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Abstract  
Iteratively decoding and reconstruction of encoded data has been considered in recent decades. Most of these iterative 

schemes are based on graphical codes. Messages are passed through space graphs to reach a reliable belief of the original 

data. This paper presents a performance analysis of the Low-Density Parity-Check (LDPC) code design method which 

approach the capacity of the Additive White Gaussian Noise (AWGN) model for communication channels. We investigate 

the reliability of the system under Phase Shift Keying (PSK) modulation. We study the effects and advantages of variation 

in the codeword length, the rate of parity-check matrix of the LDPC codes, and the number of iterations in the Sum-Product 

Algorithm (SPA). By employing an LDPC encoder prior to the PSK modulation block and the SPA in the decoding part, 

the Bit Error Rate (BER) performance of the PSK modulation system can improve significantly. The BER performance 

improvement of a point-to-point communication system is measured in different cases. Our analysis is capable for applying 

any other iterative message-passing algorithm. The code design process of the communication systems and parameter 

selection of the encoding and decoding algorithms are accomplished by considering hardware limitations in a 

communication system. Our results help to design and select paramours efficiently. 

 

Keywords: LDPC Codes; BER Performance; SPA; Channel Decoding Algorithm; Rate; Channel Capacity. 

 

1- Introduction 

Berrou et al. introduced Turbo Codes in 1993 and made it 

possible that by utilizing these error correction codes, one 

can approach the Shannon limit of the channel capacity [1-

2]. A few years later in 1996, Mackay and Neal 

rediscovered the Shannon limit performance of the Low-

Density Parity-Check (LDPC) codes [3-5], that were 

introduced by Gallager in 1963 [6]. The LDPC codes 

could compete with the Turbo Codes successfully. 

Nowadays, there is an increasing demand for the reliable 

communication systems, which can handle a large amount 

of data rate with high-speed equipment. It requires cheap, 

fast, and very small size communication and storage 

devices.  

The performance of all communication and storage 

systems has some limitations. One of these limitations is 

the channel capacity concept that has been introduced by 

Claude Shannon in 1948. Channel Capacity is the 

maximum possible value of rate, which can be achieved by 

using a specific communication system with an arbitrary 

small enough BER value. 

Some applicable error correction codes are the Hamming 

codes, the LDPC codes, the Turbo codes, and Polar codes, 

which have been employed in the real world 

communication systems. The LDPC codes are a kind of 

linear block codes that strongly contrasts the channel noise 

effect. The LDPC code is one of the hot research topics in 

the coding and information theory due to its high speed 

encoding and decoding algorithms, it’s capability to 

achieve the channel capacity providing a reliable 

communication for an arbitrary transmission rate. It is a 

progressive coding scheme and is proper in a wide range 

of applications such as signal processing, cryptography, 

compressed sensing, wireless communications, and data 

compression. 

The LDPC codes utilize a parity-check matrix H, in which 

the proportion of ones to zeros is very low; in other words, 

the matrix H is sparse. These codes are classified into the 

regular and the irregular codes. A code is regular if the 

number of ones in each column (say wc) and the number of 

ones in each row (say wr) in the parity-check matrix H are 
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fixed values. Obviously, if a code is not regular, then it is 

irregular code. An LDPC code of length n can be indicated 

with (n,wc ,wr), where wc and wr are generally two vectors, 

respectively showing the degree of the variable nodes and 

the check nodes of H. Thus, each information bit in a 

variable node is involved with wc check bits, and similarly 

each check bit in a check node is involved with wr 

information bits. The decoder in the receiver side employs 

the parity-check matrix H for accomplishing its task. It 

reconstruct the original data with a BER utilizing a 

decoding algorithm.  

In this work, we consider SPA and evaluate its reliability. 

The LDPC codes are very efficient codes in several 

communication scenarios, such as wireless 

communications [7], optical communication systems [8], 

satellite communication systems [9], digital video 

broadcast (DVB) systems [10], and terrestrial multimedia 

broadcasting (TMB) systems [11]. Furthermore, it’s 

applications in high-density data storage systems, such as 

digital electronic memories are now considerable. These 

codes have capacity-approaching performance and can be 

achieved using practical and implementable iterative 

decoding algorithms. The LDPC codes have been adopted 

to use in the next generation of communication systems 

[12-13] such as 5G due to the low BER. As an example, 

BER=10
-13 

is achievable with an acceptable complexity of 

encoding and decoding schemes. 

In this paper, we investigate SPA, which is one of the fast, 

implementable, and simple iterative message-passing 

algorithms that have been utilized for decoding of the 

LDPC codes [14-16].  

Through this paper, we follow three main goals for a 

designed parity-check matrix H. First, we show that by 

increasing the size of parity-check matrix H, the 

performance improves and BER value decreases. Second, 

we illustrate that the BER performance improves by 

increasing the iteration numbers in the SPA. Our third 

finding is that the performance or BER decreases by 

decreasing the rate of parity-check matrix H. For instance, 

for the LDPC code with parity-check matrix H (768, 1024, 

irregular), rate=1/4, and iteration=10 in the SPA, we 

achieve BER10
-9

 for Eb/N0=6dB, while for the LDPC 

code with H (384, 512, irregular), rate=1/4, and 

iteration=10, we achieve BER10
-7

 for Eb/N0=6dB. Hence, 

the advantage of increasing the size of the parity-check 

matrix H is concluded. The effect of parameter variations is 

desirable in this work. 

The rest of this paper is organized as follows: In section II, 

the system model and definitions are proposed. 

Furthermore, the details of the encoding and decoding 

schemes are provided in this section. Simulation results and 

discussions are presented in section III. Finally, section IV 

concludes this paper. 

2- System Model and Definitions 

In this section we present system model and provide some 

fundamental tools for iterative decoding schemes. 

Specifically, we study the SPA because it can be simply 

modified and extended to get other message-passing 

algorithms for other communication system tasks.  

2-1-System model 

The task of a point-to-point communication system is 

conveying information from a source to a destination. In 

Fig. 1, a simplified block diagram a point-to-point 

communication system is depicted. A brief description of 

each block is presented. 

Fig. 1: Block Diagram of Communication System. 

 

In the source encoder, the information symbols of the 
source are mapped to codewords. The main reasons of 
using a source encoder is reduction of redundancy from 
information symbols, which can significantly reduce the 
size of transmitted data. For instance, the Lempel-Ziv 77 
(LZ77), the Lempel-Ziv 78 (LZ78), and the LZ-Storer-
Szymanski (LZSS) are some source encoding algorithms 
based on text compression algorithms. They use a sliding 
window over the sequence of symbols, with two sub-
windows for the source coding [17-19].  

If source information can be completely recovered from 
codewords, this coding is called lossless compression, 
otherwise it is called lossy compression. For the sources 
with unknown distributions, we use universal source 
coding algorithms [20]. Furthermore, multi-terminal source 
coding algorithms can be applied for the case of single 
binary source [21]. 

The second block is a channel encoder. Some intentional 

redundancy is added to the vector of the information 

symbols to increase reliability of the transmission via the 

noisy channel, which causes a rate reduction [22].  

The channel coding methods can be categorized into two 

main classes. First, the linear block codes maps a sequence 

of m information bits into a codeword with n bits (n>m). 

The Hamming codes, LDPC codes, BCH codes, and cyclic 
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codes are some examples of this category. Second, the 

convolutional codes which maps a vector of m information 

bits into a codeword with n bits, depending on the current 

and previous information bits. For instance, the turbo 

codes is in this category. In this work, the LDPC codes 

and the SPA are exploited for the channel encoding and 

the channel decoding, respectively. Finally, the third block 

is modulator, which prepares the encoded data to send via 

communication channel.  

Modulation superimposes data on a carrier signal, which 

its frequency is higher than the bandwidth of the 

information signal [23]. The M-PSK (phase-shift keying), 

the M-FSK (frequency-shift keying), and M-ASK 

(amplitude-shift keying) are fundamental digital 

modulation schemes. In this paper, the BPSK (M=2) is 

exploited for accomplishing the modulation. 

The modulated data is transmitted by noisy channel such 

as a wire, an antenna, an optical fiber, etc. In this paper, 

the channel noise is assumed to be the Adaptive White 

Gaussian Noise (AWGN). Furthermore, an amplification 

of the modulated data is done before transmitting over the 

noisy channel due to channel debilitation and fading 

phenomena. 

In the receiver side, all performed operations at the 

transmitter should be accomplished on the received data 

reversely. Therefore, first, data is being demodulated then 

the demodulated data is being decoded by the SPA to get 

source codewords. Finally, these codewords are being 

decoded to obtain the information source symbols. All of 

the methods and procedures for the encoding in transmitter 

and the decoding in receiver should be the same, and they 

should be done in a reverse order. 

2-2- Graphical Representation of The LDPC Codes 

A bipartite Tanner graph that has been illustrated in Fig .2 

is a graphical representation of the parity-check matrix H, 

made of two types of nodes, the variable nodes (VN) 

denoted by vj and the check nodes (CN) denoted by ci [24]. 

The j-th VN (vj) and i-th CN (ci) in the Tanner graph are 

connected with each other if and only if hi,j=1, in the 

matrix H. The following matrix is a parity-check matrix H 

(5,10,regular). It’s corresponding Tanner graph is shown 

in Fig. 2. 

H=  

 

 
 

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1 

 
 

 

 

 

Fig. 2: Graphical representation (Tanner graph) of H (5,10, 

regular) with wc=2, wr=4 . 

A loop or cycle is a close path of nodes that crosses over 

the edges of the Tanner graph. The shortest cycle in a 

Tanner graph is called the girth of graph. A cycle of the 

length 6 is illustrated in Fig. 2, by the bold edges. Hence, 

there is no cycle of length 4 in this graph, the length of its 

girth is 6. We investigate the BER performance of LDPC 

codes over AWGN channels from different points of view 

caused by the parameter variation.  

We implement and decode the noisy corrupted codewords 

by utilizing iterative belief propagation decoding 

algorithm based on LDPC codes, which its performance 

strongly depends on the length of girth. As the length of 

girth increases, the computability of decoding algorithm 

increases. Furthermore, the BER performance can be 

improved by removing lower length cycles (i.e., increasing 

the length of girth). In our implementations, the minimum 

length of girth is assumed to be 6. 

2-3- The LDPC Encoding Algorithm 

A sequence of blocks each of them having k information 

bits are encoded by using the generator matrix G, which 

can be derived from the parity-check matrix H in different 

ways. Reader can refer to [25] for further explanation 

about deriving generator matrix G. For the obtained 

generator matrix G, we have GH
T
=0. 

Let consider C is the codeword of length n obtained from 

multiplying the information bit of length k and the 

generator matrix G with the size of k×n. Thus, C forms the 

data that is modulated before transmission. C is a valid 

codeword if and only if CH
T
=0. Therefore, the C is as 

follows, 

 

C1,n = D1,kGk,n ,                                  (1) 

where, 

D= {d1 d2 d3…dk}, 

and 

C= {c1 c2 c3…cn}. 
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Furthermore, k and n are respectively the length of the 

information packet bits and the length of the codeword C. 

Note that, n-k is the length of the redundancy which is 

added to the information bits for providing protection.  

Besides, there is another encoding algorithm using LDPC 

codes which is called syndrome generation method. This 

method has a source coding and compression goal. A 

syndrome generated by using the parity-check matrix of an 

LDPC code is sent to the decoder as a lossless compressed 

data. Thus, for data n-tuple u, we send s=uH
T
 to the 

decoder. 

In this method, the decoder finds an estimation of u based 

on the received syndrome s by utilizing a syndrome 

decoding scheme. An efficient scheme for the syndrome 

decoding is SPA algorithm. In this scheme, in addition to 

the syndrome, a side information is needed. Actually, side 

information is a corrupted version of the original data u 

affected by the channel noise. Here, we briefly describe 

syndrome decoding scheme based on the SPA. 

In this scheme, first the syndrome s is located in the CNs 

and the side information is located in VNs. Then, the 

message-passing SPA is run. For a given number of 

iterations, Log-Likelihood-Ratio (LLR) values are 

calculated and passed between CNs and VNs. The VN 

values are updated in each iteration based on the calculated 

LLR values. Finally, one can find the decoded data which 

are located in the VNs of the Tanner graph of the LDPC 

code with parity-check matrix H. 

2-4- The Sum-Product Decoding Algorithm 

The message-passing algorithms are iterative decoding 
procedures, in which some messages are passed back and 
forward between the VNs and CNs until the process is 
stopped. The bit-flipping decoding algorithm is one of the 
message-passing algorithms in which the received symbols 
are hard decoded into 1’s and 0’s. 

The SPA is similar to the bit-flipping algorithm, but the bit-
flipping decoding is a kind of hard decisions while the SPA 
is a soft decision message-passing algorithm that utilizes 
the probability of each bit instead of its value. The extrinsic 
data between j-th CN and i-th VN which is the probability 
of ci=1 is denoted by Ej,i as the j-th parity check equation is 
satisfied. 

The probability that a parity-check equation is established 
for the bit ci to be 1 is represented by P that is calculated as 
follows: 

𝑃𝑗 ,𝑖
𝑒𝑥𝑡 = 

1

2
−  

1

2
𝑖 ′𝐵𝑗  ,𝑖 ′  𝑖(1 − 2𝑃𝑗 ,𝑖 ′ ),               (2) 

where Bj is the set of VNs which is connected to j-th CN. 

LLR is a metric for a binary variable that is represented by 
L and is as follows: 

L(c) = log 
𝑃 c=0 

𝑃 c=1 
 .                              (3) 

The sign of L(c) makes a hard decision on c and its 
magnitude |L(c)| shows the reliability of the decision rule. 
Thus, the probability of c can be obtained from LLR as 
follows: 

p(c=1) =  
𝑒−𝐿(𝑐)

1+𝑒−𝐿(𝑐) ,                              (4) 

p(c=0) =  
1

1+𝑒−𝐿(𝑐) ,                              (5) 

the main reason of exploiting LLR metric is that when 
probabilities need to be multiplied to each other, then 
logarithms just need to be added, hence, the complexity of 
calculations decreases. The information that are transferred 
from j-th CN to i-th VN is expressed as a LLR that it’s 
value is as follows: 

Ej,i = L(𝑃𝑗 ,𝑖
𝑒𝑥𝑡 ) = log

1−𝑃𝑗 ,𝑖
𝑒𝑥𝑡

𝑃𝑗 ,𝑖
𝑒𝑥𝑡   .                    (6) 

Hence, 

Ej,i=log

1
2

 + 
1
2


𝑖′𝐵𝑗 ,𝑖′ 𝑖
(1−2𝑃

𝑗 ,𝑖′
)

1
2
− 

1
2


𝑖′𝐵𝑗 ,𝑖′ 𝑖
(1−2𝑃𝑗 ,𝑖′ )

  

=log

1 + 
𝑖′𝐵𝑗 ,𝑖′ 𝑖

(1−2
𝑒
−𝐿(𝑃

𝑗 ,𝑖′
)

1+𝑒
−𝐿(𝑃

𝑗 ,𝑖′
)
)

1− 
𝑖′𝐵𝑗 ,𝑖′ 𝑖

(1−2
𝑒
−𝐿(𝑃

𝑗 ,𝑖′
)

1+𝑒
−𝐿(𝑃

𝑗 ,𝑖′
))

               (7) 

        =log

1 + 
𝑖′𝐵𝑗 ,𝑖

′ 𝑖
( 

1− 𝑒
−𝐿 𝑃

𝑗 ,𝑖′
 

1+ 𝑒
−𝐿 𝑃

𝑗 ,𝑖′
 

 )

1− 
𝑖′𝐵𝑗 ,𝑖

′ 𝑖
( 

1− 𝑒
−𝐿 𝑃

𝑗 ,𝑖′
 

1+ 𝑒
−𝐿 𝑃

𝑗 ,𝑖′
 

 )

 . 

 

By using the following relation,  

tanh{ 
1

2
 log (

1−𝑃

𝑃
)} = 1-2P ,                                 (8) 

it can be concluded that,  

Ej,i  = log 
1 + 

𝑖′𝐵𝑗,𝑖′𝑖
tanh ⁡(𝐿(𝑃

𝑗 ,𝑖′
)/2)

1−  
𝑖′𝐵𝑗,𝑖′𝑖

tanh ⁡(𝐿(𝑃𝑗 ,𝑖′ )/2)
 ,         (9) 

and by using the relation, 

2 tanh
-1

p = log 
1+𝑝

1−𝑝
 ,                                     (10) 

we can write, 

Ej,i=2 tanh
-1

  𝑖 ′𝐵𝑗  ,𝑖 ′  𝑖  tanh⁡(𝐿(𝑃𝑗,𝑖′)/2) .     (11) 

The value of 𝐿(𝑃𝑗 ,𝑖 ′ ) can be separated to its sign and its 

magnitude as follows: 
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  𝐿 𝑃𝑗 ,𝑖 ′  = 𝑆𝑗 ,𝑖 ′ 𝑀𝑗 ,𝑖 ′  ,                                    (12) 

where,  

𝑆𝑗 ,𝑖 ′ =sign(𝐿 𝑃𝑗 ,𝑖 ′  ) ,                                   (13) 

𝑀𝑗 ,𝑖 ′ = |𝐿 𝑃𝑗 ,𝑖 ′  | .                                   (14) 

Thus, equation (11) can be rewritten as  

tanh  
1

2
𝐿 𝑃𝑗 ,𝑖 ′   = 𝑖 ′𝐵𝑗  ,𝑖 ′  𝑖  𝑆𝑗 ,𝑖 ′ .𝑖 ′𝐵𝑗  ,𝑖

′  𝑖  tanh⁡(
1

2
𝑀𝑗 ,𝑖 ′ ) .   

(15) 

Therefore, 

Ej,i = 𝑖 ′  𝑆𝑗 ,𝑖 ′  . 2tanh
-1

 (𝑖 ′ tanh⁡((
1

2
𝑀𝑗 ,𝑖 ′ )) 

 = 𝑖 ′  𝑆𝑗 ,𝑖 ′  . 2tanh
-1

 log−1log(𝑖 ′ tanh⁡((
1

2
𝑀𝑗 ,𝑖 ′ )) 

 = 𝑖 ′  𝑆𝑗 ,𝑖 ′  . 2tanh
-1

 log−1  log(tanh⁡((
1

2
𝑀𝑗 ,𝑖 ′ )𝑖 ′ ) 

 = 𝑖 ′  𝑆𝑗 ,𝑖 ′  . Ø( Ø(𝑀𝑗 ,𝑖 ′ )𝑖 ′ ) ,                                         (16) 

where Ø(x) is defined as follows: 

Ø(x)=−log(tanh⁡(𝑥/2)=log(
𝑒𝑥  + 1

𝑒𝑥  − 1
) .              (17) 

In the SPA each VN has access to the initial LLR and 
LLRs from connected CNs because probability passes 
between nodes. The total LLR of the i-th bit is as follows: 

𝐿𝑖
total =Li +  𝐸𝑗 ,𝑖𝑗𝐴𝑖

 ,                                 (18) 

where Ai is the set of CNs connected to i-th VN. 

The decoder is initialized by setting VN information 
𝐿(𝑃𝑗 ,𝑖), for which hi,j=1, as follows: 

Li = L(ci|yi) = log(
𝑃(𝑐𝑖=0|𝑦𝑖)

𝑃(𝑐𝑖=1|𝑦𝑖)
) ,                       (19) 

where yi is the i-th information bit value that has been 
received. Li can be calculated for the binary input AWGN 
channel as follows: 

P(𝑥𝑖 = 𝑥|𝑦𝑖 ) = 
1

1+exp ⁡(−4𝑦𝑖𝑥/𝑁0)
 ,                   (20) 

from equation (20), 

Li = L(ci|yi) = - 4yi/N0 ,                                 (21) 

where N0 is the noise power spectrum density. 

After calculating total LLR for every VN, 𝐶  is obtained as 
follows: 

𝐶 𝑖= 
1           if   𝐿𝑖

𝑡𝑜𝑡𝑎𝑙  < 0  

0                  else,            
     , for  i=1, 2, …, N;          (22) 

where N is the length of codewords.  

 

 

The accuracy of decoded data 𝐶  can be obtained by 

multiplying 𝐶  and H
T
. If 𝐶 𝐻𝑇 = 0, then the decoded data is 

correct, else LLRs should update as follows: 

𝐿(𝑃𝑗 ,𝑖 ′ ) =  𝐸𝑗 ′ ,𝑖  𝑗 ′𝐴𝑖,𝑗
′ 𝑗 + Li .                     (23) 

These operations continue until the parity-check equations 

are satisfied (𝐶 𝐻𝑇 = 0), or the number of iteration equals 
the maximum limit which has been considered. 

3- Simulation Results 

In this section, we report some simulation results which 

are obtained from implementation of the described 

communication system. All BER values are averaged over 

50 tests for randomly generated binary sequences as an 

information source.  

The BER performance of a PSK modulated 

communication is presented with respect to the number of 

iterations, the code length, and coding rate. A fair 

comparison is done for various values of the signal to 

noise ratio. 

After decoding received data in receiver the number of bits 

that have not received correctly can be simply obtained by 

comparing the received bits in the receiver and transmitted 

bits of the transmitter. The BER is calculated by dividing 

the number of incorrect received bits to the number of total 

received bits.  

In Fig. 3, it is depicted that the BER decreases by 

increasing the number of iterations in the SPA with a same 

parity-check matrix H (384,512,irregular) with the rate of  
1

4
.  This observation is because of increasing the number of 

runs in update equations of the SPA. 

For instance, the BER is 5.46×10-6, 3.91×10-6, and 

2.8×10-6 respectively for the cases of iteration=10, 

iteration=20, and iteration=50 in SNR=6db.  

Based on the results, which is reported in Fig. 4, it is 

obvious that the BER decreases by increasing the size of 

the parity-check matrix H. This fact stems from the direct 

effect of increasing length. Note that, by increasing the 

size of H, complexity of implementations increases. For 

example, the BER is 3.91×10-6 and 1.17×10-8 

respectively for H(384,512,irregular) and 

H(768,1024,irreglar), with the rate of  
1

4
 and iteration=20 in 

SNR=6db. 

The effect of increasing the number of added redundancy 

to a same information block with a constant length to the 

BER performance is presented in Fig. 5. As it is seen, the 

BER value decreases by increasing redundancy or 

equivalently by decreasing coding rate.  
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Fig. 3: The BER performance of code H (384,512,irregular). 

 

 

 
Fig. 4: The BER performance of H(384,512,irregular) and 

H(768,1024,irreglar). Rate is 0.25 and the number of iterations is 

20. 

 

As an example, the BER is 2.97×10
-3

, 6.72×10
-4

, 8×10
-7

, 

and 8×10
-11

 respectively for rate= 
2

3
, rate= 

1

2
, rate= 

1

4
, and 

rate= 
1

8
  in SNR=7db. 

Based on the reported results, it is seen that the SPA is 

reliable with respect to parameter changes and can be 

utilized for the BPSK modulation scheme with an 

acceptable performance. In the design process, one can 

choose proper rate, number of iterations and length to 

reach a required quality of service. 

 

 
 

Fig. 5: The BER performance for four LDPC codes 

H1(64,192,irregular), H2(128,256,irregular), 

H3(384,512,irregular), and H4(896,1024,irregular) with 

iteration=10. 

4- Conclusions 

In this paper, a point-to-point communication system is 
investigated. Our focus is on the channel encoder and the 
channel decoder blocks and their BER performances. The 
LDPC codes are employed for the channel encoder block 
and the SPA with the same parity-check matrix of encoder 
are exploited for the channel decoding. The BER 
performance of the system under AWGN communication 
channel model with PSK modulation scheme is derived 
from implementations for various cases. Our simulation 
results show the effect of the parameter changes in order to 
achieve lower BER values. This provide the direction of 
parameter changes to a system designer to improve the 
performance. 

 

Appendix 

Here, we present the degree distributions of the parity-
check matrices, which have been used in our 
implementations for some rates. Note that the parity-check 
matrices are obtained from these degree distributions by 
using progressive edge growth method with some 
approximations. 

For the rate of 0.75, we have: 

𝜆 𝑥 = 0.2911𝑥 + 0.1892𝑥2 + 0.0408𝑥4 + 0.0873𝑥5 +
0.0074𝑥6 + 0.1126𝑥7 + 0.0925𝑥15 + 0.0186𝑥20 +
0.124𝑥32 + 0.016𝑥39 + 0.0202𝑥44 , 

and 

𝜌 𝑥 = 0.8𝑥4 + 0.2𝑥5. 
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For the rate of 0.66, we have: 

𝜆 𝑥 = 0.2177𝑥 + 0.1634𝑥2 + 0.098𝑥5 + 0.1018𝑥6 +
0.0538𝑥13 + 0.0301𝑥16 + 0.0566𝑥20 + 0.0109𝑥26 +
0.0809𝑥30 + 0.1863𝑥99, 

and 

𝜌 𝑥 = 0.9𝑥6 + 0.1𝑥7. 

 

For the rate of 0.5, we have: 

𝜆 𝑥 = 0.1528𝑥 + 0.2825𝑥2 + 0.0062𝑥3 + 0.5586𝑥19, 

and 

𝜌 𝑥 = 𝑥9. 

 

For the rate of 0.25, we have: 

𝜆 𝑥 = 0.1118𝑥 + 0.1479𝑥2 + 0.0721𝑥5 + 0.2464𝑥6 +
0.0021𝑥8 + 0.4195𝑥29, 

and 

𝜌 𝑥 = 𝑥23 . 

 

For the rate of 0.125, we have: 

𝜆 𝑥 = 0.1154𝑥 + 0.1846𝑥2 + 0.1872𝑥6 + 0.0107𝑥7 +
0.0107𝑥8 + 0.0298𝑥9 + 0.0676𝑥17 + 0.0713𝑥21 +
0.0311𝑥22 + 0.0523𝑥25 + 0.194𝑥65 + 0.0148𝑥69 +
0.0192𝑥72 + 0.0021𝑥89 + 0.0086𝑥99, 

and 

𝜌 𝑥 = 0.5𝑥45 + 0.5𝑥46. 
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