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Abstract  
An efficient method for simultaneous human body part segmentation and pose estimation is introduced. A conditional 

random field with a fully-connected graphical model is used. Possible node (image pixel) labels comprise of the human 

body parts and the background. In the human body skeleton model, the spatial dependencies among body parts are encoded 

in the definition of pairwise energy functions according to the conditional random fields. Proper pairwise edge potentials 

between image pixels are defined according to the presence or absence of human body parts that are near to each other. 

Various Gaussian kernels in position, color, and histogram of oriented gradients spaces are used for defining the pairwise 

energy terms. Shifted Gaussian kernels are defined between each two body parts that are connected to each other according 

to the human body skeleton model. As shifted Gaussian kernels impose a high computational cost to the inference, an 

efficient inference process is proposed by a mean field approximation method that uses high dimensional shifted Gaussian 

filtering. The experimental results evaluated on the challenging KTH Football, Leeds Sports Pose, HumanEva, and Penn-

Fudan datasets show that the proposed method increases the per-pixel accuracy measure for human body part segmentation 

and also improves the probability of correct parts metric of human body joint locations. 

 

Keywords: Human body parts; skeleton model; mean field approximation; pose estimation; segmentation; shifted 

Gaussian kernel.  
 

1- Introduction 

Human body part segmentation is the problem of 

segmenting a given image to human body (HB) parts and 

the background. The main difference between this process 

and the general object segmentation is that the HB has an 

articulated structure. Human pose estimation is defined as 

the problem of localization of human body joints in the 2D 

image or 3D space. Human body part segmentation and 

pose estimation are challenging tasks in computer vision. 

Their wide applications include surveillance, motion 

analysis, human-computer interaction, image 

understanding, augmented reality, and action recognition. 

As HB has an articulated structure, pose estimation 

methods aim to find that configuration in a given image. 

The articulation in HB is often realized by a skeleton 

model with 14 body joints as well as the corresponding 

connections among them [1], [2], [3], [4], [5]. The main 

challenges involved in HB part segmentation and pose 

estimation are the occluded body parts, the foreshortening 

effect on the length of some body parts (caused by 

projection from the 3D space to the 2D image plane), and 

the ambiguity in defective body parts (due to motion blur 

or self-occlusion). 

In this paper, a new and efficient method for simultaneous 

HB part segmentation and pose estimation is introduced. 

The block diagram of the proposed method is shown in 

Figure 1. The method is based on a conditional random 

field (CRF) graphical model.  
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The graphical model is a fully connected graph (shown in 

Figure 2). The graphical model for human skeleton in the 

proposed dual pose and segmentation method is shown in 

Figure 3.  The label of each image pixel (graph node) is a 

random variable of this CRF, taking values from the set 

        , where labels          are body part labels and 

   is the background label (see Figure 4). In this work, HB 

joints are modeled in a graph with 14 nodes and the 

corresponding connections among graph nodes are 

determined according to the HB skeleton, as it is shown in 

Figure 3. In the proposed method, the HB skeleton is not 

restricted to tree; it can also have cycles. Only the unary 

and pairwise relations are considered in defining the 

energy function, and higher order relations (e.g. ternary, 

quadratic, etc.) are neglected. 

The spatial dependency of HB joints in the skeleton 

model, the length of limbs, and the difference between the 

features of two joints are encoded in the pairwise terms of 

the CRF energy function.  The main contributions of this 

paper are summarized as following. 

 The semantic human body part segmentation and pose 

estimation problems are modeled, simultaneously, in a 

single graphical model. Then, an efficient inference 

method is proposed to minimize the energy function 

defined by the model. 

 The body length constraint is modeled in the proposed 

fully connected graphical model by the shifted 

Gaussian kernels considered in the definition of 

pairwise energy terms.  

 It is demonstrated that although the proposed 

graphical model is fully connected and Gaussian 

kernels are shifted, the message passing operation in 

the inner part of the mean field inference can be 

computed using the fast bilateral filtering approach. 

Therefore, the inference algorithm remains tractable. 

 Experimental results on the popular and challenging 

pedestrian parsing benchmark Penn-Fudan dataset [6] 

for semantic human segmentation, and also on the 

HumanEva I [7], Extended Leeds Sports Pose [8], and 

KTH Football I [9] datasets show that the proposed 

method outperforms the method of Xia [10] that is the 

state-of-the-art in HB segmentation in terms of per-

pixel accuracy measure. It also achieves substantial 

improvement in finding the locations of corresponding 

joints according to the probability of correct pose 

(PCP) and probability of correct key points (PCK) 

measures in comparison with Chu et al.[2] that is 

state-of-the-art in 2D pose estimation. 

The rest of this paper is organized as follows. In Section ‎2-

, related literature and previous research is reviewed. In 

Section ‎3-, the method of Kraehenbuehl et al.[11] is 

reviewed that is necessary for explaining the proposed 

method. In Section ‎4-, the proposed method is explained. 

Next, in Section ‎5-, experimental results are given. Finally, 

Section ‎6- concludes the paper. 

2- Related Work  

The problem of HB part segmentation and pose estimation 

can be approached simultaneously. The best graphical 

model for solving this problem would have to take into 

account the relations among all image pixels. However, 

when considering image pixels as the nodes of a fully 

connected graphical model, the computational cost of the 

inference step will be very high. Kraehenbuehl et al. [11] 

showed that the inference in dense CRF can successfully 

be performed by mean field approximation using efficient 

high dimensional Gaussian filtering operations [12]. The 

method is specifically designed for the general 

segmentation problem without any constraint on 

articulation of HB part. 

The kernels are Gaussian functions on the position or color 

space. No other image features, such as histogram of 

oriented gradients (HOG) [13] are used. Other researchers 

tried to use this efficient inference and filtering in pose 

estimation tasks. Vineet et al.[14] used this efficient 

inference in the joint HB pose estimation, segmentation, 

and depth estimation in a method called PoseField.  

 

However, the energy function defined by them is not 

specialized for HB and does not reflect the HB skeleton 

model. Kiefel et al.[15] tried to extend the inference 

method introduced in [11] to pose estimation problem. 

They introduced the field of parts method to detect HB 

joints in 2D images. In their method, the local appearance 

and joint spatial configuration of HB are modeled. 

Recently, models based on deep convolutional neural 

networks (DCNN) have been studied extensively in 2D 

human pose estimation [1], [2], [3], [16]. 

The convolutional pose machines (CPM) architecture 

proposed by Wei et al.[16] is a sequential convolutional 

neural network that enforces intermediate supervision at 

the end of each stage to prevent vanishing gradients. 

DeeperCut [1] is a multi-person pose estimation approach 

that adapts the deep residual network for human body part 

detection and uses integer linear programming to jointly 

detect multiple persons and estimate their body part 

configurations. Chu et al.[2] incorporated the DCNN with 

a multi-context attention mechanism into an end-to-end 

framework for human pose estimation. They adapt stacked 

hourglass networks to generate attention maps from 

features at multiple resolutions with various semantics. 

Bulat et al.[3] designed a DCNN cascaded architecture 

specifically for learning part relationships and spatial 

context. The first part of their cascade outputs part 

detection heat maps and the second part performs 

regression on these heat maps to estimate the 2D body 

pose. Kazemi et al.[9] tried to learn the body shape in a 

discriminative approach using random forest (RF) 

classifier to capture the variations in appearances of HB 

parts in 2D images. Semantic segmentation and human 
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parsing based on shape-based methods has been studied in 

[17]. They generate region proposals, rank them using 

shape and appearance features, and assemble the proposals 

with simple geometric constraints. A Bayesian framework 

for jointly estimating articulated body pose and pixel-level 

segmentation of each body part is proposed in [18]. 

Wang et al.[19] proposed a joint solution that tackles the 

semantic object and part segmentation, simultaneously. In 

that method [19], the higher object-level context is 

provided to guide the part segmentation process. Also, 

more detailed part-level localization is utilized to refine 

the object segmentation process. 

 

 
Figure 1: Schematic view of proposed method.  

Input: Image block. Outputs: Segmented HB Parts and Final Pose.

A deep decompositional network (DDN) for parsing 

pedestrian images into semantic regions is proposed in 

[20]. This method tries to directly map low-level visual 

features to the label maps of body parts. Top-down pose 

cues as well as deep-learned features are used in an and-or 

graph (AOG) for semantic part assembling [10]. This 

method tries to refine the semantic parts of objects by 

using the pose cues. DeepLab framework [21] augments 

fully convolutional network with dilated convolutions, 

atrous spatial pyramid pooling, and CRF. DeepLab obtains 

state-of-the-art performance in general problem of 

semantic segmentation. Guler et al. [22] proposed a 

surfaced based framework for dense human pose 

estimation and body part segmentation. It is based on 

finding dense correspondence between image and a 

surface of human body. Since there is not a large-scale 

dataset containing correspondence between image and 

human body surface, this method has some challenges 

with general and natural images. An occlusion aware 

framework for human pose estimation is proposed in [23]. 

It is based on adversarial training of a Convolutional 

Neural Network (CNN). They designed discriminators to 

distinguish the real poses from the fake ones (such as 

biologically implausible ones) to avoid fake estimated 

poses. Peng et al. [24] used data augmentation method in 

training phase of an adversarial learning framework. They 

proposed to optimize data augmentation and network 

training jointly to avoid overfitting for the task of human 

pose estimation. Yang et al. [25] tried to learn 3D human 

pose structure from a dataset with only 2D pose annotation 

as the ground-truth. Their method is based on an 

adversarial learning framework using multi-source 

discriminators to distinguish the predicted 3D poses from 

the ground-truth one. In fact, they tried to enforce the pose 

estimator to generate anthropometrically valid poses even 

with images from natural scenes. Chen et al. [26] proposed 

a method for multi-person pose estimation in challenging 

scenes that contain occluded or invisible keypoints and 

complex backgrounds.  They used cascaded networks of 

GlobalNet and RefineNet. Simple key points like eyes and 

hands are localized with the GlobalNet. Hard keypoints 

such as occluded or invisible key points are addressed with 

the RefineNet network. Also, this method handles only the 

pose estimation problem and does not handle the body part 

segmentation problem.  PoseTrack is a large-scale 

benchmark for video-based human pose estimation and 

articulated tracking [27]. It is a more suitable dataset for 

multiple human tracking task in video sequences rather 

than body part segmentation since it does not have any 

ground-truth information for human body segmented 

regions. It is worth mentioning that the proposed method is 

different from the Kraehenbuehl et al.'s work[11], in that 

in the proposed method, the CRF formulation is 

specifically defined according to the HB configuration 

such that HB segments are naturally considered to appear 

in a set of constrained positions relative to each other. 

Also, the definitions of pairwise energy terms are different 

from that work. Since the graphical model used in the 

proposed method is a fully-connected graph constrained to 

image pixels, it is similar to the work of Kiefel et al. [15], 

albeit that method does not produce the HB part 

segmentation and they only report the PCP values on the 

Leeds Sports Pose [8] dataset.  

3- Efficient Mean Field in Object Segmentation 

Kraehenbuehl et al. [11] proposed an efficient inference in 

mean field approximation for general segmentation 

problem. Their method is not designed for articulated 

objects such as human body and is only evaluated in 

PASCAL dataset for general object segmentation problem. 

In this Section a brief description of Kraehenbuehl et al.'s 

[11] method is reviewed that is needed for introducing the 

proposed method in the next Section. They defined a 

conditional random field over a set of random variables 

  *       +, where   is the total number of pixels in 

image  . Each variable has a set of possible labels   
*       +, where    corresponds to the background and 

        are possible pixel labeling.  

The conditional random field is characterized by the Gibbs 

energy function defined on this graph by 
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where     range from   to  . 

The Gibbs energy function is a summation of pairwise and 

unary terms. The       (    ) is the cost of assigning 

label   to random variable   . The second term, 

         
( )

(          ), measures the cost of assigning 

label   and    to two neighboring pixels   and  , 

respectively. The pairwise term is the cost of assigning 

two different labels to two arbitrary pixels, given by 
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       ( )(     ) is a Gaussian kernel and is defined as 
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in which vectors    and    are feature vectors of pixels   

and   in an arbitrary feature space, respectively,   
( )

 is 

the weight of the kernel,   is the index of the kernel, and 

  is the number of kernels.  ( ) is matrix of variances 

between     and    of   th Gaussian kernel. The energy 

function defined in the CRF formulation is minimized 

during the inference phase. The mean field approximation 

is an iterative process that instead of computing the exact 

distribution  , computes the approximated  ( ) such that 

minimizes the   -divergence  (    ) among all 

distributions, where   can be expressed as the product of 

independent marginal  ( )    ∏   (  ) ) According to 

the energy function defined in Equation( ), the closed-

form solution of the mean field approximation can be 

written as 

 

 (    )   
 

  

   {       (    )   ̂ (    )} 

 

 

(4) 

       (    ) is the belief of pixel   about having the 

label   and is updated in iterative steps.    is defined as 

   ∑  (    ) 
    and is the normalization term. Also, 

      (    ) is the initial belief about pixel   having the 

label  . The belief of all other pixels about pixel   having 

the part label   is defined as 

 

 ̂ (    )   

∑   (    ) ∑   
( )

 ̃ 
( )

(     )

 

       

 

(5) 

 

in which,   (    )  is the label compatibility function 

between two possible labels   and    for each pixel. 

A simple label compatibility function is the Potts model, in 

which 

  (   
 )   (    ) (6) 

where  (    ) denotes the indicator function. 

  
( )

 is the weight of   th Gaussian kernel,   is the 

total number of kernels, and 

 ̃ 
( )(     )  ∑ ( )(     ) (     )

   

 
(7) 

in which  ( )(     ) is a Gaussian kernel as is defined in 

Equation (3). It is worth mentioning that Equation (7) is 

performed once for all pixels by using the Permutohedral 

lattice filtering. Every channel    of matrix   is blurred by 

Gaussian kernel of  ( )(     ) as in Equation (7) that are 

applied on all image pixels. By substituting Equations (5), 

(6), and (7) in Equation (4) the message passing is 

performed as 

 (    )  
 

  

      *       (    )   

∑  (    ) ∑   
( )

∑ ( )(     ) (     )

   

 

       

+  

 

 

 

(8) 

 

Since the graphical model is a fully-connected graph, the 

message passing step is the bottleneck of the mean field 

approximation. Its run-time is quadratic in the number of 

pixels  . 

4- Proposed Method 

The block diagram of the proposed method is illustrated in 

Figure 1. The Image block is input to the method, the 

FRCF block is a pre-processing step that computes the 

initial pose that is needed in the next block. The details of 

this pre-processing step are explained in Subsection ‎4-1-. 

The BodyField Graphical model is the proposed method 

that is explained in detail in Subsection ‎4-2-. The 

Segmented HB parts are the output of the method. The 

Mean-Shift block is a post-processing step that is applied 

to the distribution of the segmented body parts for 

computing the final estimated pose. The Final Pose block 

is the final estimated pose and output of the method. 

4-1- Pre-processing: Computing the Initial Pose 

by a Fully Connected Pairwise CRF 

A fully connected pairwise CRF is proposed for 

computing the initial pose that is needed in the proposed 

dual pose and segmentation method. The graphical model 

of human body according to this CRF is shown in Figure 
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2. The nodes of this graph are human body joints that all of 

them are connected to each other. 

 
Figure 2. Proposed fully connected model of human body. This 

model is used in pre-processing step to find the initialy estimated 

pose. 

Images are initially processed with the DeeperCut 2D part 

detector [1] and the score map of body joints in the images 

are obtained. The score map,  , is an array of size    
        where   and   are the width and height of the 

image, respectively, and    is the number of body joints 

(14) plus a special class for the background. The unary 

term of the energy function is computed by the first output 

of body part detector,  , as  

 

      ( (   )   )   ( (   )  (   )  )  (9) 

Another output of 2D part detector is  , that is an array of 

size              , where        indicates the 

number of permutations of length two of 14 distinct 

variables, and 2 is for two dimensions   and  . 

According to the output   of the part  detector [1] 

 

(  (   )   (   ))   ( (   )  (   )  (    )) (10) 

which implies that if a pixel in location (   ) has the joint 

label  , it is expected that the joint    will occur with an 

offset (  (   )   (   ))  from it. Also,  (    ) is an index 

between 1 and     which indicates one of the possible 

permutations       belonging to joints   and   , 

according to [1]. Therefore, if joint   is in location 

( (   )  (   )) , then the model expects that joint   to be in 

location 

( ̃(   )  ̃(   ))  ( (   )    (   )  (   )    (   ))  (11) 

In the same way, if a pixel in location (     ) has the joint 

label    , acording to the output of the part detector[1], it 

expects that the joint   be in the offset  

 

(  (     )   (     ))   ( (     )  (     )  (    ))  (12) 

from it. Therefore the expected location of joint   from the 

point of view of pixel (     ) that has joint label    is  

( ̃(     )  ̃(     ))   

( (     )    (     )  (     )    (     ))  

 

(13) 

The difference vector between the expected location of 

joint    from the point of view of pixel (   ) that has joint 

label   and pixel (     ) that has joint label    is  

 ( )  ( ̃(     )  ̃(     ))  ( (     )  (     ))  . (14) 

Also, the difference vector between the expected location 

of joint   from the point of view of pixel (     ) that has 

joint label    and pixel (   ) that has joint label   is  

 ( )  ( ̃(   )  ̃(   ))  ( (   )  (   ))  . 

 

 

(15) 

The pairwise term as the cost of assigning label   to pixel 

(   ) and label    to pixel (     ) is defined as 

 

         ( (   )      (     )    )   

   { 
 

 
  ( )   ( )   

 }  

(16) 

The inference in the proposed fully connected CRF is 

computed by the loopy belief propagation method [28]. 

Using this pre-processing step improves the estimated pose 

of the DeeperCut method. The comparison between the 

estimated pose in this pre-processing step, (FCRF), and 

DeeperCut method is provided in experimental results 

Section ‎5-. The initial pose obtained by the pre-processing, 

(FCRF), is used in computation of the amount of needed 

shift values in the proposed method in the next Section. 

 
Figure 3. Proposed graph for human skeleton model in proposed 

dual pose and segmentation method. 

4-2-  BodyField Graphical Model Definition 

According to Figure 3, human skeleton model is 

considered to contain 14 joints and their connections are 

set according to the HB configuration. Furthermore, as the 

graph is not restricted to be a tree, the model can easily be 

extended to arbitrary number of HB parts and there is no 

hard constraint on the number of joints in the model. 

Figure 4 illustrates the proposed fully-connected graphical 

model. The nodes in the proposed graphical model are 

image pixels, and pairwise terms are weights of any 

connection between two arbitrary pixels. A pixel   is 
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shown to be connected to all other pixels with labels in 

        . It is also true for all other pixels (due to 

visualization restrictions, other connections are not 

shown). Also, it is important to note that there are no 

connections, and thus pairwise terms, between a pixel and 

itself. Since the pairwise terms between two pixels are 

constrained to the label compatibility, for visualization 

purposes, image labels are separated to        channels. 

These 15 channels should be added to create a fully 

connected graphical model. Therefore, there are      

nodes in the graph, in which   and   are the width and 

height of the image, respectively. Also,  (   ) is the 

probability of assigning label   to a set of image pixels  .  

Energy function should be defined such that a true 

configuration of HB corresponds to the minimum value of 

the energy function, otherwise, finding the minimum value 

of the energy function will not lead to a good 

configuration. Note that the sum of probability values of 

parts for each pixel is one. The label assigned to each pixel 

is the HB part with the highest probability value among all 

HB parts and the background. The pairwise energy terms 

are defined such that the pairwise terms have lower values 

when the two paired pixels have corrected HB part labels. 

In the general segmentation problem, it is assumed that 

pixels that are close to each other (in the feature space) lie 

in the same segment. It can be met in general segmentation 

problems, but it does not always hold in HB part 

segmentation. 

 

 
Figure 4. Fully connected graph for human skeleton model. 

Some body parts should occur in pre-defined distances to 

each other in accordance to the existence of a connection 

among related joints in the HB skeleton model. The 

inference process tries to find the minimum of the energy 

function; in the final solution, all nearby (generally, in the 

feature space) pixels will have similar labels. But, in pose 

estimation problems, this is not always true. The reason is 

simply that there might be nearby and similar pixels in the 

image of HB that do not belong to the same part. In images 

of HB, there are three common categories of relationships 

among pixels.  

 Pixels that are close in the feature space and 

belong to the same HB part. 

 Pixels that are close in the feature space but do 

not belong to the same HB part, however their 

corresponding parts are connected in the HB 

skeleton model. 

 Pixels that may or may not be close in the feature 

space and do not belong to the same HB part, but 

their corresponding parts are not connected in the 

HB skeleton model. 

Pixels belonging to the third type can move and eventually 

appear close to each other; e.g. the wrist can appear near 

the other parts of HB. When defining the energy function 

and pairwise terms, all of these situations should be 

considered and the suitable kernel and compatibility 

functions should be assigned to any two labels. For any 

two arbitrary pixels, according to their labels, two different 

pairwise terms are defined. One for resolving the first and 

the third type and the other for resolving the second type. 

In the proposed method the energy function is defined as 
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∑       (        )
 

  

∑         
( ) (           |   )

   

  

∑         
( ) (           |   )

   

 

 

 

 

 

 

 

(17) 

 

where     range from   to  . Variable   denotes the set of 

parameters of HB. It is computed by the initial pose that is 

estimated in the Subsection ‎4-1-. 

For the sake of conciseness, in the remainder of the paper, 

  and   are omitted in equations. If these two pixels are 

close to each other in the feature space, the energy cost for 

assigning different labels to these two pixels is high. When 

minimizing the energy function during the inference 

process, this configuration of labeling (two nearby pixels 

with two different labels) will be avoided. Therefore, in 

the best configuration, neighboring pixels approach 

towards getting identical labels. This is generally true in 

articulated HB shapes and therefore these pairwise terms 

are defined between any two arbitrary pixels by using a 

simple Potts model. The second type of pairwise energy 

terms is specifically defined to encode HB joints' 

constraints in the proposed CRF formulation, given by  

         
( ) (          )   

  (   
 ) ∑   

( )
 
    
( )

 

   

(     ) 

(18) 

 

where   
( )

 is the weight of the shifted kernel function. 

The label compatibility function   (   
 ) is defined as  



 

Journal of Information Systems and Telecommunication, Vol. 8, No. 2, April-June 2020 
 

77 

  (   
 )    (                    ) (19) 

according to the existence of a connection between body 

part   and body part    in the HB skeleton model as it is 

shown in Figure 3. The value of  
    
( )

(     ) is defined as  

 

 
    
( )

(     )  exp 

{ 
 

 
((           

 ) (     
( )

)  (           
 ))} 

 

 

 

 

(20) 

         (     
( )

)   is the variance matrix between feature 

vector of joint   and    of   th shifted Gaussian kernel. 

     
  is the mean expected difference vector between the 

features    and   . When the features are simply the 

positions of points, the value of      
  is a difference vector 

that is computed from the initial pose that is estimated by 

the preprocessing step of Subsection ‎4-1-. 

Let us consider two arbitrary pixels which have two 

different labels and are connected according to their labels 

in the HB skeleton model. The pairwise term that is 

defined for these two pixels, takes the minimum value 

when these pixels are placed at a predefined distance from 

each other. By this definition, the Gaussian term is shifted 

by      
 , such that the mean of Gaussian lies on pixels for 

which the difference between their features and the feature 

of pixel   is      
 . The pairwise energy is the weight of 

edges in the fully connected model between pixels and it is 

constrained on labels of pixels. There will be        

pairwise energy terms between any two pixels. There are 

some constraints on HB skeleton model according to the 

skeleton graph. The goal of the proposed method is 

enforcing all constraints presented in the HB skeleton 

model in the mean field approximation process. Note that, 

up to here, body part lengths and nearby joints that are 

connected in the skeleton graph are successfully encoded 

in the energy function definition of the fully connected 

conditional random field model that is defined on image 

pixels. In defining the pairwise energy terms between two 

arbitrary pixels,          kernel is used that is a 36-D 

vector    (                 
( )   

( )
     

(  )
) where    

and    are coordinates of pixel  ,         , the RGB values 

of the pixel, and   
( )

 is the     element of HOG feature 

vector of the cell containing that pixel.     and    in 

Equation (20) are defined as above. 

4-3- Efficient Inference Via High Dimensional 

Gaussian Filtering 

According to the energy function defined in Equation (17), 

the closed-form solution of the mean field approximation 

can be written as 

 

 (    )  
 

  
 exp{  

       (    )   ̂ (    )   ̂ (    )+  

(21) 

 

       (    ) is the belief of pixel   about having the 

label   and is updated in iterative steps.    is defined as 

   ∑  (    ) 
    and is the normalization term. 

           (    )  is the initial belief about pixel   

having the label  .  ̂ (    )  and  ̂ (    )  are the 

belief of all other pixels about pixel   having the part label 

   
The value of  ̂ (    ) in Equation (21) is defined as  
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∑   (   
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( )
 ̃ 
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(22) 

 

in which   (   
 ) is the label compatibility function and 

is defined in Equation (19),   
( )

 is the weight of shifted 

Gaussian kernel, and  

 

 ̃ 
( )(     )  ∑ 

    
( )

(     ) (     )

   

 
(23) 

in which  
    
( )

(     ) is a shifted Gaussian kernel, is 

defined in Equation (20). 

It is worth mentioning that Equations (7) and (23) are 

performed once for all pixels by using the Permutohedral 

lattice filtering. 

Every channel    of matrix   is blurred by Gaussian kernel 

of  ( )(     ) as in Equation (7) and by shifted Gaussian 

kernel of  
    
( )

(     ) as in Equation (23) that are applied 

on all image pixels. By substituting Equations (5), (7), 

(22), and (23) in Equation (21) the message passing is 

performed as 

 (    )  
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(24) 

Since the graphical model is a fully-connected graph, the 

message passing step is the bottleneck of the mean field 

approximation. Its run-time is quadratic in the number of 

pixels  . As another contribution of the proposed method, 

shifted Gaussian kernels are used in the pairwise terms in 

addition to the non-shifted Gaussian kernels, while 

keeping the inference step computationally tractable. 
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4-4- Implementation Details of Shifted Gaussian 

Kernels 

Permutohedral lattice high dimensional Gaussian filtering, 

performs the filtering task in three steps [12]: 

 Splatting the points to the lattice space. 

 Performing the blurring process in lattice space. 

 Slicing the lattice to find the final values of 

blurred points. 

Splatting is the initial phase of lattice construction in high 

dimensional space according to the definition in [12]. 

Since we want to blur the value of   (      )  with 

position vectors that are shifted by      
( )

, it implies that at 

first the position vector shifts by      
( )

 before performing 

the blurring task. But, in lattice space the operation of 

shifting and then blurring is equivalent to blurring and then 

slicing at the shifted positions. Substituting Equation (20) 

in Equation (23) will result in  

 ̃ 
( )(     )   

∑   { 
 

 
(       

    
( )

)
 

( 
    
( )

)
  

(     
   

  
    
( )

)}   (     )  

 

 

 

 

 

(25) 

 

The permutohedral lattice filter [12] is implemented in the 

ImageStack library [29], which is a toolbox for high 

dimensional Gaussian filtering. It is used for performing 

the high dimensional blurring in the inference step of the 

proposed method. In implementation process, according to 

Equation (25),   is a matrix of size (        ), given 

that the input image is of size (   ), where   is the 

total number of body parts and background labels (  
  )    (    )  is the probability of part p for each 

arbitrary    pixel of the image. It is necessary that 

∑  (    )      , in which     and   is the set of 

all image pixels. Taking Equations (7) and (23) into 

account, it is apparent that both equations are similar, 

except that in the former, Gaussian weights are shifted. 

Baek et al.[30] proved that to use shifted Gaussian kernels, 

it is sufficient to slice the lattice at shifted positions. Using 

the ImageStack library, the lattice points are ordinary 

position vectors without shifting and the values of 

 (     )  are blurred in the lattice space by using 

position vectors in Gaussian weights. Afterwards, the 

lattice should be sliced to find the final values of  (   

  ) in the initial space. In Equation (7), for all channels of 

matrix  , these operations are performed once using only 

a single lattice. Permutohedral lattice filter reduces the 

time complexity of Gaussian operation to  (   ), where 

  is the number of points to be blurred and   is the 

dimension of the position space (despite the fact that its 

three required steps of splatting, blurring, and slicing are 

time consuming; specifically in high dimensional spaces 

like HOG feature space). In the proposed method, the 

shifted Gaussian filtering is performed for several times, 

which is time consuming. It is worth mentioning that to 

further speed-up the process, one can force all      
( )

 to be 

the same for all   and   , and therefore some steps need 

only be performed once for updating the belief about each 

label, as done in Equation (24). Note that for all shifted 

Gaussian kernels that use the same feature space and 

covariance matrix, constructing and blurring the lattice in 

the feature space is only performed once. On the contrary, 

due to different values of      
( )

, the lattice is sliced in 

different shifted positions. 

5- Experimental Results 

The proposed method is evaluated on (i) KTH Football I 

dataset with 3900 training images and 2007 test images, 

(ii) Extended Leeds Sports Pose dataset with 11000 

training and 1000 test images, and (iii) Sequences 1 and 2 

of the HumanEva I dataset for jogging, walking, and 

balance actions. Since the proposed method has the 2D 

pose output in addition to the body part segmentation 

output, it is also evaluated on those datasets that have 2D 

pose annotations. The obtained results are then compared 

with that of the 2D pose estimation methods. It should be 

noted that as the KTH Football I, Extended Leeds Sports 

Pose, and HumanEva I datasets do not have any ground-

truth data annotations for HB part segmentation, the results 

can only be evaluated qualitatively. For evaluating the 

proposed method in human body segmentation, the Penn-

Fudan dataset is used. It contains 170 test images and the 

ground-truth of the body part segmentation. Some typical 

results of the proposed HB part segmentation are shown in 

Figure 5, Figure 6, Figure 7 and Figure 8 in which the first 

column (a) shows the original images. BodyField 

segmentation result and estimated pose are shown in 

column (b) of these Figures. In column (c), the HB part 

segments of the BodyField method is visualized by similar 

colors as in the ground-truth of Penn-Fudan dataset using 

the estimated pose of the BodyField method. As it can be 

seen from Figure 5, Figure 6, Figure 7, and Figure 8, the 

locations of joints have been estimated accurately, due to 

the refined HB part segmentation obtained by the proposed 

method. In KTH Football the PCP metric is used to 

evaluate the accuracy of pose estimation methods. 

According to the definition in [31], a part is considered 

correctly localized if the average distance between its 

endpoints (joints) and the ground-truth data is less than   

times of the length of annotated endpoints in the ground-

truth data. 
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Figure 5. (a) Original image from KTH Football I dataset. (b) 

Pose and segmentation result of proposed method. (c) Different 

visualization of proposed method. 

 

 

Figure 6. (a) Original image from Leeds Sports Pose dataset. (b) 

Pose and segmentation result of proposed method. (c) Different 

visualization of proposed method. 

 

Figure 7. (a) Original image from HumanEva I dataset. (b) Pose 

and segmentation result of proposed method. (c) Different 

visualization of proposed method. 

 

Figure 8. (a) Original image from Penn-Fudan dataset. (b) Pose 

and segmentation result of proposed method. (c) Different 

visualization of the proposed method. (d) Ground-truth. 

 

 

Figure 9. (a) Original image from Penn-Fudan dataset. (b) 

Output of Bo et al. [17] method. (c) Output of Xia [10] method. 

(d) Segmentation result of proposed method. (e) Ground-truth. 

 

 
Figure 10. a) Original image from Penn-Fudan dataset. (b) 

Output of Bo [17] et al. method. (c) Output of Xia et al. [10] 

method. (d) Segmentation result of proposed method. (e) 

Ground-truth. 

For the Penn-Fudan dataset there is a ground-truth 

segmentation for body part segmentation. Since the face 

and hair are segmented in two different classes in this 

dataset we used these data in training phase of the Body 

Field method. In fact the training phase is performed with 

one more extra class for this dataset. It shows the 

generalizability of the proposed method to the datasets that 

have more fine body parts segmented regions. We could 

define extra classes for each of the fine segmented regions 

and compute the mean expected difference vector between 

fine regions and other classes to use in training phase of 

the BodyField method. Quantitative results of the 

proposed method on the challenging KTH Football I 

datasets are summarized in Table 1. The pre-processing 

step, (FCRF), improves the results obtained by the 

DeeperCut method by up to   . Also DeeperCut [1] 

method is evaluated on this dataset and it has     total 

PCP. DeeperCut is a powerful body part detector. It uses 

integer linear programming for estimating the pose from 

the probability map. However, it sometimes fails to 

estimate the correct pose of player because of high degree 

of motion blur in images of KTH Football I dataset. The 

proposed BodyField method has     PCP and improves 

the results of the original DeeperCut method by      Also 

the proposed BodyField method improves the results 

obtained by Kazemi et al.[9] in terms of PCP measure by 

up to     due to its better and refined HB part segments. 

In the Extended Leeds Sports Pose dataset, the standard 

probability of correct key points (PCK) evaluation metric 
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is used [1], [2]. According to the definition in [31], a 

candidate key point is considered to be correct if it falls 

within       (   )  pixels of the ground-truth key 

point, where   and   are the height and width of the 

bounding box of human respectively, and   controls the 

relative threshold for considering correctness. Results in 

Table 2 is based on Person-Centric ground-truth with 

     . In Table 2, comparison results of the proposed 

method with the method of Chu et al.[2], Bulat et al.[3], 

Wei et al.[16], and Insafutdinov et al.[1] are presented. As 

it can be seen from Table 2, the original method of 

Insafutdinov et al.[1] has       PCK. The pre-processing 

step, FCRF, improves the PCK to      . The proposed 

BodyField method has       efficiency in terms of PCK 

measure. It outperforms the original method of 

Insafutdinov et al.[1] by     , and also the method of 

Chu et al.[2] by      in terms of PCK measure. For the 

HumanEva dataset, the standard method for computing the 

accuracy of pose estimation methods is the average 2D 

error [7]. The proposed method is evaluated on sequences 

1 and 2 in walking, jogging and balance actions. As it can 

be seen in Table 3, the 2D error between the estimated 

pose and ground-truth location of joints is decreased by 

using the proposed BodyField method. 

The overall average 2D error of Sigal et al.[7] is      
     , while it decreases to             in pre-

processing step, FCRF, and to           in the proposed 

BodyField methods. Since the official evaluation server of 

the HumanEva dataset, http://humaneva.is.tue.mpg.de/, is 

currently out of service, we used the validation set for 

reporting the average values of 2D error.

 
Table 1. PCP values for KTH Football dataset (Observer-Centric,     ) 

Method Torso Upper Leg  Lowe Leg  Upper Arm  ForeArm  Head Total 

BodyField 100 98.6 98.7 98.9 98.8 100 99 

FCRF(Pre-processing) 95 98 90 92 82 91 91 

Kazemi et al. (RF) [9] 96 94 84 90 69 94 87 

Kazemi et al.(RF+PosePrior) [9] 98 97 88 93 71 96 89 

DeeperCut [1] 91 91 87 89 72 82 85 

Belagiannis et al. [32] 98 92 80 88 57 86 84 

Yang & Ramanan [31] 98 89 73 86 55 84 80 

 
Table 2. PCK values for Extended Leeds Sports Pose dataset (Person-Centric,     ) 

Method Head Shoulder  Elbow Wrist Hip Knee Ankle  Total  

BodyField  98.2 96.8 97.5 93.7 85.9 96.3 95.6 96.2 

Chu et al. [2] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6 

FCRF (Pre-processing) 90.9 90.8 92.2 92.9 90.7 91.9 90.8 91.8 

Bulat et al. [3] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7 

Wei et al. [16] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 

DeeperCut [1] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1 

 
Table 3.Average 2D error for HumanEva I dataset 

 
Method 

Sequence 1 Sequence 2 Overall  

Walk Jog Balance Walk Jog Balance  

BodyField 3.9  0.3 pix 
 

2.9 0.6  2.2 1.4  2.8 1 pix 2.4 1.7pix 3.2 0.9pix 2.9 1pix 

FCRF(Pre-processing) 

 
4.1 0.4pix 5.6 0.8pix 5.4 1.6pix 3.9 1.2pix 7.2 2.1pix 5.9 1.2pix 5.4 1.2pix 

Sigal[7] 10.1 0.9pix  11.3 0.7pix 11.3 2.3pix 7.9 0.6pix 12.4 2.3pix 10.9 2.8pix 10.7 1pix 

 
Table 4. Comparison of our approach with other state-of-the-art methods on the Penn-Fudan benchmark dataset 

in terms of per-pixel accuracy (%). The Avg∗ means the average without shoes class since it was not reported in other 

methods. 

Method hair face u-cloth arms l-cloth legs shoes Avg* 

BodyField 63.4 61.7 79.8 58.4 82.3 65.0 47.2 65.4 

AOG [10] 63.2 56.2 78.1 40.1 80.0 45.5 35.0 60.5 

DDN [20] 43.2 57.1 77.5 27.4 75.3 52.3 ------ 56.2 

SBP [17] 44.9 60.8 74.8 26.2 71.2 42.0 ------ 53.3 

P&S [18] 40.0 42.8 75.2 24.7 73.0 46.6 ------ 50.4 

Wang et al.[19] 48.7 49.1 70.2 33.9 69.6 29.9 36.1 50.2 

http://humaneva.is.tue.mpg.de/
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The proposed method is evaluated on the popular Penn-

Fudan benchmark [6], which consists of pedestrians in 

outdoor scenes with much pose variations. Labels of the 

dataset include 7 body parts namely hair, face, upper-

clothes, lower-clothes, arms (arm skin), legs (leg skin), 

and shoes. 

Also, since the proposed method segments the human 

body parts into 14 classes, we used the mapping process to 

convert the corresponding classes to those used in the 

Penn-Fudan dataset. For this conversion, the estimated 

pose is used as auxiliary information. The typical part 

segmentation results in these datasets are illustrated in 

Figure 8, Figure 9 and Figure 10. This dataset does not 

have the ground-truth of joints and therefore the results in 

pose estimation cannot be compared in this dataset in 

terms of PCP or PCK measures. But since for this dataset 

the ground truth for segmentation is available in pixel by 

pixel, the standard evaluation metric is used as per-pixel 

accuracy [10]. In Figure 9 and Figure 10 the comparison 

between the proposed method and the method of Xia et al. 

[10] and Bo et al. [17] are provided. For the method of Xia 

et al. [10] and Bo et al. [17] we used the source image 

provided by the authors. As shown in Table 4, the 

proposed method is compared with state-of-the-art 

methods, namely, AOG [10], DDN[20], P&S[18], SBP 

[17], and Wang et al. [19] on the Penn-Fudan dataset. The 

proposed BodyField method outperforms the DDN [20] 

method by over    and it has      improvement in 

comparison with the state-of-the-art method of Xia et 

al.[10] (AOG method). The improvement in the proposed 

method is due to the fact that estimated pose and 

corresponding body part segments are refined 

simultaneously. In other words, use of pose information in 

semantic human body part segmentation has increased the 

per-pixel accuracy. More visual output results of the inner 

steps of the BodyField method are available in 

http://ipl.ce.sharif.edu/bodyfield.html. 

6- Conclusion 

A new and efficient method for simultaneous single-view 

human body part segmentation and pose estimation is 

introduced that opens a new approach to the problem of 

structured semantic segmentation. A new energy function 

is introduced that encodes the spatial dependency between 

human body parts, in addition to the available 

segmentation constraints. In the proposed method, despite 

the fact that shifted Gaussian kernels are used, it is shown 

that finding the minimum of the proposed energy function 

is possible by applying an efficient mean field 

approximation process. Due to challenges such as 

occlusion and self-occlusion effects that occur frequently 

in human body pose data, the previous learning methods 

that only use the appearance model cannot converge to a 

proper pose estimation. That is because there are not 

enough evidences about the occluded and self-occluded 

parts available. The proposed BodyField method uses the 

probability map of the DeeperCut method to define a 

proper energy function with shifted Gaussian kernels 

between connected body parts. During the inference step, 

the evidence for occluded parts is refined by using the 

information of other parts that are connected in the human 

body skeleton model. Although shifted Gaussian kernels 

(in pairwise terms of the proposed energy function) add 

huge computational cost to the inference process, the 

problem is solved by proposing an efficient mean field 

approximation algorithm that speeds up message-passing 

steps, despite the fact that kernels are shifted. 

For demonstrating the effectiveness of the proposed fully 

connected model in comparison with the state-of-the-art 

pose estimation methods, the probability maps of the 

DeeperCut method are used in the training phase and it is 

shown that results improve significantly in KTH Football 

I, LSP, HumanEva I in comparison with the original 

DeeperCut method. Also it is shown that the BodyField 

method has substantial improvement in HB segmentation 

in Penn-Fudan dataset in per pixel segmentation measure. 

The experimental results on the challenging KTH Football 

I, Extended Leeds Sports Pose, HumanEva I, and Penn-

Fudan datasets show the superiority of the proposed 

method over other existing methods in terms of PCP, PCK 

and per pixel segmentation accuracy. 
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