. Then they constructed an NAGD to 

extract the edge map of the color image and finally, used 

the SVD to fuse each channel component to improve the 

accuracy of the edge detection. Hi et al. [29] proposed a 

bi-directional cascade network for the edge detection of 

objects at different scales. In this method, a layer is 

supervised by labeled edges at its scale, rather than 

applying the supervision to the network outputs. To enrich 

the multi-scale representations, a module used the dilated 

convolution to generate multi-scale features. Li et al. [30] 

proposed a novel technique to resolve the balance between 

the fast training and accurate testing aspects of multi-scale 

representation in the edge detection task. According to 

multi-stream structures and the image pyramid principle, 

they constructed two pyramid networks to enrich the 

multi-scale representation. Then using a backbone network, 

the overall bi-directional pyramid network (BDP-Net) 

architecture was constructed. Lu et al. [31] proposed a 

vector co-occurrence morphological operator for the edge 

detection, which considers both the pixel and boundary 

information. This method resists the influence of the noise 

points and detects the edges from the color image rather 

than the gray image. Anand and Sangeethapriya [32] 

presented an isotropic Gaussian modulated hyperbolic 

tangent high-pass filter to remove the high frequency 

components in noisy images, as a pre-process in the edge 

detection task. Their filter achieved better directional 

selectivity and offered less noise sensitivity along with 

regularization by the least square error design. 

The main focus of this paper is to find an optimal 

threshold for the force magnitudes, according to which, the 

pixels are dichotomized to the edge and non-edge classes. 

First, a normalizing map is applied to the intensity values 

from the domain         to the range      . Through 

applying this mapping, even zero-intensity pixels could be 

considered as edges. Afterwards, similar to the original 

work, the gravitational force exerted by neighboring pixels 

on each pixel is computed. Following this, a fuzzy 

membership function is applied to the overall force 

magnitude in order to control the uncertainties due to 

discretization and noises in the original image. The output 

of this step is called the force feature, for which an optimal 

threshold is desired to be found. Auto-thresholding is the 

main novelty of this paper. To this aim, the histogram of 

the force feature is computed. Then, an iterative process is 

applied to tune the threshold, starting from the mean value 
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of the histogram. Once the threshold value is converged, 

its final value is chosen as the optimal threshold for the 

force feature. Selecting the initial point for the iterative 

process has a substantial effect on the speed of 

convergence and accuracy of the classification. Thus, we 

present a new formulation for          which contains the 

mean and the standard deviation of the force feature 

distribution together with two constant regulating 

parameters. This formulation includes both information 

from the image under study and general information 

provided from all the images in the dataset, hidden in the 

constant parameters. To find the optimal values of these 

parameters and one parameter in the fuzzy membership 

function of the previous step, we perform a metaheuristic 

optimization algorithm. For this goal, the grasshopper 

optimization algorithm (GOA), proposed by Saremi et al. 

in 2017 [33] is chosen. This algorithm is inspired from the 

life of grasshoppers in large swarms and their effort for 

finding new sources of food. This algorithm works well in 

both the exploration and exploitation phases in complex 

uni-modal and multi-modal problems and accurately 

discovers the global optimum solution. This solution 

yields the optimal values of the required parameters. 

The proposed algorithm is tested on two standard image 

datasets with and without the contamination of noise. The 

first one is the USC-SIPI and the second dataset is the 

BSDS500. The results are compared with the ideal edge 

maps to evaluate the performance of the system. Some 

qualitative and quantitative measures are employed for this 

purpose, including visual comparison, Pratt’s figure of 

merit, Shannon Entropy and the Average Precision. 

Comparisons are also performed with some conventional 

edge detectors and also some recent methods from the 

literature on the mentioned datasets, to show the 

superiority of the proposed approach. Four cases are 

considered according to the noise type and density, 

comprising of clean image, two Gaussian noise with 

different variances and the salt and pepper noise. The 

results are also compared with some conventional edge 

detectors. Moreover, four scenarios are studied for the 

thresholding phase, containing: (i) the Otsu method, (ii) 

auto-thresholding starting from      , (iii) direct finding 

the optimal threshold using the GOA, and (iv) auto-

thresholding initiating from the formulation of            in 

(16) whose parameters are determined by the GOA. The 

latter three scenarios are the proposed thresholding 

approaches of this paper. The fourth scenario shows to be 

competitive, obtaining better results than different 

published methods and also other proposed scenarios.  

The remainder of this paper is structured as follows. 

Section 2 describes the background of the Newton’s law of 

gravy. The proposed approach is presented in Section 3. In 

this section, first the basic gravitational edge detector is 

reviewed. Then the proposed thresholding methods are 

introduced. At last, the section is extended by laying out 

the steps of computing an optimal threshold value by the 

GOA. Section 4 is devoted to the evaluating the proposed 

method and comparing it with some others, while applying 

to two standard databases. In the end, Section 5 presents a 

brief summary and includes a conclusion and future lines 

of research into this area. 

2-  Background of the Universal Law of 

Gravitation 

Based on the Newton's law of universal gravitation [18], 

objects attract and being attracted by other nearby objects. 

The mutual attractive force is directly proportional to the 

product of the masses and inversely to the square of their 

distance, as illustrated in Fig. 1. The mathematical formula 

describing the gravitational force can be written as 

follows: 

 ⃗    
         ⃗

‖ ⃗‖      (1) 

Where,  ⃗    represents the force vector applied by mass #2 

on mass #1. The universal gravitational constant is 

represented by   while the objects gravitational masses are 

shown by    and    respectively. The mass is a measure 

of the strength of the gravitational field on a particular 

object. The gravitational field of a body has a direct 

proportional relation with its gravitational mass. Also  ⃗ 

stands for the distance vector connecting the centers of the 

masses. 

 

Fig. 1 Model of Newton's law of universal gravitation for masses 

          

The gravitational force obeys the superposition principle. 

The force exerted on object   by its neighbor objects in the 

region   is found by the vector sum of forces exerted by 

each object. 

  
⃗⃗⃗⃗⃗  ∑  ⃗           (2) 

3- The Auto-thersholded Gravity-based Edge 

Detection 

3-1- Overview 

Based on the universal law of gravitation, several edge 

detection systems are presented in the literature. In this 

section, the proposed approach for auto-thresholding the 

edge detection system based on the gravitational approach 

is presented. The general platform of our approach 

consists of two phases, as Fig. 2 shows. In the first phase, 
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the gravitational edge detector is generated to determine 

the force exerted on each pixel. Then, the force magnitude 

is mapped to the force feature using a fuzzy membership 

function; and the histogram of this feature for the whole 

image is created. In the second phase, an optimal threshold 

is found for that histogram with respect to which, the 

pixels are classified to edges and non-edges. The next sub-

sections describe the details of these steps. 

3-2- Generation of the Gravitational Edge 

Detector 

In order to construct an edge detector, it is supposed that 

every pixel in the image is a celestial body, which affects 

and being affected by other neighboring pixels through 

gravitational forces [22]. For each pixel, the forces of 

pixels beyond a pre-specified distance are assumed to be 

zero. In other words, far-away points do mutually not exert 

nor receive any forces. The magnitude and the direction of 

the vector sum of all gravitational forces that each pixel 

receives from its neighbors include significant information 

about the intensity changes and the existence of an edge in 

that point. 

To start with, we denote a pixel at location       by      

and its gray level intensity value by       . As the next 

relations will show, the force exerted on zero-intensity 

pixels will be zero. Thus, they will never be considered as 

edge points, even when their neighbors’ intensities change 

sharply. To avoid this problem, a mapping of intensities 

from the original domain to the range       is 

implemented. Suppose that the maximum intensity value 

in the image is   . The following operation are performed 

with     [23]. 

               ⁄             
        

   
  (3) 

This mapping enables the gravitational edge detector to 

identify the possible edge pixels with zero intensities. The 

edge detection technique using the law of universal 

gravitation is described below [22]: 

i. An     neighborhood   with pixels        and 

            is considered for each image point     . 

With respect to (1), the gravitational force exerted by 

each neighbor      on      is computed as follows: 

 ⃗        
             ⃗

‖ ⃗‖      (4) 

Here,   ⃗        is the applied gravity force and      and      

are the mapped intensity values of pixels, i.e.,        and 

      . Vector  ⃗, represents the distance vector from      

to     , whose magnitude is computed by (4): 

‖ ⃗‖  √                (5) 

ii. Considering an image as a 2D plane, the vectors of the 

gravitational forces in the horizontal and vertical 

directions (i.e.,  ̂ and  ̂) can be computed as below: 

         
  | ⃗       |        

           

‖ ⃗‖ 

   

‖ ⃗‖
 

                 

‖ ⃗‖  , 

        
 

 | ⃗       |        
           

‖ ⃗‖ 

   

‖ ⃗‖
 

                 

‖ ⃗‖ 

      (6) 

Hence, the vector  ⃗        is represented as below:  

 ⃗                
  ̂          

 
 ̂    (7) 

The vector sum of all gravitational forces applied by 

neighbors on      is demonstrated as: 

 ⃗    ∑   
  ̂     ̂                         (8) 

Where, 

   ∑        
      ∑        

 
                          

      (9) 

iii. The magnitude and direction of the vector   ⃗    are 

determined as in (10): 

  √  
    

 ,            
  

  
⁄      (10) 

iv. Finally, the edge map is produced by setting an 

appropriate threshold on the force magnitude 

histogram. 

For simplicity,        is replaced with a constant  . 

Base on experiments, we set     in clean images and 

              in noisy images, where        is a 

sigmoid function. The effect of noise on edge detection 

may also be reduced if more neighboring pixels are 

considered. In this paper, the neighborhood is represented 

by a square of size    . 

Digital images have some inherent uncertainties due to 

discretization and noise. Hence, the fuzzy logic is proved 

to be an appropriate tool for representing and processing 

 

Fig. 2 The block diagram of the proposed edge detection system 



 

Journal of Information Systems and Telecommunication, Vol. 9, No. 4, October-December 2021 

  

 

 

289 

of the edges. Since the magnitude of the force 

characterizes the difference in intensities of the 

neighboring points, we generate a membership function to 

map this feature to a new one which will be used for 

finding the edge image. In order to do so, the Gaussian 

membership function is considered to act on the force 

magnitude of each pixel [34]. The function   , given by 

(11) and shown in Fig. 3, has only a single parameter   

which represents the standard deviation of the distribution. 

The maximum of the force magnitude   is represented by 

 . We mapped the force magnitude from       to      , so 

that,           and          . Hence, the function is: 

                                ⁄  , (11) 

We call   the ‘force feature’. This operation can improve 

the results of the edge detection method. The parameter 

  is one of the three parameters which will be adjusted 

through an optimization technique in next steps. 

 

Fig. 3 Gaussian membership function for the conversion of force 
magnitudes into membership degrees 

3-3- Thresholding 

Thresholding is a non-linear operation used for edge 

detection and segmentation [35]. This operation converts a 

grayscale image into a binary image in which, two levels 

are assigned to pixels that are below or above a specified 

threshold value. Selecting an optimal threshold value is the 

most important step in every image thresholding 

algorithm. This paper mainly focuses on computing the 

optimal value for the threshold by which, the edge points 

of the images are well distinguished. Using this method, 

finding weak edges of noisy and clean images will be 

attainable. First, the histogram of distribution of the force 

feature   is determined. The goal is to find an optimal 

threshold for this histogram. Those pixels whose force 

feature is above this threshold are classified as edges, 

while the rest will be non-edges. To do this, an iterative 

approach based on the averages of force features is used as 

follow: 

1.  Compute the average force feature of all pixels in the 

image, to be used as the initial threshold value: 

                           (12) 

2. Dichotomize the histogram according to the threshold 

 : 

   { |     ,     { |     ,  (13) 

3. Compute the means of    and   : 

                           (14) 

4. The new threshold value is obtained by computing 

mean of    and   : 

      
 ⁄            (15) 

5. If         , stop and choose      as the optimal 

threshold value. Otherwise, set        and go to step 

2. 

As it will be seen in the next section, this approach 

yields accurate results, both in clean and noisy images 

with higher indices, compared with other existing 

methods. However, we tried to still improve our technique 

by finding an appropriate initial threshold value for the 

first step. Smart selection of           helps in the fast 

convergence of the iterative process and more robustness 

against different noises, as the simulation results validate 

in the simulation section. Hence, we redefine          as in 

(16). 

                   
     

     
    (16) 

In which,   and   represent the mean and the standard 

deviation of   respectively, and   and   are two regulating 

parameters. It should be noted that,          in (16) is not 

fixed for all images, but it depends on some constants   

and   together with two characteristics of the image under 

study (i.e.,   and  ). In order to find  ,   and also   in 

(11), we make use of an optimization technique. The 

grasshopper optimization algorithm, reviewed in the next 

sub-section, is run on several images and their ideal edge 

maps to find the optimal values of these parameters. The 

position of each grasshopper is represented by a vector of 

length three in the form           . Figure of Merit 

(FOM), defined in (24), is used as the objective function 

for parameter optimization. The optimization problem can 

be stated as maximizing FOM subjected to        . 

Once the optimal valued of these parameters are found, 

         in (16) will be used as the initial point of the 

iterative process (12-15) for the test images.  

3-4- Overview of the Grasshopper Optimization 

Algorithm 

The grasshopper optimization algorithm (GOA), 

proposed by Saremi et al. in 2017 [33], is a novel 

metaheuristic optimization algorithm that models and 

mimics the swarm behavior of grasshoppers. As notorious 

insects for damaging the farms, grasshoppers move as 

large swarms to seek the food sources. In the nature-

inspired GOA, grasshoppers can globally search the given 

space, discover the regions of answers and move locally in 

the final steps in order to find the optimal solutions. GOA, 

models the mutual forces exerted by the grasshoppers for 

the repulsion and attraction. While the repulsion forces 

encourage the grasshoppers to explore the search space, 

the attraction forces allow them to exploit the local 

regions. Both exploitation and exploration of this 
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algorithm are satisfactory for uni- and multi-modal test 

functions and these two tendencies are balanced in the 

GOA. The objective function is improved over the course 

of iterations to provide a more accurate approximation of 

the global optimum solution. This algorithm has been 

applied to many engineering problems and shown a 

remarkable performance in many fields, such as feature 

selection [36], vibration analysis [37] and more. The 

movement of a grasshopper is subjected to three factors: 

(i) social interaction, (ii) gravity force and (iii) wind 

advection. In general, the position of the  -th grasshopper 

in a swarm can be modeled as follows: 

               (17) 

In which,   ,           represent the social interaction, the 

gravity force and the wind advection for the grasshopper, 

respectively. The social interaction for the  -th grasshopper 

is defined as follows: 

   ∑  (   )
 
   
   

 ̂       (18) 

In which,     is the Euclidian distance between the two 

grasshoppers   and  . Also,  ̂             ⁄  is the unit 

vector directing from the location of the  -th grasshopper 

(   ) to that of the  -th one (   ). The number of 

grasshoppers is shown by  . The   function indicates the 

social force, as defined in (19). 

               ⁄             (19) 

Where,   is the attraction intensity and    represents the 

attractive length scale. Additionally, the gravity 

component is computed as follows: 

       ̂      (20) 

In (20), the parameter   is the gravity constant and  ̂  is 

the unit vector towards the center of the earth. As well, the 

wind advection component is defined in (21). 

      ̂      (21) 

Where,   is the constant drift and  ̂  is the unit vector 

which represents the wind direction. To solve optimization 

problems in   dimension, an improved version of (17) was 

presented in [33]:  

  
   (∑  

       

 
 (|  

    
 |)

       

   

 
   
   

)   ̂ , 

            (22) 

In which,     and     are the upper and lower bounds in 

the  -th dimension and  ̂  indicates the value of the  -th 

dimension in the best solution found so far. In (22), the 

gravity coefficient is ignored and the wind advection 

component is set equal to  ̂ . Additionally,   is a 

multiplying coefficient which decreases the exploration 

while increases the exploitation proportional to the number 

of iterations: 

        
         

 
    (23) 

Where      and      indicate the maximum and 

minimum values. Also   and   are the current and 

maximum number of iterations, respectively. In this paper, 

we set:      ,       ,        and          .  

4- Experimental Results 

This section compares the performance results of the 

proposed edge detection system in different scenarios to 

those produced by some classic and some recent methods 

from the literature. First, the datasets for evaluating the 

methods are introduced, then the methodology of the 

experiments is described. Here, both qualitative and 

quantitative measures are utilized. Finally, the results are 

given and compared for clean and noisy images. 

4-1- The Datasets 

In this experiment, two datasets are used for evaluating 

the methods. The first one is the USC-SIPI (Signal and 

Image Processing Institute, USC) [38] which offers a 

collection of digitized images with different sizes. In this 

paper, the images of size 256×256 are used (Fig. 4a-b). 

The second dataset is the BSDS500 (Berkeley 

Segmentation Dataset, Computer Vision group, UCB) 

[39]; which consists of 500 natural images and ground-

truth annotations (Fig. 4c-e). Each image in this dataset is 

manually annotated by multiple annotators; whose 

outcomes are averaged to give the final ground-truth for 

that image. The final annotations are used as the ideal edge 

maps, which are solutions for the edge detection problem. 

Moreover, the results for the cameraman image (Fig. 4f) 

are also given. The 10-fold cross-validation method on the 

datasets is used for evaluating the methods. 

  
 

(a) (b) (c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4 Samples of the datasets images. (a-b) USC-SIPI, (c-e) BSDS500, 

(f) the cameraman 

4-2- The Measures 

In this section, by the proposed method we mean 

computing the histogram of the feature force and applying 

the auto-thresholding iterative process initiating from 

          whose optimal parameters are found via the GOA. 

To evaluate the proposed method applied to the mentioned 
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datasets, two sets of measures are used. The first set 

contains the qualitative measure, while the second one 

comprises the quantitative measures. Four experimental 

cases were considered according to the noise type and 

density. The first case contains clean images while, in 

Cases II-III, images are corrupted with two zero-mean 

Gaussian noises with          and     , respectively. 

In the latter cases, a     mask is used to decrease the 

Gaussian noise effect. Also, the images in Case IV are 

contaminated with the salt and pepper noise with density 

of     . In this case, a median filter is applied to the 

images in pre-processing step, in order to moderate the 

effect of the noise and enhance the performance. Besides, 

notice that while generating the gravitational edge 

detector, we set     in clean images and   
            in noisy images. 

 

4-2-1- The qualitative Measure 

The most common and simplest way of evaluating an 

edge detector is the visual comparison of output images 

which could be done in a range of different ways. For 

instance, image gradients can be compared visually where 

an edge image is assessed by a group of individuals and 

the average score may serve as the quality index. Fig. 5 

shows the output images of various classic detectors with 

clean image input (Case I). It is obvious that, most of the 

edge structures are well preserved by the proposed 

detector compared with others such as Canny, Sobel or 

Robert. Therefore, the proposed technique is more 

efficient than others for the edge detection of these images. 

When noise is added to the image, finding an optimal 

threshold value becomes more important, since the aims 

are to discover true edges and ignore those made due to 

the noise. Results on images corrupted with Gaussian 

noise (Case II) is shown in Fig. 6. It should be noted that, 

we used Case III only in evaluating the system by 

quantitative measures. Visual comparison clearly reveals 

the superiority of the proposed approach compared to the 

others. Not only sharp edges are successfully found, but 

also more artefacts and irrelevant information are removed 

using the proposed detector. The results of Case IV are 

shown in Fig. 7. According to the visual differences, it 

goes without saying that, the noise density in the edge map 

resulted from the proposed method is considerably lower 

than that of the output images attained by other methods. 

Additionally, sharp edges are successfully found.  

 

 

 
 

       

(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 5 Edge Detection of a clean image (Case I): (a) the original image, (b) the proposed edge detector, (c) Otsu using 5×5 mask, (d) Sobel, (e) Canny, (f) 

Robert, (g) LOG, (h) Prewitt. 

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 6 Edge detection of images corrupted with Gaussian noise (Case II). The sub-figure captions are same as those in Fig. 5. 

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Fig. 7 Edge detection of images contaminated with the salt and pepper noise (Case IV). The sub-figure captions are same as those in Fig. 5. 

4-2-2- The quantitative Measure 

To perform quantitative comparison, we use three 

measures: the ‘figure of merit’ (FOM), the ‘Shannon 

Entropy’ and the Average Precision (AP). With respect to 

these measures, a more accurate evaluation on the 

performance of the proposed and existing methods in 

different conditions is provided. 
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Figure of Merit (FOM) 
Pratt’s figure of merit is a popular measure for evaluating 

the performance of an edge detector system. The miss-

detection errors can be classified as (i) missing valid edge 

pixels, (ii) detecting noises and artefacts as valid edges, 

and (iii) smearing of edges [40]. The Pratt's FOM is 

defined as Follows: 

  
 

            
∑

 

     
 

  
       (24) 

In (24), number of the edge pixels in the detected and 

ideal edge images are indicated by    and     

respectively. The Euclidean distance between the location 

of the  -th detected edge pixel to the nearest edge pixel in 

the ideal edge image is indicated by   . Also   is a scaling 

constant chosen to be 
 

 
  based on the Pratt’s work.   is an 

index in the range of      , which measures the accuracy 

of the edge localizations. The larger the value of  , the 

better the performance is. An edge detector with     is 

perfect. For some images in Fig. 4, the FOM of the 

proposed and some existing methods are reported in Table 

1. The proposed algorithm found meaningful edges in 

cleanest images (Case I) in comparison with other 

algorithms. In fact, it kept the main objects in the images 

and provided the most similarity with the ideal edge maps. 

Also, the proposed method significantly decreased the 

effect of Gaussian noise in Case II; while the 

performances of other detectors were considerably lower. 

When the density of noise was increased (Case III), our 

method yielded higher similarity between detected and 

ideal edges compared with other detectors. Moreover, the 

performance of the proposed technique on images 

corrupted by salt and pepper noise (Case IV), was still 

higher compared to other detectors. However, it was less 

than those for Cases I-III. As a matter of fact, the salt and 

pepper noise existed in the output image beside the edge 

points, yet with a lower density compared with other 

methods.  

 

The Shannon Entropy Measure 

The Shannon entropy presents a measure for estimating 

the average of a random flux of information in an image  , 

which is formulated as follows [41]: 

      ∑            
   
      (25) 

Where   is the number of gray levels (here,      ) 

and    is the probability associated with the gray level  . 

In general, high Shannon entropy means high disorder in 

the image data. To put it another way, the edge pixels 

which represent the discontinuity are better identified in an 

image with higher entropy. Therefore, Shannon entropy is 

an efficient method for evaluating the performance of an 

edge detector. However, a high value of Shannon entropy 

is not necessarily equal to rich information, due to the 

effect of uncontrolled noise on the entropy value. Tables 

2-3 compared the performance of the proposed and some 

classic edge detectors in term of the Shannon entropy for 

all images in Fig. 4. 

To attain a fair evaluation, the entropy and FOM 

measures should be considered at once. That is to say, if 

the entropies of two methods are close to each other, their 

FOMs should be compared in order to determine the more 

accurate one. For example, although the canny detector 

resulted in high entropy values, extra and undesirable 

edges were detected, leading to output image distortion. 

To illustrate, a visual comparison of the outputs of the 

canny and the proposed approaches is shown in Fig. 8. The 

former method detected some undesirable points as edges, 

while the latter approach attained a better outcome. For all 

clean images (except Fig. 4c), the entropy of the proposed 

method was higher than others which generally 

demonstrates its higher efficiency. Moreover, higher FOM 

results achieved by the proposed approach verified its 

effectiveness.  

If the variations in the entropy of a system in clean and 

noisy conditions are small, that system is robust against 

the noise existence and the effect of noise is controlled in 

the system output. Due to the non-gradient structure of the 

gravitational edge detection method, such robustness is 

expected. Comparing the variations in Cases I-III of 

Tables 3-4 with the existence of Gaussian noises, it is 

obvious that, our approach not only has high entropy 

values (i.e., remaining the edges), but also reveals less 

entropy variations with respect to the noise-free condition, 

compared to other methods. Results in Case IV (image 

with salt and pepper noise), also show that the entropy 

variation is more acceptable than the other techniques. 

 

Table 1: Comparison of the edge detection techniques based on the FOM measure. 'PrM.' stands for the 'Proposed Method'. 

Detector 
Case I Case II Case III Case IV 

Fig. 4c Fig. 4d Fig. 4e Fig. 4c Fig. 4d Fig. 4e Fig. 4c Fig. 4d Fig. 4e Fig.4c Fig.4d Fig.4e 

Sobel 0.3948 0.2843 0.3901 0.2951 0.2592 0.3010 0.2523 0.2394 0.2401 0.1735 0.3464 0.3691 

Canny 0.2247 0.4091 0.7589 0.1053 0.1889 0.7463 0.1021 0.1818 0.7255 0.1270 0.2314 0.7286 

Roberts 0.3604 0.3308 0.2754 0.1278 0.1688 0.0957 0.0619 0.0868 0.0475 0.1427 0.1902 0.1636 

LoG 0.2516 0.3335 0.5895 0.1459 0.3678 0.6561 0.1277 0.2874 0.7285 0.1429 0.3063 0.7110 

Prewitt 0.3947 0.2847 0.3857 0.2993 0.2618 0.3039 0.2543 0.2439 0.2432 0.1784 0.3544 0.3627 

PrM. 0.5164 0.7663 0.8312 0.4547 0.6248 0.7718 0.4561 0.6781 0.7431 0.3319 0.5311 0.7992 
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Table 2: Comparison of the edge detection techniques based on the Shannon Entropy measure for images in Fig. 4a-c. 

Detector 
Case I Case II Case III Case IV 

Fig. 4a Fig. 4b Fig. 4c Fig. 4a Fig. 4b Fig. 4c Fig. 4a Fig. 4b Fig. 4c Fig. 4a Fig. 4b Fig. 4c 

Sobel 0.2198 0.2243 0.1943 0.1832 0.1894 0.1494 0.1645 0.1751 0.1488 0.2955 0.2828 0.2564 

Canny 0.3842 0.4062 0.4664 0.7180 0.7136 0.8117 0.7696 0.7953 0.8393 0.4770 0.5111 0.5569 

Roberts 0.2150 0.2190 0.1606 0.0700 0.0729 0.0648 0.0437 0.0468 0.0411 0.1898 0.1687 0.1643 

LoG 0.2967 0.3197 0.3364 0.4291 0.4264 0.5612 0.5201 0.5080 0.6176 0.3459 0.3779 0.4412 

Prewitt 0.2187 0.2236 0.1944 0.1857 0.1910 0.1505 0.1672 0.1764 0.1484 0.3215 0.3318 0.3084 

PrM. 0.4914 0.4765 0.3918 0.4423 0.4542 0.4391 0.4835 0.4711 0.4516 0.5258 0.5958 0.4726 

Table 3: Comparison of the edge detection techniques based on the Shannon Entropy measure for images in Fig. 4d-f. 

Detector 
Case I Case II Case III Case IV 

Fig. 4d Fig. 4e Fig. 4f Fig. 4d Fig. 4e Fig. 4f Fig. 4d Fig. 4e Fig. 4f Fig. 4d Fig. 4e Fig. 4f 

Sobel 0.1651 0.3043 0.2339 0.1533 0.2519 0.2174 0.1553 0.2098 0.2102 0.2461 0.2786 0.2341 

Canny 0.2714 0.5007 0.4713 0.8142 0.5910 0.7270 0.8333 0.7535 0.7673 0.4327 0.5552 0.8143 

Roberts 0.1795 0.2327 0.2223 0.1005 0.1038 0.1314 0.0623 0.0567 0.0873 0.1923 0.2329 0.1187 

LoG 0.2219 0.4278 0.3223 0.4064 0.4606 0.3992 0.5069 0.5281 0.4784 0.3263 0.3543 0.4285 

Prewitt 0.1648 0.3012 0.2344 0.1541 0.2512 0.2177 0.1543 0.2139 0.2098 0.2899 0.2822 0.2014 

PrM. 0.4758 0.7471 0.5725 0.3819 0.6888 0.5622 0.4511 0.7691 0.5418 0.5161 0.6214 0.6072 

Table 4: Comparison of the thresholding scenarios in four mentioned cases based on the quantitative measures for images in Fig. 4. Each value states the 

average of each measure for all seven images. 

 
Scenario #1 Scenario #2 Scenario #3 Scenario #4 

FOM Entropy FOM Entropy FOM Entropy FOM Entropy 

Case I 0.4688 0.2668 0.6819 0.4976 0.6772 0.4734 0.7046 0.5258 

Case II 0.4689 0.2718 0.6214 0.4530 0.5663 0.4450 0.6171 0.4948 

Case III 0.4407 0.2772 0.6099 0.4817 0.6148 0.4754 0.6258 0.5280 

Case IV 0.4892 0.2916 0.5295 0.5264 0.5081 0.4764 0.5541 0.5566 

Table 5: Comparison of the Average Precision with some other methods from the literature on BSDS500 dataset. 

SCG [42] 0.773 DeepContour [15] 0.800 COB [43] 0.859 Deep Boundary [44] 0.789 

PMI [45] 0.799 HFL [46] 0.795 DCD [47] 0.849 CED [48] 0.847 

OEF [49] 0.820 HED [16] 0.840 AMH-Net [17] 0.869 BDCN [29] 0.796 

MEDM [31] 0.77 NAGK-MF [28] 0.72 BDP-Net [30] 0.847 PrM. 0.894 

 

  
(a) (b) 

Fig. 8 The outputs of (a) the Canny and (b) the proposed approaches for 

Fig. 4d. The entropy of the first method is higher than that of the second 
method. Though, the output of the latter method seems more appropriate. 

Four Scenarios were also considered and compared for 

the thresholding of the force feature histogram. In the first 

scenario, we applied the Otsu thresholding method to the 

histogram of the force feature to find the optimal threshold 

according to which, we classified the pixels to edges and 

non-edges. The second scenario found the optimal 

threshold by starting from the mean of the histogram and 

following the iterative process (12-15). The third scenario 

directly considered (16) as the optimal threshold of the 

histogram. The parameters of the model were found using 

the GOA. Finally, the fourth scenario (i.e., the proposed 

method) made use of the model in (16) as          whose 

optimal parameters were found using the GOA. Then, the 

iterative process (12-15) was performed to find the optimal 

threshold. It should be noticed that, the optimal parameters 

for Scenarios #3 and #4 are computed independently, by 

the GOA. The results of applying these four scenarios to 

four previously mentioned cases evaluated by the average 

of FOM and Entropy measures are reported in Table 4. It 

should be noticed that the results of Scenario #4 were 



    

Rezaei and Agahi, An Automatic Thresholding Approach to Gravitation-Based Edge Detection in Grey-Scale Images 

 

 

 

294 

already presented in Tables 1-3. The results established 

that, the effectiveness of the proposed method is the 

highest one among the four scenarios in all the cases. The 

Scenarios #2 and #3 are generally positioned in the second 

and the third ranks, while the Otsu thresholding (Scenarios 

#1) yields the lowest rate.  

 

Average Precision 

To compare the performance of the proposed approach 

with some recent edge-detection methods according to the 

Average Precision (AP) measure, we used the BSDS500 

benchmark with clean images; results are summarized in 

Table 5. It should be noticed that the APs of the other 

methods are directly reported from the literature. As 

shown in the results, the proposed method achieves the AP 

of 0.894 which outperforms all of these competing 

methods. 

5- Conclusion 

Various heuristic and nature-inspired techniques for the 

image-understanding have been proposed in the last 

decade. In this paper, a new thresholding approach for the 

gravitational edge detector is designed to obtain an optimal 

edge image in clean and noisy conditions. The quantitative 

and qualitative measures confirmed that the performance 

of the proposed method was higher than a variety of other 

classic and recent detectors. On the BSDS500 dataset, the 

proposed method obtained the Average Precision value of 

0.894. Experiments on a number of images proved that, 

this method was reliable and efficient for the edge 

detection, also it achieved more acceptable results in 

comparison with other techniques. Furthermore, the 

similarity of the output images and the ideal edge maps 

were far more, compared with other detectors. That is to 

say, the extracted edges using the proposed method had a 

close Euclidean distance with the ideal edges; as validated 

by high FOM. Selecting an optimal threshold value in the 

developed edge detector resulted in covering the weak 

edges of the image and obtaining the maximum 

information (entropy) in the output. The main 

disadvantage of this approach is its sensitivity to noise 

which can be solved by the pre-processing operations. 

Using a     mask decreased the sensitivity to the 

Gaussian and salt and pepper noises. This, demonstrated 

the method robustness in noisy conditions, as entropy 

slightly changes. Furthermore, the higher average 

precision of our method validated its dominance over 

some recently published methods. The results of the 

quantitative and qualitative evaluations of the detected 

edges showed that the conducted method had merit in 

detecting edges in noisy conditions among all tested 

detectors. For further research, it is suggested to use a 

multi-modal thresholding approach to enhance the 

segmentation performance in multi-class images. Also, the 

evaluation of the method of this work in color images can 

be considered. Additionally, the effect of applying non-

square neighboring area will be studied in a further work. 
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