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Abstract  
Gaussian interference known at the transmitter can be fully canceled in a Gaussian communication channel employing 

dirty paper coding, as Costa shows, when interference is independent of the channel noise and when the channel input 

designed independently of the interference. In this paper, a new and general version of the Gaussian channel in presence of 

two-sided state information correlated to the channel input and noise is considered. Determining a general achievable rate 

for the channel and obtaining the capacity in a non-limiting case, we try to analyze and solve the Gaussian version of the 

Cover-Chiang theorem mathematically and information-theoretically. Our capacity theorem, while including all previous 

theorems as its special cases, explains situations that can not be analyzed by them; for example, the effect of the correlation 

between the side information and the channel input on the capacity of the channel that can not be analyzed with Costa’s 

―writing on dirty paper" theorem. Meanwhile, we try to exemplify the concept of ―cognition" of the transmitter or the 

receiver on a variable (here, the channel noise) with the information-theoretic concept of ―side information" correlated to 

that variable and known at the transmitter or at the receiver. According to our theorem, the channel capacity is an increasing 

function of the mutual information of the side information and the channel noise. 

 

Keywords:  Communication channel capacity; Gaussian channel capacity; correlated side information; two sided state 

information; interference cancellation; dirty paper coding. 
 

1- Introduction 

Side information1 channels have been extensively studied 

since the initiation by Shannon [1] and the subsequent 

study by Kusnetsov-Tsybakov [2]. The capacity of a 

channel with side information (CSI) known non-causally 

only at the transmitter and only at the receiver has been 

determined by Gel’fand-Pinsker(GP) [3] and Heegard-El 

Gamal [4] respectively.  

Considering the GP theorem for the Gaussian channel, 

Costa [5] obtained an interesting result, i.e., the channel 

capacity in presence of Gaussian interference known non-

causally at the transmitter is the same as the case without 

interference. Having extended the results of Gelfand-

Pinsker, Cover-Chiang [6] established a general capacity 

theorem for the channel with two-sided state information. 

There are many other important researches in the 

literature, e.g.[7]-[10]. The results for the single user 

                                                           
The results of this paper has been presented, partially, in Iran Workshop 
on Communication and Information Theory, IWCIT 2015, as invited talk. 
 

channel have been generalized possibly to multi user 

channels, at least in special cases [11]-[18]. 

 

Our Work: In this paper, we analyze the Gaussian channel 

with two-sided input and noise dependent state 

information as additive interference known at the 

transmitter and the receiver. The problem has three 

important aspects:  

Information theoretic point of view: Gel’fand-Pinsker (GP) 

theorem [3] obtains the capacity of the channel with side 

information known non-causally at the transmitter. 

Investigating the GP theorem for channels with continuous 

alphabets in a special situation, Costa [5] obtained a 

Gaussian version of the GP theorem. As seen in (Fig. 1), 

the side information    is considered as an additive 

interference and known non-causally at the transmitter. In 

the channel, the noise   is independent of        and 

moreover the input   can be designed with any arbitrary 

correlation with the side information   . Costa shows that 

employing dirty paper coding (DPC) in which   is 

designed independently of   , the interference    can be 

fully canceled, and so the channel capacity surprisingly is 

the capacity of the channel without interference. 
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   Cover-Chiang [6] analyze the channel with two-sided 

and correlated state information non-causally known at the 

transmitter and receiver and obtain the capacity theorem as 

the extended version of GP theorem.    

The Gaussian version of the GP and Cover-Chiang 

theorems are open problems in information theory. In 

addition to Costa’s ―writing on dirty paper", there are 

many other important researches in the literature, e.g [10] 

and its references that studied the problem in special cases. 

In [10], the channel with one-sided additive interference 

(known at the transmitter) is analyzed in which the 

interference and noise have arbitrary joint distribution and 

the noise is dependent on the channel input and 

interference. The authors obtained a lower bound for the 

capacity of the channel. 

In this paper, we try to analyze the Gaussian channel with 

two-sided state information as additive Gaussian 

interference         and known non-causally at the 

transmitter and receiver and dependent on the Gaussian 

channel noise   and input   (Fig. 2). The random 

variables             are arbitrarily correlated, and so 

the channel can be considered as a more general Gaussian 

version of the Cover-Chaing channel. We prove a general 

achievable rate (lower bound) for the channel (lemma 1), 

then, we obtain an upper bound for the capacity of the 

channel in the case that the channel input, the side 

information, and the channel noise, form the Markov chain 

            (lemma 2). We show the coincidence of 

the lower and upper bounds under this circumstance, and 

so establish our capacity theorem for the channel 

(Theorem 1). The theorem includes Costa’s ―writing on 

dirty paper" [5] (when   is independent of           and 

  is independent of    as Costa’ channel) and the lower 

bound proved in [10] (with Gaussian noise and 

interference, ignoring   , and   independent of   ) as its 

special cases. Our theorem shows that as in [5], the effect 

of known interference at the transmitter and the receiver 

can be fully canceled employing ―dirty paper-like coding" 

scheme. 

Practical point of view:  Enormous developments of 

wireless communications make the spectrum into one of 

the most precious resources in modern communications. 

Costa shows that employing dirty paper coding (DPC), it 

is possible to fully cancel known interference at the 

transmitter without consuming additional power, and 

therefore DPC is one way to utilize the spectrum 

efficiently by reusing it. However, Costa’s ―writing on 

dirty paper" is not applicable for the situation there exist 

interference known at the receiver (    in Fig. 2 ) or 

random variables             are correlated or the 

channel input   can not be designed independently of   . 

One example of these situations is the cognitive 

interference channel in which the transmitted sequence of 

one transmitter is a known interference for the other 

transmitter and these two sequences may be dependent on 

each other (for example when the sources are dependent). 

Some other communication scenarios in which the channel 

input and the side information may be correlated and the 

related investigations can be found in [9] and [19]. In [9] 

the problem of optimum transmission rate under the 

requirement of minimum mutual information     
      is 

investigated. 

 

 
Fig. 1.  Gaussian channel with additive interference known non-causally 

at the transmitter. 

 
Fig. 2.  Gaussian channel with side information at the transmitter and at 
the receiver. 

Cognition on the channel noise: In this paper, we try to 

describe and analyze the knowledge (―cognition") of the 

transmitter and receiver about the channel noise  . We 

consider the side information known at the transmitter    

(at the receiver   ) and correlated to the channel noise  , 

as the cognition of the transmitter (receiver) on the channel 

noise. This cognition can be perfect or imperfect. It is 

expected that if the side information    is more correlated 

with   (that means greater mutual information        ), 

the transmitter acquires more knowledge about the channel 

noise, so employing the proper coding scheme, achieves 

more data rate.  

Regarding the side information    and    as the cognition 

of the transmitter and the receiver on the channel noise  , 

some conditions between random variables are sensible 

and sound. For example, it is sensible to assume that the 

knowledge that the transmitter got about the channel noise, 

gained just via the side information        . This 

condition can be expressed by the equation 

               or Markov chain            , 

which is assumed in obtaining the upper bound of the 

capacity. Our theorem shows that the channel capacity is 

an increasing function of the mutual information between 

the side information and the channel noise           .  
From this point of view, the subject of the knowledge is 

the channel noise and the transmitter and receiver acquire 

this knowledge via side information        . Therefore, 

our theorem is indeed an analysis of the effect of 

uncertainty about the channel noise on the capacity of the 

channel. In [20] and [21], we analyze the problem in some 

different and more limited situations.  

The problem of partial channel state information studied 

extensively, e.g. [22]-[25]. In these papers, the subject of 

knowledge is the state information itself. In [25] the 

imperfect known state information (as a channel 
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interference) is partitioned to one perfect known and one 

unknown part. In [24] partially known two-sided state 

information is viewed as a disturbed state information by 

Gaussian noise and then the channel sensitivity to small 

perturbation is analyzed.  

 

 
Fig. 3. Channel with side information available non-causally at the 

transmitter and at the receiver 

In section 2, we briefly review the Cover-Chiang and the 

Gel’fand-Pinsker theorems and then introduce scrutiny of 

the Costa theorem. In section 3, we define our Gaussian 

channel thoroughly and present the capacity of the 

channel. In Section 4, we present some corollaries of the 

capacity theorem, some numerical comparisons and 

explain that how the capacity theorem can exemplify the 

―cognition" of the transmitter and or the receiver on the 

channel noise. The proofs of lower and upper bounds of 

the capacity are given in Section 5. Section 6 contains the 

conclusion. A Lemma which is used in our proofs, is given 

in the Appendix. 

2- A Review of Previous Related Works 

To clarify our approach in subsequent sections, in this 

section we first briefly review the Cover-Chiang capacity 

theorem for channels with side information available at the 

transmitter and at the receiver. We then review the 

Gel’fand-Pinsker (GP) theorem which is a special case of 

Cover-Chiang theorem when side information is known 

only at the transmitter. Finally, the Costa theorem 

(―writing on dirty paper" theorem), which is the Gaussian 

version of the GP theorem, is investigated. 

 

Cover-Chiang Theorem 

 Fig.3 shows a channel with side information known at the 

transmitter and at the receiver where    and    are the 

transmitted and the received sequences respectively. The 

sequences   
  and   

  are the side information known non-

causally at the transmitter and at the receiver respectively. 

The transition probability of the channel,             , 

depends on the input  , the side information    and   . It 

can be shown that if the channel is memoryless and the 

sequences    
    

   is independent and identically 

distributed (i.i.d.) random variables under         , then 

the capacity of the channel is [6]:   

     
         

[                 ] (1) 

  where the maximum is over all distributions:   

                                             (2) 

  and   is an auxiliary random variable. It is important to 

note that the Markov chains:   

         (3) 

  

          (4) 

  are satisfied for all distributions in (2). 

 

Gel’fand-Pinsker Theorem 

Gel’fand-Pinsker (GP) theorem [3], can be considered as a 

special case of (1), when there is no side information 

known at the receiver (     ). The capacity of the 

channel is:  

     
         

[              ] (5) 

 for all distributions:  

                                     (6) 

 

Costa’s “Writing on Dirty Paper" 

  Costa [5] examined the Gaussian version of the channel 

with side information known at the transmitter (Fig. 1). As 

can be seen, the side information is considered as an 

additive interference at the receiver. Costa showed that the 

channel, surprisingly, has the capacity 
 

 
   (  

 

 
) , 

which is the the same for channels with no interference   . 

Costa derived this capacity by using the results of 

Gel’fand-Pinsker theorem extended to random variables 

with continuous alphabets. In this subsection, we first 

introduce the Costa assumptions and then present a proof 

for this theorem in such a way that it enables us to 

introduce our channel and develop our theorem in 

subsequent sections. 

The channel is defined by continuous random variables 
                       with following properties:  

    •   
  is a sequence of Gaussian i.i.d. random variables 

with distribution           . 

    • The output is given by         
    , where    

is the sequence of white Gaussian noise with zero mean 

and variance   i.e.          and independent of 

      . The sequence   
  is non-causally known at the 

transmitter. The transmitted sequence    is assumed to 

have the power constraint  {  }   . 

It is readily seen that the distributions             having 

the above three properties are in the form of (6). We 

denote the set of all these            ’s with   . 

Although for the Costa channel described above, no 

restriction has been imposed on the correlation between   

and   , in the Costa theorem, the maximum rate 

corresponds to independent   and   , and   in form of 

linear combination of   and   . We define     as a subset 

of    with elements              having the following 

properties as well as the properties mentioned before: 

    •   is a zero mean Gaussian random variable with the 

maximum variance   and independent of   . 

• The auxiliary random variable   takes the linear form 

         . 
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It is clear that the set     and their marginal and 

conditional distributions are subsets of corresponding 

  ’s. 

 

Achievable rate for Costa channel: From (5), when 

extended to memoryless channels with discrete time and 

continuous alphabets, we can obtain an achievable rate for 

the channel. The capacity of Costa channel can be written 

as:  

          
         

[              ] (7) 

 where the maximum is over all            ’s in   . 

Since        we have: 

          
          

[              ]  (8) 

      
           

       
[              ]    (9) 

    
 

[              ]                      10) 

  The expression in the last bracket is calculated for 

distributions              in     described above. Thus, 

defining                    ,          is an 

achievable rate for the channel.      and          is 

calculated as:  

     
 

 
   (

         

                   
)  (11) 

 and  

    
 

           
 

 
   (  

 

 
) (12) 

 where  

   
 

   
       (13) 

 Both       and    are independent of    and then of   . 

 

Converse part of Costa theorem: From (5) we can also 

obtain an upper bound for the channel capacity. We have:   

                                          (14) 

                          (15) 

                                           (16) 

                                             (17) 

  where inequality (15) follows from the fact that 

conditioning reduces the entropy and (17) follows from 

Markov chain         which is correct for all 

distributions             in the form of (6), including the 

distributions in the set   . Hence we can write:   

          
         

[              ]                     (18) 

    
       

[         ]                                   (19) 

    
       

[                 ]                 (20) 

    
       

[                   ]         (21) 

    
       

[           ]                        (22) 

 
 

 
   (  

 

 
)                                                (23) 

  where the inequality (22) is due to the fact that 

conditioning reduces the entropy and                

(because the channel noise   is independent of        in 

the channel, as defined above). The maximum in (22) is 

obtained when   and   are jointly Gaussian with  {  }  
  because when the variance is limited, Gaussian 

distribution maximizes the entropy. From (12) and (23) it 

is seen that the lower and the upper bounds of the capacity 

coincide, and therefore the channel capacity is equal to 
 

 
   (  

 

 
) . It is also concluded that for the Costa 

channel, the optimum condition which leads to the 

capacity is when          and independent of   .  

We can explain the Costa theorem more, as follows: Let 

consider          
    with independent Gaussian 

interference    with variance   ,   
  with variance   

  and 

  with variance  . If the transmitter knows nothing about 

this interference, then we take     and   
 

 
   (  

 

       
 ). If    is known at the transmitter, then 

we take         and we have   
 

 
   (  

 

    
 ) 

and if    and   
  are both known at the transmitter, then 

           
  and   

 

 
   (  

 

 
). 

3- Capacity of The Gaussian Channel with 

Two-sided Noise and Channel Input 

Dependent Side Information 

 In this section, first, we introduce a new Gaussian channel 

with side information known non-causally at the 

transmitter and side information known non-causally at the 

receiver both as Gaussian additive interference at the 

receiver [26]. Then we present a theorem that obtains the 

capacity of the channel. The theorem can be considered as 

a Gaussian version of the Cover-Chiang unifying theorem. 

3-1- Definition of The channel 

 Consider the Gaussian channel depicted in Fig. 2. The 

side information at the transmitter    and at the receiver    

is considered as additive interference at the receiver. Our 

channel has three differences with Costa’s one as follows: 

i) In our channel, a specified correlation coefficient 

     between   and   , exists. Let the capacity of the 

channel be  . The channel with no restriction on      (as 

is in the Costa channel) has the capacity    [21]:  

      
    

  (24) 

 

ii) To investigate the effect of the side information 

known at the receiver, we suppose that in our channel 

there exists Gaussian side information    known non-

causally at the receiver which is correlated to both   and 

  . 

iii) We allow the channel input   and the side 

information    and    to be correlated to the channel noise 

 . 
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Remark: Note that assuming the input random 

variable   correlated to    and    with specific correlation 

coefficients, does not impose any restriction on  ’s 

distribution and it can be proved that the distribution of   

is free to choose [21].  

1) Definition of the channel: The channel is defined by 

continuous random variables               
               with following properties:   

    •    
    

   are i.i.d. sequences with zero mean and 

jointly Gaussian distributions with variance       
  and 

      
  respectively. The sequences   

  and   
  are non-

causally known at the transmitter and at the receiver 

respectively.  

    • The output sequence         
    

    , 

where    is the sequence of white Gaussian noise with 

zero mean and variance  .  

    • Random variables             have the covariance 

matrix  :  

   

{
 
 

 
 

[
 
 
 
 
          

     
        

         
    

          ]
 
 
 
 

}
 
 

 
 

 

 

[
 
 
 
 
 

  
      

 
   

     
 
   

       

     
 
   

   

    
   

 
    

   
      

     
 
   

   
   

 
    

   

    
      

       
   

      
   

      
  
 

]
 
 
 
 
 

 (25) 

  

where      is the correlation coefficient between   and   , 

and so on. 

In this channel, the Gaussian noise   is not necessarily 

independent of the additive interference    and    and the 

input  . Moreover    is assumed to have the constraint 

  
   . Except   , all other parameters in   have fixed 

values specified for the channel and are considered as the 

definition of the channel.  

    • We assume that             form the Markov Chain 

        . As mentioned earlier in (3), this Markov 

chain is satisfied by all distributions                in the 

form of (2) in Cover-Chiang capacity theorem. This 

Markov chain results in the weaker Markov chain    
     and this implies that (for the proof see Lemma 3 in 

the Appendix):   

               (26) 

   

 We assume that the set of all these distributions 

               denoted with  . It is readily seen that all 

distributions                in   are in the form of (2). 

Therefore we can apply the extended version of Cover-

Chiang theorem for random variables with continuous 

alphabets to this channel. 

 

  2) The channel in optimum situation: We will show 

that the optimum distribution resulting in maximum 

transmission rate, is obtained when random variables 
              are distributed under                 

with following additional properties:   

    • The random variables           are jointly Gaussian 

distributed and   has zero mean and the maximum 

variance  , i.e.         .  

    • As in the Costa theorem [5]:   

         (27) 

  but here   and    are correlated.  

 We assume that the set of all these distributions 

                denoted with   . It is clear that the set 

   and their marginals and conditional distributions are 

subsets of corresponding  ’s. 

3) Some necessary definitions: Suppose      is the 

covariance matrix for random variables             in 

optimum situation of the channel having all properties 

mentioned above; defining:    

      {   }       
    

                         (28) 

      {  }                                             (29) 

      {    }                                          (30) 

      {   }     
      

                         (31) 

  we can write     , and its determinant   and its minors 

   to     as:    

     

[
 
 
 
 
             

              

              

             
]
 
 
 
 

          (    )        (32) 

   |

          

          

          
|     |

      

       
|        (33-1) 

   |

          

         
 

            

|     |
     

       
|        (33-2) 

   |

         

     
 

    

          
|    |

      

      
|        (33-3) 

   |

         

          

             

|     |
     

       
|        (33-4) 

   |

         

          

           

|      |
        

       
|        (33-5) 

    |

            

          

          
|      |

      

        
|      (33-6) 

  
  |

          

     
     

    
    

  
|      |

      

        
|  (33-7) 
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 , defined in (33), is the determinant of              

when the variance of random variables are normalized to 

1. 

 

3-2- The Capacity Theorem for The channel 

Theorem 1:  The Gaussian channel defined in 3.1.1 (Fig. 

2) when the channel input  , the side information         

and the channel noise  , form the Markov chain   
         , has the capacity:    

  
 

 
   (  

 

 

(      
 )(       

 )

      
 )             (34) 

 
 

 
   (  

 

 
(      

 )   (           ))  

   and the capacity (34) is achieved by employing the 

channel input   and the auxiliary random variable   as in 

optimum situation 3.1.2 and with   

   
                

         
  (35) 

  the terms defined in (33).  

Proof:  The proof is given in Section 5. 

Remark: In the Gaussian channel defined in this section, 

the side information         can be dependent on the 

channel noise. The capacity is proved with constraint of 

           . As we explain in the next section, the 

Markov chain states that the knowledge the transmitter has 

got on the channel noise  , is acquired via the side 

information        . 

4- Interpretations of The Capacity Theorem 

In this section, we examine the effect of the channel 

parameters on the channel capacity and explain them.  

4-1-Cancellation of Interference 

 It is seen that with employing a DP like coding scheme, 

interference    and    can be fully canceled, as in Costa’s 

writing on dirty paper.  

 

4-2- The Effect of     
 

 Corollary 1: If there is no specific correlation between   

and   , as Costa’s dirty paper, the capacity is achieved 

when the channel input   is designed independently of the 

known   :    

     
    

(
 

 
   (  

 

 
(      

 )   (           ))+ 

 
 

 
   (  

 

 
   (           )*                      (36) 

   Corollary 2: If we assume that the channel noise   is 

independent of          , from (34), the capacity of the 

channel is:  

  
 

 
   (  

 

 
(      

 )* (37) 

 From (24),   is reduced to the Costa capacity 
 

 
   (  

 

 
) by maximizing it with       . 

 

 
Fig. 4. Capacity of the channel  with respect to      when the channel 

noise   is independent of           and with signal to noise ratio 
 

 
   

Corollary 3: It is seen that in the case the side information 

   is independent of the channel noise  , the capacity of 

the channel is equal to the capacity when there is no 

interference   . In other words, in this case, the receiver 

can subtract the known   
  from the received    without 

losing any worthy information. 

Corollary 4: The correlation between   and    decreases 

the capacity of the channel. It can be explained as follows: 

by looking at          in our dirty paper like 

coding, mitigating the input-dependent interference effect, 

also mitigates the input power impact on the channel 

capacity as this fact is seen in (37) as   
 (      

 ). 

As an extreme and interesting case, when      (then 

      ), according to the usual Gaussian coding, the 

capacity seems to be 
 

 
   (  

  

 
), which is the capacity 

when    is transmitted and        is received. But 

as our theorem shows, the capacity paradoxically is zero. It 

can be explained as follows: the receiver, based on his 

information, ought to decode according to the dirty paper 

like coding. In DP like coding, with given known sequence 

    
 ,we find an auxiliary sequence    like   

  jointly 

typical with     
  [5]. Jointly typicality of    

      
   is 

equivalent to:  

|(  
        

 )
 
    

 |                    (38) 

 where    denotes the transpose operation and    is 

computed according to (35). If     , there exists no 

such   
 : since   

    
        

      
 , we have  

|(  
        

 )
 
    

 |        
     (39) 



 

Anzabi Nezhad and Abed Hodtani, A New Capacity Theorem for the Gaussian Channel with Two-sided Input  and…... 
 

 

 

300 

 where       
    is the norm of the given known sequence 

    
  and therefore (38) can not be true. In other words, in 

this case, encoding error occurs. 

Fig. 4 shows the variation of the capacity   in (37) with 

respect to      when 
 

 
  . It is seen that when the 

correlation between the channel input and the side 

information known at the transmitter increases, the 

channel capacity decreases. The maximum capacity is 

gained when     
  , which is Costa’s capacity. Fig. 5 

shows the capacity   in (37) with respect to SNR for five 

values of     .    

 

 
Fig. 5. Capacity of the channel with respect to SNR when the channel 

noise   is independent of            

 

4-3- Cognition of Transmitter and Receiver on the 

Channel Noise 
 It is seen that the mutual information            

increases the channel capacity . For the sake of simplicity, 

we ignore the effect of      and assume the channel 

capacity is given by (36).  

If we suppose that     , the capacity is given by:    

  
 

 
   (  (

 

 
)    (        )*      (40) 

 

 
 

 
   (  

 

 

 

(      
 )

)                     (41) 

 

   It is seen that more correlation between the side 

information    and the channel noise  , results in more 

capacity. It can be explained by the fact that the side 

information known at the transmitter and correlated with 

the channel noise  , carries knowledge about   for 

transmitter, so enhances the transmitter’s ability to cancel 

the channel noise. When        , the transmitter has 

got perfect knowledge about   and the capacity reaches to 

infinite. Fig. 6 illustrates the capacity of the channel with 

respect to      when 
 

 
  . Fig. 7 shows the capacity of 

the channel with respect to SNR for five values of     
.  

The same situation comes about when     : the side 

information    known at the receiver and correlated with 

the  , carries knowledge about   for the receiver. More 

correlation between    and   results in more capacity. 

This shows the significance of the known additive 

interference at the receiver and the reason why subtracting 

  
  from received    is a wrong decoding strategy. 

 

 
Fig. 6. Capacity of the channel with respect to      when 

 

 
   

 
Fig. 7. Capacity of the channel with respect to SNR for five values of 

     

If the side information at the transmitter and at the receiver 

        exists and is correlated to the channel noise  , the 

capacity increases by           . Fig. 8 illustrates the 

capacity of the channel with respects to mutual 

information            for five values of SNR. 

If the signal to noise ratio is large enough, the capacity can 

be written as:    

  
 

 
   (  

 

 
)                            (42) 

 

that shows the major effect of            on the channel 

capacity.  
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Remark: The capacity of the channel and the effect of    

and    on the capacity, reveals the cognitive role of the 

side information which is known at the transmitter or at 

the receiver and is correlated to the channel noise. As it is 

seen in this section, side information known at the 

transmitter (or receiver), carries the knowledge about the 

channel noise if it is correlated with the channel noise. If 

we regard the side information    and    as the cognition 

of the transmitter and the receiver on the channel noise  , 

some conditions between random variables in our model 

are sensible and sound. For example, it is sensible to 

assume that the knowledge that the transmitter got about 

the channel noise, gained just via the side information 

       . This conditions can be expressed by equation 

               or Markov chain            , 

which is assumed in our theorem. 

  

 
Fig. 8. Capacity of the channel with respect to            for five values 
of SNR. 

5- Proof of Theorem 1 

To prove the theorem, first, we prove a general achievable 

rate for the channel. Then we obtain an upper bound for 

the capacity of the channel when we have the Markov 

chain            . Then we show the coincidence of 

this upper bound with the lower bound of the capacity. 

 

Lemma 1. Lower Bound of the Capacity:  The channel 

defined in 3.1.1 has the lower bound    in (43), where   
  

is defined in (33): 

   
 

 
   (  

[  (      
 )    (            )]

 
(       

 )

  
 ((      

 )  
  (            )

 
(       

 )*
, 

(43) 

Corollary 5: The lower bound (43) includes the lower 

bound obtained in [10]. If     
      

   as in [10], 

then   
       

  and we have  

   
 

 
   (  

(     
  
  

*
 

     
      

 

  
 

  
 )  (44) 

 which is the lower bound in [10]. 

      

Proof of Lemma 1:  Using the extension of Cover-Chiang 

capacity theorem given in (1) for random variables with 

continuous alphabets, the capacity of our channel can be 

written as:   

     
         

[                 ] (45) 

where the maximum is over all distributions 

               in   defined in 3.1.1. Since      we 

have:    

     
          

[                 ]           (46) 

 

    
 

[                 ]                 (47) 

where the expression                   in (47) is 

calculated for the distributions in    defined in 3.1.2. 

Thus, defining                       , we have:   

     
 

            (48) 

 therefore       is a lower bound for the channel capacity. 

To compute      , we write:   

                                     (49) 

  and   

                                      (50)    

  For         we have:   

        
 

 
   (         (         )) (51) 

where  

          [   ]   
 

and   

                                        

                                    

                                  

        
After computing we have:    

 

   (         )                             (52) 

   

 where the terms are defined in (28)-(33). 

For           we have:  

              
 

 
   (         (           )) (53) 

where  

            [   ]   
 (54) 

 and   
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  After manipulations we have:   

   (           )                          

                           (55) 

For       and         we have:   

                         
 

 
   (       )                            (56)  

 and 

           
 

 
   (         (         ))             (57) 

 

  where  

           [
                     

          
]        (58)  

     

 and its determinant:   

   (         )      (59) 

Substituting (51), (53), (56) and (57) in (49) and (50), we 

obtain      as in (60): 

 
    

 
 

 
   (

  [                       ]

  [                                         ]
* 

(60) 

The optimum value of   corresponding to maximum of 

     is easily obtained as:   

                       
                

         
  (61) 

  Substituting    from (61) into (60) and using the 

equations (26), (28)-(31) and (33) we finally conclude that 

      equals    in (43). Therefore    in (43) is a lower 

bound for the capacity of the channel defined in 3.1.1 

(details of computations are omitted for the brevity).  

Q.E.D 

   Lemma 2. Upper Bound of the Capacity: The capacity of 

the Gaussian channel defined in 3.1.1, when the channel 

input  , the side information         and the channel noise 

  form the Markov chain            , has the upper 

bound   in (34). 

Proof of Lemma 2: First, we note that the Markov chain 

            and the Markov chain         in 

(3), imply the weaker Markov chain       . And it 

can be proved that this Markov chain implies (for proof 

see the Appendix):   

                                    
    

  (62) 

  For all distributions                in   defined in 

3.1.1, we have:   

                                     (63) 

                                (64) 

                              (65) 

                                              (66) 

                                               (67) 

   where (64) follows from the fact that conditioning 

reduces entropy, (65) follows from Markov chain    

      and (67) from Markov chain           

which are satisfied for any distribution in the form of (2), 

including the distributions in the set  . From (1) and (67) 

we can write:   

      
         

[                 ]             (68) 

      
       

[            ]                             (69) 

  From (69) it is seen that the capacity of the channel 

cannot be greater than the capacity when both    and    

are available at both the transmitter and the receiver, 

which is physically predictable. To compute (69) we write:    

 

                                             (70) 

                              

                                                    (71) 

                                                 (72) 

                                                          (73) 

                             (           )             (74) 

where (73) follows from the Markov chain           
 . Hence, the maximum value in (69) occurs when 

 (           )  is maximum. Since   ,    and   are 

Gaussian, the maximum in (69) is achieved when 

          are jointly Gaussian and   has its maximum 

variance  ; in other words,              is computed for 

distribution               defined in 3.1.2. Let 

              be the maximum value in (69). We have:   

                                         (75) 

  To compute              , we first compute  (   

        ) for distribution               defined in 3.1.2:    

 (           )  
 

 
   (         (   (           ))* 

(76) 

   where    (           ) is    

 

 ,*

                    

         
     

             
 

+- 

 *

                           

               

               

+   (77) 

 

 and the determinant:  

        (   (           ))             (78) 

 and the other term in (74):  

           
 

 
                                  (79) 

Substituting (78) in (76), and from (79), we have:   

              
 

 
   (  

      

  
)               (80) 

Rewriting (80) in terms of   ,    
,    

,   ,     
,     

,     
 

and       using (28)-(31) and (33) and taking into account 

two Markovity results (26) and (62), we finally conclude 

that (details of manipulations are omitted for the brevity): 
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   (  

 

 

(      
 )(       

 )

      
 )    (81) 

 Hence,   in (34) is an upper bound for the capacity of 

the channel when we have the Markov chain   
         .  

 Q.E.D 

For completing the proof of the capacity theorem, it is 

enough to compute the lower bound of the channel (43), 

when we have the Markov chain            . 

Applying the equation (3) to (43), shows the coincidence 

of the upper and the lower bounds of the capacity of the 

channel in this case and considering:   

           
 

 
   (

       
 

  
 *                (82) 

  the proof is completed.  

Q.E.D 

 

6-  Conclusion 

By fully detailed investigating the Gaussian channel in 

presence of two-sided input and noise dependent state 

information, we obtained a general achievable rate for the 

channel and established the capacity theorem. This 

capacity theorem first demonstrates the impact of the 

transmitter and receiver cognition on the capacity and 

second shows the effect of the correlation between the 

channel input and side information available at the 

transmitter and at the receiver on the channel capacity. 

Whereas, as expected, the cognition of the transmitter and 

receiver increases the capacity, the correlation between the 

channel input and the side information known at the 

transmitter decreases it. 

 

7-  Appendix 

Lamma 3:  Consider three zero mean random variables 

          with covariance matrix   as:  

   ,*

        

     
     

         
 

+- 

 

 [

  
                   

     
    

   
    

   
     

                       
 

]            (83) 

 

 Suppose         are jointly Gaussian random variables. 

Then, if           form Markov chain        , 

(even if X is not Gaussian) we have:  

               (84) 

 

 or equivalently:  

 

 {  
 } {   }   {   } {    } (85) 

 

 

Proof of Lemma 3:  we can write:   

 

     
 {   }

     

 
 { {      }}

     

                      (86) 

 
 { {    } {     }}

     

                            (87) 

 
     

     

 {   {    }}                      (88) 

 
     

     

 {   }                                (89) 

                                               (90) 

 where (87) follows from the Markov chain         

and (88) follows from Gaussianness of         and the 

fact that  {     }  
        

   

   and (89) follows from the 

general rule that for random variables   and   we have 

 {          }   {      {       }} [27, p.234].  

Q.E.D 
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