

* Corresponding Author

Hybrid Task Scheduling Method for Cloud Computing by

Genetic and PSO Algorithms

Amin Kamalinia
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran

Amin.kamalinia@gmail.com

Ali Ghaffari*
Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

a.ghaffari@iaut.ac.ir

Received: 11/Sep/2015 Revised: 17/Aug/2016 Accepted: 28/Sep/2016

Abstract
Cloud computing makes it possible for users to use different applications through the internet without having to install

them. Cloud computing is considered to be a novel technology which is aimed at handling and providing online services.

For enhancing efficiency in cloud computing, appropriate task scheduling techniques are needed. Due to the limitations

and heterogeneity of resources, the issue of scheduling is highly complicated. Hence, it is believed that an appropriate

scheduling method can have a significant impact on reducing makespans and enhancing resource efficiency. Inasmuch as

task scheduling in cloud computing is regarded as an NP complete problem; traditional heuristic algorithms used in task

scheduling do not have the required efficiency in this context. With regard to the shortcomings of the traditional heuristic

algorithms used in job scheduling, recently, the majority of researchers have focused on hybrid meta-heuristic methods for

task scheduling. With regard to this cutting edge research domain, we used HEFT (Heterogeneous Earliest Finish Time)

algorithm to propose a hybrid meta-heuristic method in this paper where genetic algorithm (GA) and particle swarm

optimization (PSO) algorithms were combined with each other. The experimental results of simulation are shown that the

proposed algorithm optimizes the average makespans of the HEFT_UpRank, HEFT_DownRank, HEFT_LevelRank and

MPQMA for 100 independent task graphs scheduling with 10, 50 and 100 tasks. Total optimization of makespans by the

proposed algorithm against the other algorithms were 6.44, 10.41, 6.33 and 4.8 percent respectively.

Keywords: Cloud Computing; Task Scheduling; Genetic Algorithm; Particle Swarm Optimization Algorithm.

1. Introduction

In the recent years, with huge advancement in IT

(information technology) based systems [1-3], cloud

computing is considered as one of the most important

trends [4]. Cloud computing is considered to be a novel

scientific tool and asset for high-performance computing

(HPC). It refers to a technology which uses internet and

central distant service provision in order to maintain data

and applications. Moreover, this technology can be used

in high-performance computing to centralized storages,

memory, processing and bandwidth. Cloud computing is

used as a technology to supply the resources of

information and communication technology (ICT)

dynamically and scalably all over the internet. Also, cloud

computing is a pattern which provides computational

resources are delivered to users on demand over the

Internet as a public service [5]. Furthermore, Task

scheduling in software defined networks (SDNs) [6]

based cloud computing is an important challenges for

future work. Scheduling is regarded as a decision-making

process which is regularly used in the majority of

production and service-providing industries which is used

to enhance efficiency optimization [7]. Indeed, scheduling

refers to the allocation of limited resources to tasks

throughout time [8]. It should be noted that unique

features and characteristics of resource management and

service scheduling distinguish cloud computing from

other computing methods. Whereas centralized

scheduling in a clustered system is aimed at enhancing the

efficiency of the entire system, distributed scheduling in a

grid computing system is intended to enhance efficiency

for a certain final user. When compared with other

systems, scheduling in cloud computing is much more

complicated; hence, a centralized scheduling is required

[9]. Each cloud provider is obliged to provide services for

the users. It should be noted that the cloud provider

provides services without mentioning the location of host

infrastructures and data centers. On the other hand,

commercial features make it necessary for cloud

computing to consider the users‟ needs and preferences

with respect to the quality of services all over the world.

In cloud computing, there is a data center which

includes interconnected equipment and machines where

they have high-speed links and connections with each

other. Such an environment is appropriate for processing

a mass of diverse tasks and activities. Scheduling in

distributed systems refers to the allocation of multiple

tasks to multiple machines which intends to enhance

optimization; hence, it is considered to be an NP-

complete. It can be argued that heuristic algorithms are

usually used as less than ideal and desirable algorithms to

Kamalinia & Ghaffari, Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms

272

achieve relatively good solutions. Hence, in recent years,

evolutionary algorithms are used to better optimize

solutions.In this paper, a novel algorithm has been

proposed where genetic and particle swarm optimization

algorithms were combined and also the HEFT algorithm

was used to schedule tasks in the context of cloud

computing. Also, we simulated and evaluated proposed

scheme and analyzed it statistically. The results of

simulation and statistical analysis of proposed method

indicate that the proposed algorithm is optimized the

average makespans of the HEFT_UpRank,

HEFT_DownRank, HEFT_LevelRank and MPQMA for

100 independent task graphs scheduling with 10, 50 and

100 tasks. Percent of the total optimization of makespans

for the mentioned algorithms were 6.44, 10.41, 6.33 and

4.8 respectively.

The reminder of the paper is organized as follows: in

Section 2, studies related to task scheduling are briefly

reviewed. In Section 3, HEFT algorithm is described and

discussed. In Section 4, genetic algorithm (GA) is

described and reviewed. Section 5 is concerned with PSO

algorithm. Section 6 describes the algorithm proposed in

this paper. Section 7 describes experimental results of the

proposed algorithm. Finally, Section 8 presents the

conclusion and suggestions for further research.

2. Related Works

Most of studies on task scheduling issues has been

studied in distributed high performance computing (HPC)

environments such as clusters, Grid [10] and also cloud

computing. Numerous research studies have been

conducted on the issue of scheduling in cloud computing.

Some of the related studies are reviewed in this section

of the study. Researchers considered the virtualization

features and commercial features in cloud computing to

propose a task scheduling algorithm for the first time

based on Berger model [11]. This algorithm maintains

the dual fairness limitation in the process of task

scheduling. The first categorization limitation selects the

user‟s tasks based on service quality priorities by

creating a public wait function. In selecting a user‟s

tasks, task categories are taken into consideration to

avoid the fairness of resources in the selection process.

The second limitation is related to define resource

justice function which is used to judge about the justice

and fairness of resource allocation. The main motivation

of researchers in [12] was to design and develop a cloud

resource server for efficient handling of cloud resources

and doing tasks for scientific programs with respect to

the deadline determined by the user. The deadline was

based on task scheduling. Task scheduling was

combined and implemented with particle swarm

optimization algorithm. This solution was intended to

reduce task execution time and cost based on the defined

fitness function. Researchers developed a new task

scheduling algorithm for executing massive programs

and applications in cloud [13]. This economical and

low-cost task scheduling algorithm operates based on

two heuristic methods. The first strategy dynamically

maps the tasks to the best virtual machines in terms of

cost according to the Pareto dominance. The second

strategy which complements the first strategy reduces

financial costs from unimportant tasks.

Researchers in [14], proposed a novel memetic task

scheduling algorithm on cloud environment using multiple

priority queues which named MPQMA (multiple priority

queues and a memetic algorithm). This algorithm employs

a genetic algorithm with local search algorithm to solve

scheduling problem in heterogeneous computing systems.

The main goal of this algorithm is using advantage of MA

to increase the convergence speed of the solutions.

Experimental results of randomly generated graphs

discovered that the MPQMA algorithm optimized the

other four current algorithms in terms of makespan with

fast convergence of solutions. In work [15], the

researchers proposed a population based meta-heuristic

algorithm based on particle swarm optimization (PSO) to

schedule applications on cloud resources. This algorithm

considers both computation cost and data transmission

cost. Experiment results are gained with a workflow

application by varying its computation and communication

costs. The algorithm is compared with existing „Best

Resource Selection‟ (BRS) algorithm in terms of the cost

savings. The results illustrated that PSO betters BRS in

times cost savings and distribution of workload onto

resources. In research [16], the concept of project

scheduling with the workflow scheduling problem are

integrated to formulate a mathematical model that aims to

minimize the makespan. In order to solve the workflow

scheduling optimization problem two Artificial Bee

Colony algorithms are applied. This algorithm is

compared with the optimal solutions obtained by Gurobi

optimizer to evaluate performance of ABC on the different

workflows. The experimental results depict that ABC can

be utilized as a practical method for complex workflow

scheduling problems in the cloud computing environment.

In [17], a task scheduling based on Ant Colony

Optimization (ACO) for task scheduling problem is

proposed to minimize the makespan of the tasks

submitted on the cloud environment. In addition, the

ACO is applied to improve the efficiency of Cloud

computing system. Experimental results are achieved by

Cloud simulator which called CloudSim. In this work, the

various graph from 100 to 500 of tasks are used to

evaluate the algorithm in different situations.

Using genetic algorithm and multiple priority queues

called MPQGA, the researchers proposed a task

scheduling method in heterogeneous computational

systems [18]. The rationale behind this method was to

benefit from both heuristic and evolutionary algorithms

and make up their shortcomings. The algorithm proposed

in [18] utilized the genetic algorithm for allocating task

priority and made use of the EFT heuristic method for

mapping and dedicating tasks to the processor. In MPQGA

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016 273

method, crossover and mutation operators, and the

appropriate fitness function were designed for the scenario

of directed acyclic graph. The results of experiments

indicated that the MPQGA algorithm performed better

than the two non-evolutionary methods and the random

search method with respect to scheduling quality.

3. HEFT Algorithm

In general task scheduling algorithms divided into

static or dynamic [19]. The static task scheduling

algorithm HEFT was first introduced in [20]. In this

method, the scheduling algorithm was used for a limited

number of heterogeneous processors. It was used for

parallelizing the processors so as to enhance efficiency and

fasten scheduling. Before discussing the HEFT algorithm,

it is necessary to introduce the terms EFT (earliest finish

time) and EST (earliest start time). EST and EFT refer to

the earliest starting time and the earliest finishing time of

the execution of the task ni on the processor pj. The value

of EST for then try task is equal to zero which has been

defined in Equation (1). For other tasks in the graph, the

values of EST and EFT are defined recursively according

to Equations (2) and (3). For measuring the EFT of task ni,

all the procedures of this task should be scheduled. In

these equations, pred(ni) stands for the entire procedures

of the task ni and * +refers to the earliest time of the

pj processor which is ready to execute the task. If nk is a

recent task which is dedicated to the processor pj, then,

 * +refers to the time at which the processor pj has

finished the execution of task nk and it is ready to execute

another task in case it has used a non-insertion-based

scheduling method. Internal max in Equation (2) measures

the time at which all the required data for ni has arrived at

pj. After task nm has been scheduled on the processor pj,

the earliest starting time and the earliest finishing time of

task nm on the processor pj will be equal to AST (actual

start time) and AFT (actual finishing time). It should be

noted that, according to Equation (5), AFT will be equal to

the smallest obtained EFT for that task. After the

scheduling of all the graph tasks, the scheduling makespan

will be equal to the AFT of the exit task. In case there are

several output tasks or in case there are no pseudo-task,

the makespan of the scheduling will be obtained through

Equation (4). Moreover, cm,i refers to the communication

costs from node m to node i. If the two tasks m and i are

allocated to the same processor, cm,i will be equal to zero.

(1) ()

(2)

 ()

 { * +
 ()

(()

)}

(3) () ()

(4) * ()+

(5) ()

 ()

In the HEFT algorithm, the priorities are determined

recursively based on task upward rank according to Equation

(7). In this equation, succ(ni) refers to a set of the successors

of task ni and stands for the average cost of the

communication edge (i,j) and refers to the average

computational cost of task ni which is measured through

Equation (8). As its name denotes, since rank starts from the

output node and is measured recursively, hence, it is referred

to as upward rank. The upward rank of the output node is

measured through Equation (6). Basically, () refers

to the length of critical path from task ni to the output task

which also includes the computational cost of task ni.

(6) ()

(7) ()
 ()

. ()/

(8) ∑

Similarly, downward rank is obtained recursively

through Equation (9). () refers to the set of

procedures of the task ni. As the name suggests,

downward rank is obtained recursively through the

downward graph movement of the task which starts from

the input node of graph. The downward rank of the input

node is equal to zero. In general, () is the longest

distance from the input node to the task ni where the

computational cost of the task is not considered.

(9) ()
 ()

(())

The HEFT algorithm has two phases. The first phase

is concerned with prioritization of tasks so that the

priorities of all tasks are measured. The second phase is

concerned with the selection of the processor so that task

are chosen based on their priorities and the scheduling of

each selected task is allocated to the best processor which

can minimize the finishing time of the task.

Task prioritization phase: in this phase, the priority of

each task can be measured through different methods some

of which are mentioned below. The priority of each task is

determined through upward rank and downward rank

according to the procedure reported in [20] which have been

defined in Equations (7) and (9). Also, priorities can be

measured by combining the two methods which have been

described in [18] in which Equation (10) is first used to

level the graph; then, the values of levels and the values of

upward rank and downward rank are used to produce a new

prioritization queue. As a result, those tasks which are at the

same level are arranged in a descending order. After one of

the mentioned methods is selected and their values for each

task are calculated, a list of tasks is produced based on

descending order of tasks. In case the value of the selected

method is equal for several tasks, the tasks are randomly

Kamalinia & Ghaffari, Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms

274

selected. It should be noted that upward rank is based on

average computation and communication cost. It is obvious

that the descending order of the upward rank values create a

topological order of tasks which is regarded as a linear order

in which precedence limitations are preserved.

(10)

 ()

 {

 . ()/
 ()

Processor selection phase: in the majority of task

scheduling algorithms, the earliest time for the

accessibility of the processor pj for executing a task is

when pj has finished the previous task. Moreover, some

algorithms have the insertion-based policy. As a case in

point, HEFT is based on insertion-based policy which

considers the probability of inserting a task in the idle time

slot between two previous scheduled tasks. The length of

the idle time slot of the processor is the distance between

the starting execution time and the finishing time of two

tasks which were consecutively executed on the same

processor. At least, it should be able to execute the

computational cost of the task. Furthermore, scheduling an

idle time slot should consider the precedence limitations.

4. Genetic Algorithm

Genetic algorithm is deemed to be a search and

optimization method which is based on the principles of

genetics and natural selection [21]. Genetic algorithm is a

type of evolutionary algorithms which has been inspired

by the Darwin theory about evolution. This algorithm was

developed by John Holland at the Michigan University

during the 1960‟s and 1970‟s. Later, one of Holland‟s

students named David Goldberg was able to propose a

solution based on evolutionary algorithms to a challenging

issue about the control of gas pipeline transmission [22,23].

The major contribution of Holland was published in a

book entitled “Adaptation in Natural and Artificial

Systems” [24]. Holland‟s theory was expanded and now it

was developed into a powerful algorithm for solving the

search and optimization problems. This algorithm has the

following three operators: selection, crossover and

mutation operators. The details about the implementation

of these operators have been discussed later in this paper.

5. PSO Algorithm

Particle swarm optimization (PSO) algorithm is a

population-based random optimization method which was

proposed by Russell Eberhart and James Kennedy in 1999.

The development of this algorithm was inspired from the

swarm behavior of birds or fish [24,25]. This system begins

with a population which has random solutions and it updates

the generation to find an optimal solution. In contrast with

genetic algorithm, none of the evolutionary operators such

as crossover and mutation are available in the PSO

algorithm. Solutions in PSO algorithm are referred to as

particles which move in the problem search space and

follow the current optimal particle [26]. In this algorithm,

each particle follows the particle which has a better fitness

function among all the particles. However, it does not forget

its own experience. Hence, it follows the condition and state

in which it has the best fitness function. Thus, in each

iteration of the algorithm, each particle determines its next

position based on two values: first, the best position that the

particle has ever had indicated by pbest and also the best

position that all the particles have ever had indicated by

gbest. In other words, gbest refers to the best pbest in the

entire population. Conceptually, pbest for each particle

refers to the memory which a particle has experienced about

its best position. gbest represents the public knowledge of

the population and when particles change their positions

based on gbest, they try to keep up with the knowledge of

the population. Conceptually, the best particle connects all

the particles of the population with each other [26,27]. In

this method, the next position for each particle is determined

according to the following equation:

(11)

 ()

 () (() ())

 (() ())

(12) () () ()

In Equation (11), () refers to the speed or velocity

of particle i in the time unit of t. Also, w which is

indicated byα refers to the coefficient or inertia weight for

controlling exploitation and exploring the search space.

C1 and C2 are the learning parameters. In other words,

they are constant accelerators which change the speed

changes of the particle towards pbest and gbest. Indeed,

the value of these two variables are equal to 2.The values

of r1 and r2 are two random variables which vary between

0 and 1. In Equation (12), () represents the position of

particle i in the time unit of t.

6. The Proposed Algorithm

The input of the problem is a directed acyclic graph

which is indicated by (). Each node is a member

of V set which is a vertex of the graph and indicates one

task from all the set of tasks; the weight of these nodes

determine the execution time of the tasks. This graph also

includes a set of edges; in other words, it includes E

which indicates the prerequisite relations among the tasks.

In case there exists an edge such as (ti, tj), it means that

task tj cannot start until task ti is finished. These edges are

weighted and the weight of each edge indicates the

communication cost of sending a message between two

tasks. This cost exists when two related tasks are executed

on different processors or machines and in case they are

executed on the same processor or machine, the cost of

communication between them will be zero.

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016 275

Directed acyclic graph illustrated in Figure 1 includes

the following tasks: و ، ، ، ، ، ، ، ، ،

which are the input of the proposed algorithm. The node

t0 is the entry task and t10 is the exit task. Table 1 indicates

the costs of executing tasks on the m0, m1 and m2. Also,

indicates the average costs of executing tasks on the

machines. As noted, each task is executed with a different

cost on each machine which indicates the heterogeneity of

the computational context of tasks.

Fig. 1. DAG with 11 tasks

Table 1. Task execution costs on machines

 Tasks

8 8 9 7

11 14 9 10

6 6 7 5

7 7 8 6

8 6 8 10

13 15 13 11

15 18 15 12

10 7 13 10

9 10 9 8

13 13 11 15

9 10 9 8

One of the most important challenges in scheduling tasks

in the cloud computing context is the selection of the best

solutions for allocating resources to the tasks so that the cost

and task finishing time are reduced. Inasmuch as there are a

lot of tasks and there are different solutions for different tasks,

hence, the selection of a solution is not a unique choice. That

is, there is a set of choices and each choice is not preferred to

the other choice. In the proposed hybrid method in this paper,

a set of answers is produced by the genetic algorithm; then,

these answers are considered as the initial population for the

PSO algorithm and based on these answers, the next

population for the genetic algorithm is produced with the help

of PSO algorithm. At the end of this stage, based on the PSO

algorithm, the whole produced answers are updated and the

stages are repeated again. In each repetition, first, the particles

find answers with respect to the operators of mutation and

crossover. Then, PSO algorithm is used to produce children

without moving entry and exit nodes. Hence, an optimal

population is produced. It should be noted that if the

children‟s priority is violated after the production of children,

they will be sorted from left to right so that the priorities are

not violated. In the proposed algorithm, the solutions

prevented premature convergence before achieving an

absolute optimal solution. It should be noted that after the

crossover and mutation operators are executed each time, the

replacement process is carried out so that the produced

children are compared with their parents. If the fitness

function of the children are not better than their parents, then,

they are eliminated. Otherwise, they will replace and

eliminate their parents. Figure 2 illustrates the flowchart of

the genetic and PSO algorithms proposed in this paper.

In the PSO algorithm, each particle includes a solution

which cover the context of the problem. In each iteration,

the fitness or cost function is measured for all the particles.

Then, the memory of each particle (pbest) is compared with

the obtained value and in case the value of particle cost

function is smaller than the value of its memory, particle

memory will be equal with the current state of that particle;

if these conditions occur, then, in this way, the memory

value will be compared with the gbest value. As a result,

the minimum solution is obtained for the problem. The

implementation of the PSO algorithm is considered to be

computationally simple; in case appropriate values are used

for its parameters, it is highly probable to find an optimal

answer. To avoid local optimality, the PSO algorithm

functions in a way that when it is placed in an optimality,

the particles mutate to other parts of the search space. Then,

in other parts, they search for optimal answers.

In the genetic algorithm, once the initial population is

created, the appropriateness of the answers is measured

by means of the fitness function value. For having an

optimal answer in the proposed method, the proposed

model should have a small value for the fitness function.

Fig. 2. Flowchart of the proposed algorithm in this paper

Kamalinia & Ghaffari, Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms

276

6.1 The Production of Initial Population

The initial population includes particles which are

independent of each other where the sizes of

chromosomes are fixed. In this paper, for having variety

and appropriate initial values, three traditional heuristic

methods were used to give initial values to the three

particles. The three methods include upward rank,

downward rank and a combination of these two methods

based on their rank [18]. The initial values of the three

particles were given according to the above-mentioned

methods for the graph included in Figure 1. Indeed,

multiple priority queues are produced which is shown in

Table 2 for the directed acyclic graph. The remaining

particles were randomly valued which is explained later

in the paper. That is, the beginning and end of the

chromosome which are the start and exit nodes are

established in the chromosome. Those between these two

nodes are randomly selected from left to right and are

sorted provided that the priorities are not violated.

Table 2. Task Priorities

 () () level () () Tasks

102 0 0 102

99 1 20 79
102 1 22 80

91 2 39 52

96 2 46 50

99 2 42 57

102 2 41 61

96 3 62 34

87 3 62 25

102 3 70 32
102 4 93 9

6.2 Measuring Makespan for each Particle

For measuring makespan for each particle in this

paper, tasks should be executed based on a processor or

machine allocation method. This operation was conducted

by means of the HEFT processor allocation method on

each particle which is discussed below.

6.3 Fitness Function

The fitness value plays a significant role in deciding

which particles should be used to produce the next

generation. In this paper, makespan of a DAG is obtained

from finishing time of exit task in an application which

this makespan assumed the fitness of algorithm. In

scheduling issue, the purpose of allocating task is to

reduce the makespan without violating priorities. The

makespan is obtained through Equation (4) and the fitness

function is obtained through Equation (13).

(13)

6.4 Selection Operator

One of the significant parts of genetic algorithm is

selection which has a remarkable impact on convergence.

Indeed, a particle with a better fitness value is more likely

to mate. One of the best implementation methods is the

roulette wheel. This method assumes that the selection

probability is a ratio of particle fitness. Some of the

particles will be reselected for the genetic operation based

on their fitness. A particle with the highest fitness is

highly probable to be selected. Particles are measured

according to their fitness. The value of the fitness function

is always greater than zero. pi stands for the probability of

each particle to be selected is measured through Equation

(14). Algorithm 1 shows the selection pseudo code.

(14)

∑

Algorithm 1. Roulette wheel pseudo code

1: Generate a random number , -
2: For i=1 to PopSize do

3: If then

4: Select the chromosome;

5: Return the chromosome;

6: end if

7: end for.

Algorithm 2. Pseudo code of single-point combination operator

1: Choose randomly a suitable crossover point i;

2: Cut the first parent‟s chromosome and the second

parent‟s chromosome into left and right segments

3: Generate a new offspring, namely the child one;

4: Inherit the left segment of the first parent‟s chromosome

to the left segment of the child one‟s chromosome;

5: Copy genes in second parent‟s chromosome that do not

appear in the left segment of first parent‟s chromosome

to the right segment of child one‟s chromosome;

6: Generate a new offspring, namely the child two;

7: Inherit the left segment of the second parent‟s chromosome

to the left segment of the child two‟s chromosome;

8: Copy genes in first parent‟s chromosome that do not appear

in the left segment of second parent‟s chromosome to the

right segment of child two‟s chromosome;

9: if offspring‟s fitness values are better than their parents

then replace them

10: if step 9 is true then compare fitness value of offspring

with local best if offspring‟s fitness value is better then

replace it.

11: if step 10 is true then compare fitness value of

offspring with global best if offspring‟s fitness value is

better then replace it.

6.5 Crossover Operator

The population of a genetic algorithm is evolved and

completed by crossover and mutation. In the method used in

this paper, the crossover operator is regarded as a significant

operation. Crossover is a function of replacing some genes

of one parent with genes of another parent. In the task

scheduling issue, the crossover operator combines the two

parents with each other so as to produce two valid children.

In this paper, single-point crossover was implemented

according to the method mentioned in [18]. That is, firstly,

a random point between l and n is selected and the

crossover point takes the priority queue of both parents

from left to right in case they are not identical. For

example, consider the particles depicted in Figure 3. The

crossover point which is equal to 6 produces the single

point of two new children. Indeed, it uses crossover

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016 277

operator to replace some genes. The left part of children

inherit their parents‟ genes. Then, some selected genes are

eliminated from the parent and the remaining genes are

added to the child from left to right. Consequently, the

child will also be valid [18]. Then, the value of fitness

function will be measured for each child. The fitness

values of children are compared with those of parents and

in case the fitness values of children are better than those

of parents, the children will replace parents. Then, the

fitness value of each child will be compared with the

memory of that particle (pbest). If the fitness value is

better than pbest, it will replace the memory of that

particle. Also, if the mentioned conditions occur, the

fitness value of particles will be compared with the gbest

value. In case the pbest value of particle is less than the

gbest value, it will replace it. Algorithm 2 represents the

pseudo code of this operator.

Fig. 3. Crossover operator

6.6 Mutation Operator

This operator replaces a gene with another one based on a

certain probability. Mutation operator causes variety and

diversity in the population. Accordingly, it expands the search

space and prevents the algorithm from local optimization.

Usually, this operator is done after the crossover operator

and helps to gain a better solution. a new chromosome is

obtained by exchanging two genes if the precedence

constraint is not violated [18]. In this paper, the mutation

operator is inspired from [18]. In other words, at first, a gene

is randomly selected. Then, based on this method, the first

successor for the task (tj) from the mutation point to the end

is obtained. If there is m
th
 gene which is a member of

, - and the priorities of tm are not in front of ti, ti

and tj can be replaced with each other which is illustrated in

Figure 4. If these conditions do not occur, hence, the

mutation operator will be executed from the beginning. After

exchanging the gens, the fitness of the child is calculating by

fitness function. The fitness value of the generated child will

be compared with its parent. If the fitness results of the child

is better, the child will replace with the parent. After that, the

fitness value of the child will be compared with the memory

of that particle (pbest). The fitness value of the particle is

replaced with pbest if the obtained fitness betters the pbest.

Moreover, if this condition is established, the fitness value of

the particle will be compared with the gbest value and in

case the value of this particle is less than the gbest value, it

will be replaced with the gbest. Algorithm 3 represents the

pseudo code of the mutation operator.

Fig. 4. Mutation operator

Algorithm 3. Pseudo code of two-point mutation operator

1: A randomly chosen chromosome.

2: Choose randomly a gene in the selected chromosome;

3: Find the first successor ();

4: Choose randomly a gene in the interval , -;
5: if l < i for all () then

6: Generate a new offspring by interchanging gene and

gene ;

7: return the new offspring;

8: else

9: Go to Step 1;

10: if the fitness of the new offspring is better than its parent

then replace it with parent

11: if step 10 is true then compare fitness value of offspring

with local best if offspring‟s fitness value is better then

update local best.

12: if step 11 is true then compare fitness value of offspring

with global best if offspring‟s fitness value is better then

update global best.

6.7 Termination Condition

The genetic and PSO algorithms are regarded as

random methods which can be executed for ever by

means of a rule. In practice, a termination condition

should be carried out. The usual methods operate by

considering the fitness evaluations or the working times

of the computer or by exploring the population diversity.

In this paper, the termination condition is realized when

the algorithm has been executed for 1000 times.

6.8 Complexity Analysis

The complexity of the proposed method is O (geners

×n
2
 × e × m), where geners is the number of iterations, n

is the number of subtasks, e is the number of edges and m

is the number of machines.

7. Experimental Results

Certain measurement criteria were used for evaluating

efficiency which are mentioned later in the paper. It should

be noted that the entire implementation procedure was

conducted in Visual Studio 2013 and the C#.net

programming language was used to implement the

algorithm. There are some parameters in the combined

algorithm which have a significant impact on the

performance of the algorithm; these parameters are given in

Table 3. In this table, the parameter ini determines the

Kamalinia & Ghaffari, Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms

278

number of population (particles) and the parameter w

stands for the inertia weight which is aimed at balancing

the speed of particles. The values of the parameters C1 and

C2 help particles learn how to locate the optimal points.

The parameters srate, crate, mrate refer to the rates of the

selection, crossover and mutation operators, respectively.

Table 3. Values of the parameters

Values parameters

80 ini

1.5

1.5

Randomly

Randomly

0.4 W

30 srate

80 crate

20 mrate

7.1 Comparing Measurements

In this section the proposed algorithm is compared with

other three heuristics and a GA algorithms in term of the

makespan. To do this, some metrics such as SLR and CCR

are used in comparison. Furthermore, random graph and

statistical analysis are used in experimental comparisons.

7.1.1 Task Makespan

The makespan of the directed acyclic graph, as shown

in Figure 1, was simulated on three prioritization methods

by means of upward rank, downward rank and the

combination these two methods and MPQMA algorithm.

The simulation results for Figure 1 with the proposed and

other algorithms are illustrated in Figure 6, Figure 7,

Figure 8 and Figure 9 respectively. The obtained results

as in mentioned figures were 76, 74, 76 and 70 for the

four algorithm. When scheduling by the proposed

algorithm is finished, the makespan for graph execution is

equal to 68 which is illustrated in Figure 10. These gained

results from algorithms are shown in Figure 5 by Bar

chart which depicts that the makespan of scheduling for

the proposed algorithm has better performance than the

other four algorithms.

Fig. 5. Bar graph representing the makespan vs. number of tasks for the

graph of Fig. 1

Fig. 6. Gantt chart for task scheduling with upward rank prioritization

(Makespan = 76)

Fig. 7. Gantt chart for task scheduling with downward rank prioritization

(Makespan = 74)

Fig. 8. Gantt chart for task scheduling with both upward and downward

ranks (Makespan = 76)

Fig. 9. Gantt chart for task scheduling with MPQMA (Makespan = 70)

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016 279

Fig. 10. Gantt chart for task scheduling with a combination of the

prioritization of genetic and PSO algorithms (Makespan = 68)

7.1.2 Scheduling Length Ration (SLR)

In this paper, for measuring SLR, the minimum

critical path between the processors or machines should

be obtained. Hence, the critical path method (CPM) was

used [28].

The measurement of the main efficiency of the

scheduling algorithm on the graph is the scheduling

length. Since a large collection of task graphs with

different features is used, the scheduling length to the low

bound should be converted into a rule which is referred to

as scheduling length ratio (SLR). The value of SLR on the

graph is obtained through Equation (15).

The denominator of the ratio is the set of minimum

computation costs of the tasks on CPmin. In an

unscheduled directed acyclic graph, if the computation

cost of each node ni is adjusted with less value, then, the

critical path will be based on minimum computation costs

which are indicated by CPmin. The SLR of a graph cannot

be less than one. In the task scheduling algorithm, the

smallest SLR will have better efficiency [18].

(15)

∑

(())

7.1.3 Communication to Computation Ratio (CCR)

CCR indicates that the used DAGs in this paper is

either communication-intensive or computation-intensive.

For a graph, the value of CCR is obtained by measuring the

mean communication cost (numerator of Equation (16))

divided by the mean computation cost (denominator of

Equation (16)) in the computational system. Hence, CCR

value is measured through the following equation [18].

(16)

∑ () ()

∑ ()

7.2 Comparison of SLR vs. CCR for Graph

Depicted in Fig. 1

The comparison of SLR vs. CCR calculations in the

proposed method was done and simulated using upward

and downward ranks and using the combination of priority

methods. The results of comparisons are depicted in

Figure 11. As shown in this figure, the method proposed in

this paper has less scheduling length rate which is

attributed to the fact that the makespan in the proposed

method is less than other methods. Consequently, this

leads to the minimization of Equation (15).

Fig. 11. Bar graph of SLR vs. CCR for the proposed graph

7.3 Comparing SLR vs. CCR for Random graph

In this paper, for a more extensive comparison and

evaluation, randomly produced graphs were used. In this

section, a random graph is examined. The directed acyclic

graph which was randomly produced has 30 tasks; in total,

it has 72 edges. This graph was executed on 9 machines.

As illustrated in Figure 12, the proposed method has less

SLR than the other methods. Furthermore, in the

proposed method, the makespan on the random graph was

176. Accordingly, with respect to the results demonstrated

in Figure 13, it can be maintained that the proposed

method has better performance than the other methods.

Fig. 12. Bar graph of SLR vs. CCR for the random graph

Fig. 13. Bar graph of the makespan vs. the number of tasks for the

random graph

Kamalinia & Ghaffari, Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms

280

7.4 Evaluation of the Randomly Produced Graphs

For evaluating results on different graphs with 10, 50

and 100 tasks using 8 machines, 100 iterations of the

three mentioned tasks were produced. Figure 14, Figure

15 and Figure 16 represent the results obtained from the

experiments. In Figure 14, average makespans of 100

independent task graphs with 10 tasks for HEFT_UpRank,

HEFT_DownRank, HEFT_LevelRank, MPQMA and the

proposed algorithms are: 99.27, 101.03, 99.48, 92.64 and

92.18 respectively. With respect to the obtained results

the proposed algorithm has better performance than the

other methods.

Fig. 14. Makespan of the produced 10-fold graph with 8 machines and

100 independent executions

According to the results in Figure 15, the average

makespans of 100 independent task graphs scheduling

with 50 tasks for the HEFT_UpRank, HEFT_DownRank,

HEFT_LevelRank, MPQMA and the proposed algorithms

are 469.29, 487.41, 469.69, 461.54 and 435.97

respectively. With respect to the obtained results the

proposed algorithm betters makespans of the other methods.

Fig. 15. Makespan of the produced 50-fold graph with 8 machines and

100 independent executions

Furthermore, the obtaining average makespans results

of 100 independent task graphs with 100 tasks in Figure 16

for HEFT_UpRank, HEFT_DownRank,

HEFT_LevelRank, MPQMA and the proposed algorithms

are: 948.79, 985.41, 946.52, 939.73 and 897.3 respectively.

According to the results the proposed algorithm optimizes

the other methods in terms of makespan.

Fig. 16. Makespan of the produced 100-fold graph with 8 machines and

100 independent executions

8. Conclusion and Suggestions for Further

Research

As discussed in the paper, task scheduling is

considered to be one of critical challenges in cloud

computing systems. In the past, numerous task scheduling

methods have been used in cloud computing. In this paper,

to enhance resource efficiency and minimize the total task

execution time, the researchers used a novel cost function

which was based on a combination of PSO and genetic

algorithms. The cost function was used to measure task

execution time on available resources in the context of

cloud computing. The purpose of proposing the hybrid or

combinatory model was to benefit from the capabilities

meta-heuristic methods since they have high speed in

finding optimal solutions. The new method introduced in

the proposed algorithm was intended to reduce and

shorten the length of the critical path and reduce the

communication costs among the processors. Finally, the

obtained results from the implementation of the proposed

method indicated that it optimizes other mentioned

current algorithms. In future, it is possible to design an

appropriate scheduling for similar algorithms.

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016 281

References
[1] A. Ghaffari, "Real-time routing algorithm for mobile ad

hoc networks using reinforcement learning and heuristic

algorithms," Wireless Networks, pp. 1-12, 2016.

[2] Z. Mottaghinia and A. Ghaffari, "A Unicast Tree-Based Data

Gathering Protocol for Delay Tolerant Mobile Sensor Networks,"

Information Systems & Telecommunication, p. 59, 2016.

[3] A. Ghaffari, "Congestion control mechanisms in wireless

sensor networks: A survey," Journal of Network and

Computer Applications, vol. 52, pp. 101-115, 6// 2015.

[4] C.-S. Chen, W.-Y. Liang, and H.-Y. Hsu, "A cloud

computing platform for ERP applications," Applied Soft

Computing, vol. 27, pp. 127-136, 2// 2015.

[5] Y.-D. Lin, M.-T. Thai, C.-C. Wang, and Y.-C. Lai, "Two-

tier project and job scheduling for SaaS cloud service

providers," Journal of Network and Computer Applications,

vol. 52, pp. 26-36, 6// 2015.

[6] R. Masoudi and A. Ghaffari, "Software defined networks:

A survey," Journal of Network and Computer Applications,

vol. 67, pp. 1-25, 5// 2016.

[7] M. Pinedo, Scheduling : theory, algorithms, and systems,

4th ed. New York: Springer, 2012.

[8] Y. Robert and F. d. r. Vivien, Introduction to scheduling.

Boca Raton: CRC Press, 2010.

[9] . agoul s, J. an, and . Teng, Cloud Computing :

Data-Intensive Computing and Scheduling. Boca Raton:

CRC Press, 2012.

[10] Y. Li and W. Cai, "Update schedules for improving

consistency in multi-server distributed virtual

environments," Journal of Network and Computer

Applications, vol. 41, pp. 263-273, 5// 2014.

[11] B. Xu, C. Zhao, E. Hu, and B. Hu, "Job scheduling algorithm

based on Berger model in cloud environment," Advances in

Engineering Software, vol. 42, pp. 419-425, 7// 2011.

[12] T. S. Somasundaram and K. Govindarajan, "CLOUDRB: A

framework for scheduling and managing High-Performance

Computing (HPC) applications in science cloud," Future

Generation Computer Systems, vol. 34, pp. 47-65, 5// 2014.

[13] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang,

"Cost-efficient task scheduling for executing large

programs in the cloud," Parallel Computing, vol. 39, pp.

177-188, 4// 2013.

[14] B. Keshanchi and N. J. Navimipour, "Priority-Based Task

Scheduling in the Cloud Systems Using a Memetic

Algorithm," Journal of Circuits, Systems and Computers,

vol. 25, p. 1650119, 2016.

[15] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, "A Particle

Swarm Optimization-Based Heuristic for Scheduling

Workflow Applications in Cloud Computing

Environments," in 2010 24th IEEE International

Conference on Advanced Information Networking and

Applications, 2010, pp. 400-407.

[16] Y. C. Liang, A. H. L. Chen, and Y. H. Nien, "Artificial Bee

Colony for workflow scheduling," in 2014 IEEE Congress

on Evolutionary Computation (CEC), 2014, pp. 558-564.

[17] L. Wang and L. Ai, "Task Scheduling Policy Based on Ant

Colony Optimization in Cloud Computing Environment,"

in LISS 2012: Proceedings of 2nd International Conference

on Logistics, Informatics and Service Science, Z. Zhang, R.

Zhang, and J. Zhang, Eds., ed Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 953-957.

[18] Y. Xu, K. Li, J. Hu, and K. Li, "A genetic algorithm for

task scheduling on heterogeneous computing systems using

multiple priority queues," Information Sciences, vol. 270,

pp. 255-287, 6/20/ 2014.

[19] X. Kong, C. Lin, Y. Jiang, W. Yan, and X. Chu, "Efficient

dynamic task scheduling in virtualized data centers with

fuzzy prediction," Journal of Network and Computer

Applications, vol. 34, pp. 1068-1077, 7// 2011.

[20] H. Topcuoglu, S. Hariri, and W. Min-You, "Performance-

effective and low-complexity task scheduling for

heterogeneous computing," Parallel and Distributed

Systems, IEEE Transactions on, vol. 13, pp. 260-274, 2002.

[21] G. Giftson Samuel and C. Christober Asir Rajan, "Hybrid:

Particle Swarm Optimization–Genetic Algorithm and

Particle Swarm Optimization–Shuffled Frog Leaping

Algorithm for long-term generator maintenance

scheduling," International Journal of Electrical Power &

Energy Systems, vol. 65, pp. 432-442, 2// 2015.

[22] R. L. Haupt and S. E. Haupt, Practical genetic algorithms,

2nd ed. Hoboken, N.J.: John Wiley, 2004.

[23] F. T. Hecker, M. Stanke, T. Becker, and B. Hitzmann,

"Application of a modified GA, ACO and a random search

procedure to solve the production scheduling of a case

study bakery," Expert Systems with Applications, vol. 41,

pp. 5882-5891, 10/1/ 2014.

[24] S. N. Sivanandam and S. N. Deepa, Introduction to genetic

algorithms. Berlin ; New York: Springer, 2007.

[25] A. Mahor and S. Rangnekar, "Short term generation

scheduling of cascaded hydro electric system using novel self

adaptive inertia weight PSO," International Journal of

Electrical Power & Energy Systems, vol. 34, pp. 1-9, 1// 2012.

[26] D. Y. Sha and H.-H. Lin, "A multi-objective PSO for job-

shop scheduling problems," Expert Systems with

Applications, vol. 37, pp. 1065-1070, 3// 2010.

[27] A. P. Engelbrecht, Computational intelligence : an

introduction, 2nd ed. Chichester, England ; Hoboken, NJ:

John Wiley & Sons, 2007.

[28] U. Defense Acquisition and Press, Scheduling guide for

program managers. Fort Belvoir, VA; Washington, DC:

Defense Acquisition University Press ; For sale by the U.S.

G.P.O., Supt. of Docs., 2001.

Amin Kamalinia received his BS degree in Software Engineering
from Bostan-Abad Branch, Islamic Azad University, Bostan-Abad,
Iran, in 2011 and his MS degree in Software Engineering from
Science and Research Branch, Islamic Azad University, Urmia,
Iran in 2014. His research interests include Grid & Cloud
computing, Task Scheduling and Programming.

Ali Ghaffari received his BSc, MSc and PhD degrees in computer
engineering from the University of Tehran and IAUT (Islamic Azad
University), TEHRAN, IRAN in 1994, 2002 and 2011 respectively.
As an assistant professor of computer engineering at Islamic Azad
University, Tabriz branch, IRAN, his research interests are mainly
in the field of wired and wireless networks, Wireless Sensor
Networks (WSNs), Mobile Ad Hoc Networks(MANETs),Vehicular
Ad Hoc Networks(VANETs), networks security and Quality of
Service (QoS). He has published more than 60 international
conference and reviewed journal papers.

http://www.univ-brest.fr/

