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Abstract  
The emerging field of compressive sensing enables the reconstruction of the signal from a small set of linear projections. 

Traditional compressive sensing approaches deal with a single signal; while one can jointly reconstruct multiple signals via 

distributed compressive sensing algorithm, which exploits both the inter- and intra-signal correlations via joint sparsity 

models. Since the wavelet coefficients of many signals is sparse, in this paper, the wavelet transform is used as sparsifying 

transform, and a new wavelet-based Bayesian distributed compressive sensing algorithm is proposed, which takes into 

account the inter-scale dependencies among the wavelet coefficients via hidden Markov tree model, as well as the inter-

signal correlations. This paper uses Bayesian procedure to statistically model this correlation via the prior distributions. 

Also, in this work, a type-1 joint sparsity model is used for jointly sparse signals, in which every sparse coefficient vector is 

considered as the sum of a common component and an innovation component. In order to jointly reconstruct multiple 

sparse signals, the centralized approach is used in distributed compressive sensing, in which all the data is processed in the 

fusion center. Also, variational Bayes procedure is used to infer the posterior distributions of unknown variables. 

Simulation results demonstrate that the structure exploited within the wavelet coefficients provides superior performance in 

terms of average reconstruction error and structural similarity index. 

 

Keywords: Distributed Compressive Sensing; Joint Saprsity; Signal Reconstruction; Wavelet Transform; Hidden Markov 

Tree Model; Variational Bayes. 
 

1- Introduction 

Compressive sensing (CS) constitutes a framework for 

sampling of the signals at a rate lower than the Shannon-

Nyquist sampling rate [1, 2, 3]. According to the CS 

theory, when the signal has a sparse representation in a 

particular basis, one can reconstruct the original signal 

from a reduced number of linear projections. In order to 

recover the original signal from compressed measurements, 

CS exploits the sparsity, i.e. the intra-signal correlation of 

the signal. But in some applications, the signals may 

possess many dependencies, which is referred to as inter-

signal correlation. Distributed CS (DCS), as a 

generalization of CS, is proposed in [4- 6], and aims to 

exploit the intra- and inter-signal correlations 

simultaneously, and jointly reconstruct a set of signals. 

According to the DCS algorithm, in addition to each signal 

being individually sparse, some of their nonzero 

components are common. Since the signals share a 

common support in DCS, they can be jointly reconstructed 

from dramatically fewer measurements in comparison with 

their independent reconstruction. 

1-1- Related work 

Distributed algorithms for solving multiple sparse signal 

reconstruction problem generally divided into two 

categories: centralized and decentralized [7- 11]. In a 

centralized approach, each node runs the CS 

undersampling procedure independently. Then, all of the 

local measurements obtained from each node are collected 

in a fusion center (FC) which estimates the joint-sparse 

signals and transmits the reconstructed sparse signals back 

to the respective nodes. [4, 5, 6]. In contrast, in 

decentralized approaches, processing the measurements is 

performed at each node by allowing some inter-node 

exchange of information. In this paper, a centralized 

approach is proposed for joint reconstruction of sparse 

signals in DCS. Also, the multiple sparse signals 

considered in this paper belong to the type-1 joint sparse 

model (JSM-1), in which all of the signals are assumed to 
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have a sparse common component and an innovation 

component [7, 8]. 

Recently, many DCS algorithms have been proposed for 

the reconstruction of signals from CS measurements in a 

centralized and decentralized manner. In [4] a greedy 

algorithm is developed for joint signal recovery, which 

assumes a JSM-2 model for joint sparse signals. In [12], 

two DCS algorithms are proposed for the VB inference 

problem, which introduces a distributed VB framework for 

conjugate-exponential models. In the first algorithm, the 

global parameters at each node are optimized. In the 

second method, the variational optimization is redefined as 

a constrained minimization problem with a modified 

objective function. In [11] a decentralized Bayesian DCS 

algorithm is proposed to reconstruct multiple sparse 

signals. This paper uses a JSM-1 model and develops the 

variational approximation in the Bayesian formulation to 

jointly reconstruct the sparse signals. In [7] a distributed 

greedy algorithm based on Orthogonal Matching Pursuit 

(OMP) is proposed for JSM-2 signal recovery. This 

algorithm estimates the locations of non-zero elements of 

the sparse signal in an iterative manner, while considering 

a priori knowledge of the size of the nonzero support set, 

which could be unknown or hard to estimate. 

Distributed recovery algorithms have been efficiently 

studied in many CS applications that allow joint 

reconstruction of multiple sparse signals. For example, in 

[13-15], DCS have been applied to the wireless sensor 

networks (WSNs), where each sensor performs its 

measurements independently, and then, DCS develops an 

algorithm for the reconstruction problem, performing most 

of the computations in the joint decoder, which can reduce 

the computational complexity and energy consumption. 

Also, a novel video coding framework is proposed based 

on DCS [16-18], in which video frames are classified as 

CS-frames and K-frames and encode the frames using CS. 

Another application of the DCS theory is image fusion 

methods [19-21], where two or more images of the same 

situation combine and constitute an image which is 

appropriate for practical applications. A suitable fusion of 

visible and infrared images can obtain a precise, reliable 

and proper exposition of the environmental conditions. In 

[22], a multi-channel SAR system based on DCS has been 

proposed, which exploits the coherence among multiple 

channels, in addition to the sparsity of each channel. The 

joint processing requires a reduced number of samples 

than the multi-channel SAR imaging system based on 

traditional CS. Except the above-mentioned applications, 

there are many other application domains for DCS 

including: MIMO channel [23], speech enhancement (SE) 

[24], multichannel electroencephalogram (EEG) [25], joint 

channel estimation [26], and ground moving target 

indication (GMTI) [27]. 

1-2- Contribution 

As mentioned above, any DCS algorithm must rely on a 

dependence model that illustrates the intra- and inter-

signal correlation of the sparse signals. The main 

drawback of the previous algorithms is that the only 

assumption considered for each of the signals, is the 

sparsity of the individual signals and they do not 

enumerate the interdependency structure among the sparse 

signal coefficients. To address this drawback, and based 

on the fact that the wavelet transform of many signals is 

sparse [28, 29], in this paper, the discrete wavelet 

transform (DWT) has been used as the sparsifying basis. 

The main contribution of this paper is to exploit the tree-

structure of wavelet coefficients in the proposed 

reconstruction algorithm to demonstrate the dependency 

among the wavelet coefficients. It has been proved that 

exploiting signal structure in addition to sparsity for CS, 

results in a decrease in the number of CS measurements 

[28]. 

In this work, Bayesian method is employed for the 

reconstruction of the signal from underdetermined data, 

which results in the wavelet-based Bayesian DCS (WB-

DCS) algorithm. Furthermore, a Gaussian pdf is assumed 

for the sparse coefficients, and variational Bayes (VB) 

inference is employed to derive the posterior probabilities. 

Experimental results show that the proposed WB-DCS 

algorithm provides a superior reconstruction quality than 

the other state-of-the-art approaches. 

The reminder of this paper is organized as follows. Section 

2 briefly reviews the wavelet-based BCS. The Bayesian 

DCS framework and the VB inference procedure are 

provided in Section 3. Simulation results are reported in 

Section 4. Finally, conclusions are discussed in Section 5. 

2- Wavelet-based Bayesian Compressive 

Sensing 

In this section, we explain the CS recovery problem via 

Bayesian framework and use the DWT as the sparsifying 

basis. Let        denote the original signal. The DWT 

of the signal   can be represented as [30] 

          (1) 

where        is the matrix containing wavelet basis 

vectors as its columns, and        is the vector of 

wavelet coefficients. The wavelet coefficients can be 

represented in a tree structure, in which every coefficient 

at scale   has four children at the next scale, and the 

statistical relationship among the parent and children 

coefficients is such that if the parent coefficient is 

negligible, then its children are also negligible. The 

statistical relationship between the wavelet coefficients 
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can be demonstrated via the hidden Markov tree (HMT) 

model [28, 31, 32]. Fig.1 shows the DWT with three 

wavelet decomposition levels and two associated wavelet 

trees. 

It has been proved that the wavelet transform of many 

signals and images have sparse representation, thus, 

enabling us to utilize the CS theory. The classical CS data 

acquisition is modeled by 

       ∑       
 
        (2) 

where        denotes the vector of CS measurements, 

       is the measurement matrix,       is the 

measurement noise,    is the   th column of  , and    is 

the support of the   th coefficient, i.e.          means 

that the  ’th element of   is zero (nonzero). 

In this paper, the CS problem is formulated via a Bayesian 

perspective. Bayesian CS (BCS) aims to estimate the 

sparse coefficients vector   from measurements   via 

considering a suitable pdf for hidden variables [33].  Let 

the measurement noise   has a zero-mean Gaussian prior 

distribution with precision (inverse variance)   . Then the 

likelihood function is given by 

   |             
        (3) 

where         is an identity matrix. In this work, a 

zero-mean Gaussian distribution is assumed for the 

wavelet coefficients 

     ∏     
   

                   
          

    (4)       

where   
  is the  ’th component of sparse signal  , which 

is at scale  , and    is the precision of the pdf, which is 

assumed to be common for all coefficients at scale  . In 

the next section, proposed JSM-1 DCS algorithm, namely 

WB-DCS, is introduced and present the prior distributions 

for other variables. 

3- Distributed Compressive Sensing Model 

In this section, we extend the BCS procedure explained in 

the previous section and present the proposed WB-DCS 

algorithm for joint reconstruction of multiple correlated 

signals. Also, the interactions of multiple signals is 

modeled via JSM-1 DCS model. 

Suppose that the network has K nodes and can be modeled 

by an undirected graph        , where           is 

the set of nodes and       is the set of undirected 

edges that characterizes the links between the nodes. In a 

particular graph, there is a link between two nodes if they 

are neighbors. Fig. 2 shows an example graph with 7 

nodes. 

The CS measurements for each node is given as 

 

Fig. 1 The HMT structure of wavelet coefficients. [28] 

 

                              (5) 

where         ,         ,        ,          

denote the measurement vector, sensing matrix, sparse 

signal, and noise for   th signal, respectively, and   is the 

total number of signals. According to the JSM-1 DCS 

model, the sparse signal    can be represented as 

                             (6) 

where         denotes the common component of the 

sparse signal,              is the support vector of   , 

        is the innovation component of the   , which 

is specific to the   th signal,              is the support 

vector of   , and   denotes the Hadamard product. 

In this paper, a zero-mean Gaussian distributions is 

assumed for the innovation and common components. 

Also, for modeling the elements of common and 

innovation supports,    and   , a HMT model is imposed 

in a statistical manner. Hence, the priors are given as 

                  (7) 

                  (8) 

 (      )                      (9) 

 (      )                      (10) 

       {

                                              

                             

                             
  (11) 
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Fig. 2 A typical network structure with 7 nodes. 
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  (12) 

                      (13) 

 (    )      (         )                   (14) 

 (     )      (           )                (15) 

 (     )      (           )                (16) 

 (    )      (         )                    (17) 

 (     )      (           )                 (18) 

 (     )      (           )                 (19) 

where         and         are diagonal matrices 

whose elements are the precisions      and     , 

respectively, (     ) and (     ) denote the index of   th 

element at scale   which belongs to the   th innovation 

component and the common component, respectively, 

       and        denote the mixing weights adopting Beta 

priors with the specified hyperparameters,            and 

          denote the support of the parent coefficient of 

         and         , respectively, and   is the total number 

of wavelet decomposition levels. 

 

3-1- Variational Bayes Inference 

To solve the joint recovery problem and infer the posterior 

distributions of the proposed WB-DCS algorithm, VB 

inference is implemented. The fundament of VB inference 

is to provide an estimate of the true posterior distribution 

    , say     , by adopting a factorable distribution [34]. 

For simplicity, define            , 

              ,                and   
                          . Assume that the      

and      can be factorized as 

                        (20) 

                        (21) 

Then, based on the priors presented in the previous 

section, the estimated posterior distributions       and 

      at each iteration are given by 

 

 

Fig. 3 Comparison of the normalized mean square error for the temperature signals. 

 

 
 

(a) 

 

 
 

(b) 

 
 

(c) 

Fig. 4  3-D SAR images downloaded from [38]. 
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                  |                 

       |               
       |     

             (22) 

                  (  )                          

                                          

                  |                      |     

             (23) 

where 

         
  ∑    

             
 
      (24) 

   {  
       

  ∑   
   

 
      }

  
  (25) 

         
   

               (26) 

        
   

        
        (27) 

where                . According to the Eqs. (22) and 

(23), it can be authenticated that       and      are 

Gaussian distributions. Applying similar process for other 

hidden variables, where       and       are given, 

approximate posterior distributions are obtained as 

follows: 

 (      )   (    )√       ( 
 

 

    
 

    
)  (28) 

 (      )   (    )√       ( 
 

 

    
 

    
)  (29) 

              
    

      (30) 

      
∏     (    

      
 ) 

    

∏     (     
       

 )    (     
       

 ) 
     (31) 

      
∏     (    

      
 ) 

    

∏     (     
       

 )    (     
       

 ) 
     (32) 

 (    )          
    

     (33) 

 (    )          
    

      (34) 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 Comparison of the normalized mean square error for the 
SAR images of Fig. 4. 
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where   
     

  

 
 and   

     
 

 
∑ ‖       ‖ 

  
    . 

The variational optimization procedure iteratively updates 

until convergence occurs to stable hyperparameters. 

Finally, the reconstructed  signal can be obtained as 

                  (35) 

4- Simulation Results 

In this section, the performance of the proposed 

centralized WB-DCS algorithm in two settings is 

evaluated. First, the experiments are tested for the 1-D 

temperature signals. In the second scenario, the efficiency 

of the proposed algorithm is investigated for the 3-D SAR 

images. The results of the proposed algorithm and that of 

three recent algorithms presented for DCS signal 

reconstruction are compared: the centralized part of the 

Bayesian DCS algorithm proposed in [11], the centralized 

Fréchet mean approach [35], and the backtracking-based 

adaptive orthogonal matching pursuit for block distributed 

compressed sensing (DCSBBAOMP) algorithm proposed 

in [36]. All of the competing algorithms assume JSM-1 

model for the signals and exploit both the intra- and inter-

signal dependencies. The centralized algorithm used in 

[11] is a Bayesian DCS algorithm and estimates the jointly 

sparse signals based on the VB inference procedure. The 

Fréchet mean approach is also a centralized algorithm, but 

the effect of innovation components in the reconstruction 

of common component is ignored. The DCSBBAOMP 

algorithm reconstructs block-sparse signals in an iterative 

manner, which each iteration consists of forward selection 

and backward removal stages. 

In the following evaluations, the DWT is used as the 

sparsifying transform, and the elements of all the sensing 

matrices    are i.i.d and drawn randomly from a zero-

mean Gaussian distribution with variance 
 

 
. The 

sparsifying domain used in [11] is the discrete cosine 

transform (DCT), and the sensing matrices are random 

partial DCT matrices. For fair comparison, the same 

settings is used in all simulations, i.e. the curves presented 

as the results of [11] are based on the sparse coefficients 

obtained by the DWT transform and Gaussian 

measurement matrices. Also, parameter setting for the 

DCSBBAOMP algorithm is the same as [36]. 

 

 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 
Fig. 6 Comparison of the structural similarity index for the 

SAR images of Fig. 4. 

4-1- Experiments with 1-D Signals 

In this subsection, the algorithms mentioned above are 

tested for the 1-D temperature signals downloaded from 
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the Intel Berkeley Research lab [37]. A set of      

temperature signals of length       is considered and 

in the recovery process, this signals are jointly 

reconstructed in an iterative manner. The comparison of 

competing algorithms is in terms of normalized mean 

square error (NMSE),              (
‖   ̂‖ 

 

‖ ‖ 
 ), where 

  and  ̂ denote the original and the reconstructed signal, 

respectively. For each experiment setting, 100 trials are 

implemented and the averaged result are provided. 

The average NMSE results of the reconstructed 

temperature images are displayed in Fig. 3. It is seen that 

the proposed WB-DCS algorithm, which exploits the 

structure of wavelet coefficients, has better performance 

than the other algorithms in terms of NMSE, where they 

only assumption is the intra- and inter-signal correlations 

of the signals. 

4-2- Experiments with 3-D Signals 

In the following set of experiments, the algorithms 

mentioned above are compared for 3-D SAR images. 

Three SAR images are selected, which are downloaded 

from Sandia National Laboratories in U.S. [38] and shown 

in Fig. 4. All simulations are for       images. For all 

competing algorithms, two quality assessors are used to 

compare the results: (1) NMSE, and (2) structural 

similarity (SSIM) [39], which evaluates the similarity 

between the original and the reconstructed image. The 

SSIM index is defined as 

        ̂  
      ̂         ̂    

(  
    ̂

    )(  
    ̂

    )
 , where      is the 

mean intensity,       is the covariance,     
  is the variance, 

and    and    are some constants. 

The utilization of the DCS algorithm for each SAR image, 

exploits structural dependencies between adjacent 

azimuth–range pixels and/or polarimetric channels [40]. 

Fig. 5 depicts the NMSE results versus the number of 

experiments for the SAR images of Fig. 3. Each point is 

based on the average of 100 trials. It can be seen that the 

proposed method obtains the lowest reconstruction error 

among all the other competing algorithms. 

A SSIM comparison between the proposed WB-DCS 

algorithm and the competitive methods is illustrated in  

Fig. 6. Based on this results, it can be demonstrated that 

the use of a profitable model for enumerating the inter-

scale, intra- and inter-signal dependencies of jointly sparse 

signals, simultaneously, leads to an improvement in DCS 

signal recovery in terms of SSIM, such that the highest 

SSIM is obtained by the proposed algorithm. 

5- Conclusion 

In this paper, a centralized wavelet-based Bayesian DCS 

algorithm (WB-DCS) is proposed to jointly reconstruct 

multiple signals. Both the inter- and intra-signal 

correlations are exploited by the JSM-1 DCS model. 

Furthermore, the DWT is used as sparsifying transform 

and the HMT model is employed to demonstrate the inter-

scale structure associated with wavelet coefficients. Also, 

this correlation is statistically employed within a Bayesian 

prior, and the posteriors of unknown variables are 

estimated using the VB inference procedure. Experimental 

results confirmed that the proposed WB-DCS algorithm 

significantly outperforms the state-of-the-art DCS 

recovery algorithms in terms of reconstruction error and 

structural similarity index (SSIM). Future research 

includes exploiting approximate message passing 

algorithm for the recovery process, which can help 

significantly reduce the computational complexity of 

Bayesian inference. Also, in addition to the sparsity and 

the local structure of the sparse signals considered in this 

work, we would like to exploit the nonlocal self-similarity 

of images in our future work, which represents the 

repetitive behavior of the higher level patterns globally 

located in the images. 
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