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     Abstract  
A closed-form solution for target localization based on the realistic distance-dependent noises in illuminator of opportunity 

passive radar and the reduction method of the bias which exists in the two-stage weighted least squares (2SWLS) method is 

proposed. 2SWLS is a classic method for time-of-arrival (TOA) and frequency-of-arrival (FOA) localization problem and has 

a couple of improved solutions over the years. The 2SWLS and its improved solutions have great localization performances in 

their established location scenarios on the basis of two approximations that setting the noise to a constant and ignoring the 

high-order terms of TOA and FOA measurement noises. It is these two approximations that lead to a sub-optimal solution 

with bias. The bias of 2SWLS has a significant influence on the target localization in illuminator of opportunity passive radar 

that has lower measurement accuracy and higher noises than active radar. Therefore, this paper starts by taking into 

consideration of the realistic distance-dependent characteristics of TOA/-FOA noises and improving 2SWLS method. Then, 

the bias of the improved 2SWLS method is analyzed and a bias-reduced solution based on weighted least squares (WLS) is 

developed. Numerical simulations demonstrate that, compared to the existing improved solutions of the 2SWLS, the proposed 

method eff ectively reduces the bias and achieves higher localization accuracy. 

 

Keywords: TOA; FOA; Target localization; Distance-dependent noises; Bias reduction; Illuminator of opportunity passive radar. 

 

1. Introduction 

The illuminator of opportunity passive radar has a unique 

advantage in terms of security and anti-stealth characteristics 

[1, 2]. Target localization with an illuminator of opportunity 

passive radar is a fundamental problem in the target 

reconnaissance field, which has received extensive attention in 

recent years [3-5].  
Time-of-arrival (TOA) and frequency-of-arrival (FOA) 

measurements [6, 7] are mostly used in target localization 

methods. In Ho et al. [8], the classic two-stage weighted 

least squares (2SWLS) method is proposed. After 

transforming the measurement equations to a set of linear 

equations by introducing nuisance parameters and ignoring 

the second-order error, Ho et al. [8] applied weighted least 

squares (WLS) to obtain the estimated value of nuisance 

parameters, and get the estimates of position and velocity 

by using WLS again. Taking into account the accuracy drop 

of targets located on or near the axes, Xu et al. [9] proposed 

Turbo-2SWLS based on the anchor reference selection and 

coordinate rotation, thus achieving higher accuracy. 

However, the coordinate rotation process of Turbo-2SWSL 

required much higher computational complexity, especially 

as the number of transmitters and receivers increases. In 

Yang et al. [10], an auxiliary variable was introduced in the 

second stage of 2SWLS, and the new method is called Aux-

2SWLS for short in this paper. By selecting the appropriate 

auxiliary variables, Aux-2SWLS could enhance the 

localization accuracy without increasing computational 

complexity. Amiri et al. [11, 12] proposed Ami-2SWLS 

method, which considered the realistic distance-dependent 

noises model [13], and achieved some improvement in most 

cases. However, it was demonstrated by our extensive 

calculations that there was a significant accuracy drop of 

velocity when the target was located on or near the axes.  
In Ho et al. [8], Xu et al. [9], Yang et al. [10] and Amiri et 

al. [11], the high-order terms of noises were always ignored 

to reduce the computational complexity, but this ignores 

would bring an increasing bias in localization results as the 

TOA/FOA measurement noises got larger. Diff erent from 

the situation of passive illuminators in Ho et al. [8], Xu et al. 

[9], Yang et al. [10] and Amiri et al. [11], the illuminators of 

passive radar is often non-cooperative and their signal 

waveform, frequency and phase cannot be obtained exactly 

most of the time. As a result, the TOA/FOA measurement 

noises are larger and signal-to-noise ratios are lower, and then 

the bias of localization is large enough to be taken into 

account to improve the localization accuracy [14]. Analyzed 
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the bias in time-differences-of-arrival (TDOA) only and 

proposed a bias reduction method. However, aiming at the 

distance- 

dependent noises and the bias caused by higher TOA/FOA 

noises in this paper concerns, we will seek a more simple and 

eff ective method. 
 

In this paper, the distance-dependent noises, which 

actually exist in the TOA/FOA measurements, are introduced 

first, and an improved method is derived based on Aux-

2SWLS. Then, a bias-reduced solution of the improved 

method for TOA/FOA localization is proposed.  

Finally, numerical simulations are carried out and the 

results show that this method could extremely attain the 

Cramer-Rao lower bound (CRLB) and lower the bias at 

higher noise levels. 

 

2. An Improved 2SWLS With Distance-

Dependent Noises  

We consider the illuminator of opportunity passive radar 

system consisting of Nt illuminators expressed by I1, I2 ,…, 

I5 and Nr receivers expressed by R1, R2,…, R5 in Ns-

dimensional space. Figure 1 shows a localization scenario 

of 5 illuminators and 5 receivers in 3-D space. 

 

The position and velocity of the ith illuminator are 

denoted as x t, i  = [x
 

t, i 
(1)

,…, x t, i 
(Ns)

]
T and   ̇    

[ ̇   
( )   ̇   

(  )]    , and as x r, j = [x
 
r ,j 

(1)
,…, x r ,j

(Ns)
]

T
 and 

 ̇    [ ̇   
( )   ̇   

(  )]     denote the position and velocity of 

the jth receiver. The target position and velocity are 

represented by x0 = [x0
(1) 

, …, x0
(Ns)

]
T
  and  ̇  

[  
( )   ̇ 

(  )]  . 

 
Fig. 1. Localization in 3-D space. 

 

Each receiver can get Nt bistatic range (BR) and Nt bistatic 

range rate (BRR) measurements by Range-Doppler 

processing, that is, Nt TOA and Nt FOA data. Accordingly, 

there is a total of 2Nt Nr data that can be used for localization. 

Furthermore, the BR and BRR for the pair of the ith 

illuminator and the j th receiver can be computed from 

(1) 

       
    

  

 ̇     ̇ 
   ̇ 

  

Where   
 and  ̇ 

  are the range and range-rate between the 

ith illuminator and the target, and similarly,   
  and  ̇ 

  the 

range and range-rate between the jth receiver and the target. 

They are given by 

             (2) 

  
  ‖       ‖ 

 ̇ 
  (       ) 

 ( ̇   ̇   )   
  

  
  ‖       ‖ 

 ̇ 
  (       ) 

 ( ̇   ̇   )   
  

2.1 Distance-dependent noises 

The measurement noises of BR and BRR, which are 

always considered to obey zero mean Gaussian distribution 

and independent of each other [10], are denoted as 

(3) 

  ,                   - 
  

 ̇  , ̇     ̇       ̇     - 
  

  
Thus, the noisy measurements of BR and BRR can be 

expressed as 

(4) 
               

 
 

 ̇     ̇     ̇    
 

The measurements of BR and BRR are always estimated 

by correlation processing in illuminator of opportunity 

passive radar. According to Stein [15], the standard 

deviations of BR and BRR noises are 

(5) 

     
 

    

 

√  (
 

 
) 

 

(6)  

 ̇    
 

    

 

√  (
 

 
) 

 

Where B is the noise bandwidth, T is the integration time, 

Trms and frms are the root mean square integration time and 

the root mean square radian frequency, S/N is the effective 

input signal-to-noise ratio. The four parameters B, T, Trms 

and frms depend on transmitted signal or receiver 
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characteristics, while the parameter S/N depends on the 

distance and spatial geometry of illuminators, receivers and 

target. Hence S/N in (5) and (6) is the origin of the distance-

dependent characteristics of BR and BRR noises. And then, 

from the bistatic radar equation [16], we have 

(7) 
 

 
         (  

   
 )  

  
That is to say, 

(8) 

    
         ̇   

        (  
   
 )   

Where α is a symbol of the proportional relationship. So 

we can see that the noises are actually distance-dependent. In 

order to describe and analyze the problem conveniently, we 

assume that the illuminators have the same radiant power and 

the bistatic radar cross-section of the target is constant. This 

assumption will not aff ect the derivation and usability of the 

method to be proposed. Based on the above assumption, we 

denote the variances corresponding to (  
   
 )   
  as   

  and  ̇ 
 . 

Then, the variances for the pair of ith illuminator and the jth 

receiver can be denoted as 

(9) 

    
    

 (  
   
 )  (  

   
 )   
  

 ̇   
   ̇ 

 (  
   
 )  (  

   
 )   
  

 

And the BR and BRR covariance matrix is considered to 

be 

(10) 

Q =     {    
      

          
   ̇   

   ̇   
     ̇     

 } 

 

Where diag {*} denotes the diagonal matrix whose 

diagonal entries are the elements in braces. 

Consequently, compared to the simple form of the 

covariance matrix without regard for the distance-dependent 

characteristics of noises, 

(11) 

Q simple = diag *  
    

      
   ̇ 

   ̇ 
     ̇ 

 + 
 

Where   
       ̇ 

  are constant variances of BR and BRR, 

covariance matrix in (10) is more realistic and complicated, 

and will be further researched. 

 

2.2 An improved 2SWLS method 

Aux-2SWLS is a creative and excellent improved version 

of the classic 2SWLS method, which enhances the 

localization performance to a great extent by introducing an 

auxiliary variable. Thus, we will derive an improved 2SWLS 

method with distance-dependent noises based on Aux-2SWLS 

method introduced in Yang et al. [10]. 

 

 Stage 1: 

The estimate of    ,  
    

   ̇ 
   ̇ 

 ]   is 

(12) 

 ̂  (  
   

    )
    

   
     

 

Where 

   ,    
      

   ̇   
   ̇   

 -  

,  -    , (         )
          - 

,  -    , (         )
 
  (         )  - 

  (   )     
                        

        
  

   6
        

 ̇           
7 

(13) 

     [
     

     
] 

   (    (      )  
 )      

 

         {  
           

       } 

         {            
                   

 } 

   ,    
      

   ̇   
   ̇   

 -    

,  -      
          

          
    

,  -      
          

      (         )
  

Here,     is an identity matrix of size    ,     is a   -

dimensional column vector whose elements are all 1, and e1 

denotes a unit column vector proper in size, of which first 

element is 1 and other elements are 0. Besides,    , -    denotes 

the kth row of the matrix in square brackets, , -  denotes the 

kth element of the vector in square brackets and   denotes the 

Kronecker product. 

 

   is not known in practice as Ta and Q contain the true 

distances between illuminators, receivers and target. Further 

approximation is necessary to get   . Normally, each   
  and 

 ̇ 
  is approximately at a similar level of magnitude as others, 

so that      and  ̇    are close to    and  ̇   respectively. 

Therefore, we have rough approximations 

(14) 

            

    
     *                    + 

Where    ̇    , which represents the ratio of standard 

deviation of BRR noises to BR noises. Admittedly, this 

approximation will be controversial, but it can be used to 

obtain an initial solution to estimate   . Then, the initial  ̂  is 
computed from (12), and Ta, Q and    can be corrected by 

the computed  ̂ . Finally, using (12) again, we can get the 

final estimate of  ̂ . 



 

Rasi & Shirzadian Gilan, A Bias-reduced Solution for Target Localization with Distance-dependent Noises in Illuminator ... 

 

 

 

4 

 

 Stage 2: 

 

Since   
       ̇ 

  are dependent on         ̇  respectively, we 

need to incorporate this relationship to get an improved 

estimate. In accordance with Yang et al. [10], the auxiliary 

variables    , ̂ -           and  ̇  , ̂ -           are 

introduced, where can be any constant larger than several 

times or tens of times of  ̂ 
 , and we set 

(15) 

   46
, -    
, -    

7  0
 
 
15 .  0

 
 ̇
1/ 

Where ʘ denotes element-wise product. 

Then the estimate of (15) can be calculated by 

(16) 

 ̂  (  
   

     )
    

   
     

 

where 

      ,       -
  

     (  
   

     )
    

  

   [
      

        
] 

         {, ̂ -       , 
   - }       ,(      )

   - 

         {, ̂ -           , ̇
   - }

      ,( ̇     ̇)
   - 

 

(17) 

    

[
 
 
 
 
 
 

(, ̂ -      ) (, ̂ -      )

, ̂ -    
      

       
    (      )

 , ̂ -    
(, ̂ -      ) (, ̂ -            ̇)

4
, ̂ -    , ̂ -       ̇   

       ̇
  

 ( ̇     )
 , ̂ -     (      )

 , ̂ -          
5
]
 
 
 
 
 
 

 

Then, the final estimate of   ,    ̇ -  

(18) 

 ̂  [
    {   (, ̂ -       )}√, ̂ -      

, ̂ -         ( ̂   )   ̇

] 

 

Where sgn (*) denotes the sign function and   denotes 

element-wise division. The details of the derivation and 

expression of (12) and (16) can be referred to Yang et al. [10]. 

For the convenience of the description, we will abbreviate 

the improved 2SWLS method with distance-dependent noises 

as Ddn-2SWLS in this paper. 

Ddn-2SWLS has strong robustness and relatively accurate 

results as the Aux-2SWLS method under low noise levels, but 

it will deviate from CRLB quickly like the measurement noise 

increases. This is due in large part to the fact that with the 

increase of noise, the reasonable approximation of ignoring 

high-order error terms becomes less reasonable [17]. That is, 

the high-order error will bring significant bias and need to be 

considered. 

 

3. Bias-Reduced Solution  

3.1  Bias Analysis 

In order to analyze the high-order error and localization bias, 

we should compute the error in each stage of the Ddn-2SWLS. 

According to Yang et al. [10], the error of the stage 1 is 

(19) 

    (  
   

    )
    

   
  (       )

 (  
   

    )
    

   
     

Where 

  (20)  

    (    
 )        0

 
 ̇1   [

   
   

] [
   
   ̇

] 

 

Here, E(*) denotes the expectation operator. Ta is related 

to the  ̂ 
  and  ̂̇ 

  which are the elements of the initial  ̂  and 

independent of q and  ̇. In this paper, we are only concerned 

with the bias brought by the high-order terms of noises and the 

error caused by the initial estimate of  ̂  will be the content to 

be studied in the future. 

For convenience of expression, we set 

 

         ̇   ̇  ̇ ,    ̇     ̇                             (21) 

(  
   

    )
    

   
     [

    
    

]              (22) 

(  
   

    )
    

   
     [

    
    

]                      (23)  

where A1, A2, A3 and A4 are matrices of equal size; B1, 

B2, B3 and B4 are matrices of equal size.      ̇   and q ̇ are 

the second-order terms of noises, which is always ignored by 

2SWLS methods for the assumption of small noise level. 

However, the second order terms of noises actually have a 

growing significant contribution to the bias with the increase 

of noises. Consequently, the eff ect of     ̇   and q ̇ will be 

considered in this paper.  

By taking expectations of    , the bias of  ̂  is 

(24) 

 (   )    , ( 
 )   ( ̇ )  -  

Where 

(25) (25) 
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   [
  |  |  

  |  |  
] 

and | | denotes the absolute value operator. 

      Similarly, the error of the stage 2 is 

(26) 

    (  
   

    )
    

   
  (       )      

Where 

(27) (27) 

         6
,   -      
,   -      

7     

Substituting (19) into (26) gives 

(28) 

    B     0
 
 ̇1+B   [

   
   

] [
   
   ̇

] 

-B([
    
    

]   0
 
 ̇1) .   0

 
 ̇1/    .0

 
 ̇1/ 

 

Where   (, 
   ̇ - )  denotes a vector of size 2NtNr 

whose each element contains     
       

  ….         
       ̇   

        

 ̇   
        ….  ̇     

        , where t1, t2, ...,        are natural 

numbers and                 . In this paper, E 

(    
       

  ….         
       ̇   

         ̇   
        …. ̇     

       )=0  

when                  , and E (     
       

  ….    

     
       ̇   

         ̇   
        ….  ̇     

       ) will be extremely 

small when                 . That is to 

say   (, 
   ̇ - ) can be neglected and E(  (, 

   ̇ - )) 
is considered to be 0 in the derivation of bias. 

 

Taking expectations of     yields 

(29) 

 

 (   )    , ( 
 )   ( ̇ )  -  

Where 

(30) 

          ([
    
    

]   ) (   ) 

Furthermore, we can Taylor expand 

(31) 

  [
    {   (, ̂ -       )}√,  -      

,  -         ( ̂   )   ̇
] 

around  ̂ , and the error of  ̂  is found to be 

(32) (32) 

       {   (, ̂ -      )    (, ̂ -      )} 

[
 
 
 
 
 
 ,    -     ( [ ̂ ]    

 

 )  ,   -     ,   -     ( , ̂ -    
   
)     (,   -    )

(

 
 

,   -     , ̂ -         (  , ̂ -    
   
)  ,   -         , ̂ -    

   

 ,   -     ,   -     (  [ ̂ ]        )  ( [ ̂ ]    

 

 )

 ,   -     ,   -         ( , ̂ -    
   
)    

 (    ) )

 
 

]
 
 
 
 
 
 

 

where   (,   -    )  and   
 (    )  are Lagrange 

remainder terms of , -     and , -         respectively. 

Since   (,   -    ) and   
 (    ) are two specific forms 

of   (, 
   ̇ - ) they are neglected and their mathematical 

expectations are considered to be 0.  

 

The bias will then be 

(33) 

E(  )   

[
 
 
 
 

 (,   -    )

 (,   -        )

 (,   -     ,   -    )

 (,   -     ,   -        )]
 
 
 
 

 =   [
 (  )

 ( ̇ )
] 

Where 

 

(34) 

    [

  
,     -      ,     -     
,     -      ,     -     

] 

 

 

[
 
 
 
 
     {  ( , ̂ -    

   
  )}          {  , ̂ -         (  , ̂ -    

   
 )}

                                                    {  , ̂ -    
   
  }              

    {  ( , ̂ -    
   
  )}         2  (  [ ̂ ]        )  ( , ̂ -    

   
 )3

                                       {  ( , ̂ -    
   
  )}                     ]

 
 
 
 
 
 

 

             (, ̂ -      ) 

We do not know the exact value of ,    ̇ -  in practice, 

so we cannot calculate    directly. However, the bias E(  ) 
consisting of the second-order term of ,    ̇ -  is linearly 

related to , (  )   ( ̇ ) - , which is actually a vector 

consisting of the main diagonal elements of Q and can be 

estimated by  ̂ . In addition, the first-order error term     
,   

    ̇ 
 -  in     can be introduced in 2SWLS and derived 

by solving the new linear equations without the second-order 
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and higher-order error terms. In this way, we can derive the 

first-order error term      and the second-order error term 

     (  ) and subtract them from  ̂ to improve accuracy 

and reduce the bias. 

3-2- Bias Reduction 

On the basis of the former analysis, we firstly derive the 

first-order error term    . 

we set          and  ̇   ̇    ̇   Then the distance 

between the jth receiver and target can be approximated by the 

Taylor expansion without the second-order and higher-order 

error terms as 

(35) 

  
  ‖          ‖    

( )
   

( )     

where 

(36) 

  
( )
 ‖      ‖ 

  
( )
  (      ) ‖      ‖ 

Moreover, substituting          and           

     into ‖       ‖
 
 (       

 )  and ignoring the 

second-order error term give 

(37) 

    
          

          
   (         )

          
( )

 

  (      
( )      

      
  )     (       

( )
 )     

(37) can be expressed in matrix form, 

(38)  

                  

Where 

 (39) 

     [             
 ] 

,  -       (      
( )           )

 
 

[    ]      
          

          
   (         )

 
 

        
( )

 

  (   )     

         , 
   ̇ -  

     [                ] 

       2       
( )            

( )            
( )
3 

Diff erentiating both sides of (37) with respect to time, we 

obtain 

 (40) 

 ̇   
       ̇   

       ̇        ( ̇     ̇   )
  

 (         )
  ̇   ̇     

( )
      ̇ 

( )
 

-2( ̇     
( )
      ̇ 

( )
  ̇     ̇    )

      (      
( )
 

         )
   ̇  

  ( ̇     ̇ 
( ))      (       

( )
 ) ̇    

where                                                                             (41)  

 ̇ 
( )
 ( ̇   ̇    )

 
(      )   

( )
 

 ̇ 
( )
 (      ) ̇ 

( )
 (  

( )
)   ( ̇   ̇   )   

( )
 

Similarly, (40) can be expressed in matrix form, 

(42) 

                  

where 

(43) 

     , ̇     - 

, ̇ -       ( ̇     
( )
      ̇ 

( )
  ̇     ̇    )

  

,    -   ̇   
       ̇   

       ̇        ( ̇     ̇   )
   

                     +(         )
  ̇   ̇     

( )
      ̇ 

( )
 

         , 
   ̇ -  

                                    , ̇     - 

     ̇      2 ̇     ̇ 
( )
    ̇      ̇  

( )
    ̇       ̇  

( )
3 

In (37) and (40), x and  ̇ are replaced by the result  ̂ in 

(18). From (38) and (42), the integrated equation can be 

expressed in the matrix form as 

(44) 

            

Where 

(45) 

   ,    
      

 -  

   ,    
      

 -  
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     , 
   ̇ -  

   ,    
      

 -  

The solution of (44) is calculated using WLS as 

(46) 

  (  
   

    )
    

   
     

Where         
   

The derivation process of   ̂  ignores the second-order 

error terms, so the derived   ̂  is the first-order error term of 

Ddn-2SWLS, which needs to be eliminated from the original 

estimate  ̂. 

Then, we recalculate Ta, Wa and Wb by (13) and (17) on 

the basis of  ̂, and get the second-order error term     from 

(24), (29) and (33). Finally, the bias-reduced solution of 

 ̂  , ̂ 
   ̂̇ 

  -  can be given by 

(47) 

 ̂   ̂    ̂      

This paper is concerned with the root mean square 

position error (RMSPE), the root mean square velocity error 

(RMSVE), the position bias (Pbias) and the velocity bias 

(Vbias) to evaluate the performance of target localization. 

RMSPE, RMSVE, Pbias and Vbias are defined as 

(48) 

      √ (‖    ̂ ‖
 ) 

      √ (‖ ̇   ̂̇ ‖
 
) 

       ‖ (    ̂ )‖
  

      ‖ ( ̇   ̂̇ )‖
 
 

respectively. From the former part of bias analysis, we 

can see that the elimination of the second-order error term 

E(  ) can lower the Pbias and Vbias. At the same time, At 

the same time, the bias-reduced solution eliminating the 

first-order and second-order error terms in (48) can 

theoretically improve the performance of RMSPE and 

RMSVE very well. 

 

4. Numerical Simulations  

The simulations are performed to compare the relative 

localization accuracy and bias value of diff erent methods. To 

evaluate the comprehensive performance of diff erent methods, 

we simulate the near-field localization and the far-field 

localization, respectively. The near-field case means the target 

position is roughly in the spatial structure formed by the 

illuminators and receivers, while the far-field case refers to the 

target located outside the spatial structure formed by the 

illuminators and receivers. 

For near-field case in this paper, we set the target 

randomly within a sphere, of which center is the coordinate 

origin and radius is R/2. The illuminators and receivers are 

placed randomly between the two spherical surfaces whose 

centers are the origin and radii are R/2 and R, respectively, as 

shown in Figure 2, where cubes, tetrahedron and, sphere 

represent illuminators, receivers and target respectively. 

Meanwhile, the velocities of the target, the illuminators and, 

the receivers are random vectors whose lengths are not greater 

than V. Here, R and V are two constants to represent distance 

and velocity respectively. 

 
 

Fig. 2 An example of spatial structure in near-field case. 

For the far-field case in this paper, we set the target 

randomly between the two spherical surfaces with radius R/2 

and R respectively, and the illuminators and receivers 

randomly within the sphere with radius R/2, as shown in 

Figure 3. The velocities are random vectors no greater than V. 

 

Fig. 3 An example of spatial structure in far-field case. 

Considering an illuminator of opportunity passive radar 

consisting of five illuminators and five receivers in 3-D space, 

we set R=2000m, V=20m/s and, ƞ = 0.01. The simulation 

results are obtained via 10000 Monte Carlo runs. The 

simulation results of RMSPE, RMSVE, Pbias and Vbias of 
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Aux-2SWLS, Ddn-2SWLS and the proposed bias-reduction 

solution concerning    in diff erent cases are given in Figure 4, 

5, 6 and 7. 

 
 

(a) Comparison of the Pbias. 

 
(b) Comparison of the Vbias 

 

Fig. 4 Comparison of the bias of Aux-2SWLS, Ddn-2SWLS and the 

proposed bias-reduction solution with regard to    in the near-field case: 

(a) Pbias and (b) Vbias. 

 

 
 

(a) Comparison of the Pbias. 

 

 
(b) Comparison of the Vbias. 

Fig. 5 Comparison of the bias of Aux-2SWLS, Ddn-2SWLS and the 

proposed bias-reduction solution with regard to    in the far-field case: (a) 
Pbias and (b) Vbias. 

 

Figure 4 and Figure 5 illustrate the bias of the Aux-

2SWLS method, the Dnd-2SWLS method and the proposed 

bias-reduction method at diff erent noise levels. As we can see 

from Figure 4 and Figure 5, both in near-field and far-field 

cases, Aux-2SWLS and Ddn-2SWLS have a similar bias, 
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while the bias-reduction solution could reduce the bias to a 

considerable extent compared to Aux-2SWLS and Ddn-

2SWLS, especially at higher noise levels. For instance, when 

   is 25dB, the Pbias and Vbias of the bias-reduction solution 

are about half of these of Aux-2SWLS and Ddn-2SWLS. This 

proves the eff ectiveness of the proposed bias-reduction 

solution. 

 
 

(a) Comparison of the RMSPE. 

 
 

(b) Comparison of the RMSVE. 

Fig. 6 Comparison of the RMSPE and RMSVE of Aux-2SWLS, Ddn-

2SWLS and the proposed bias-reduction solution with regard to    in the 
near-field case: (a) RMSPE and (b) RMSVE. 

 

We can see from Figure 6 and Figure 7 that there is an 

apparent diff erence between CRLB curves and simulation 

results of different methods since    is above 20dB. When _0 

is larger than 20dB, not at all times but in general, the RMSPE 

and RMSVE curves of Ddn-2SWLS are obviously closer to 

the CRLB than Aux-2SWLS for the consideration of distance-

dependent noises, especially for the far-field case. The 

locations of illuminators, receivers, and targets in this 

simulation are limited in diff erent spheres while, theoretically, 

the diff erence between the curves of Aux-2SWLS and Ddn-

2SWLS will be bigger when the spatial geometry of 

illuminators, receivers, and target is more complicated. 

Furthermore, through bias reduction, the localization accuracy 

has been greatly improved, and it implies the practical 

significance of the bias-reduction solution at high noise levels. 

 

 
 

(a) Comparison of the RMSPE. 
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(b) Comparison of the RMSVE. 

Fig. 7 Comparison of the RMSPE and RMSVE of Aux-2SWLS, Ddn-

2SWLS and the proposed bias-reduction solution with regard to     in the 
far-field case: (a) RMSPE and (b) RMSVE. 

 

To Find the CRLB for estimating the phase we need the 

PDF: 

(49) 

P(x; ) = 
 

(    )
 
 

 exp[
 ∑ ( , -       )    

   

   
] 

Now taking the log gets rid of the exponential, then 

taking partial derivative gives: 

(50) 
    (   )

  
 = 
  

  
 ∑ ( , -    (      )  

 

 
    (        

   

  ))  
Taking partial derivative again: 

(51) 
     (   )

   
  
  

  
 ∑ ( , -    (      )       (        
   

  ))  
Still depends on random vector x so need E{} 

Taking the expected value: 

(52) 

 

   
     (   )

   
  =     

  

  
 ∑ ( , -    (      )     
   

     (       ))  = 
  

  
 (   ( , -     (      )  

     (       )) 
 

  ( , -       (      ) 
 

So, plug that in, get a cos
2 
term, use trig identity, and get 

(53)
 

   
     (   )

   
  = 

  

   
 ,∑    ∑    (       )   

   
   
   -  

 
   

   
       

  not near to 0 or 
 

 
 

 

Now, invert to get CRLB: 

(54) 

      ̂  = 
 

     
 

 

 
Fig. 8 Doubling data halves CRLB 

 

 
Fig. 9 Halve CRLB for every 3B in SNR 

 

Does an efficient estimator exist for this problem? The 

CRLB theorem says there is only if 

(55) 
    (   )

  
  ( ), ( )   - 

 

Our earlier result was: 

(56) 
    (   )

  
  
  

  
 ∑ ( , -    (      )  

 

 
    (        

   

  ))  
 

We will see later though, an estimator for which 

   { ̂}→CRLB as N→∞ or as SNR→∞ 

 

 
Fig. 10    { ̂}→CRLB as N→∞ or as SNR→∞ 

 

Such an estimator is called an asymptotically efficient 

estimator 

 

5.  Conclusions  

Considering the realistic distance-dependent noises and 

the bias in 2SWLS methods, we developed a bias-reduced 

solution for target localization in illuminator of opportunity 

passive radar. This solution is proved by numerical 

simulations to be eff ective to reduce the bias and attain the 

CRLB, especially at higher noise levels. The theoretical 

performance of the proposed method is derived via second-

order error analysis, demonstrating theoretically the 

effectiveness of the proposed method in reducing the bias and 

achieving the CRLB under moderate noise. That is to say, the 

proposed bias-reduced solution is useful for the illuminator of 

opportunity passive radar localization problem. 
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