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Abstract 
Cloud computing makes it possible for users to use different applications through the internet without having to install 

them. Cloud computing is considered to be a novel technology which is aimed at handling and providing online services. 

For enhancing efficiency in cloud computing, appropriate task scheduling techniques are needed. Due to the limitations 

and heterogeneity of resources, the issue of scheduling is highly complicated. Hence, it is believed that an appropriate 

scheduling method can have a significant impact on reducing makespans and enhancing resource efficiency. Inasmuch as 

task scheduling in cloud computing is regarded as an NP complete problem; traditional heuristic algorithms used in task 

scheduling do not have the required efficiency in this context. With regard to the shortcomings of the traditional heuristic 

algorithms used in job scheduling, recently, the majority of researchers have focused on hybrid meta-heuristic methods for 

task scheduling. With regard to this cutting edge research domain, we used HEFT (Heterogeneous Earliest Finish Time) 

algorithm to propose a hybrid meta-heuristic method in this paper where genetic algorithm (GA) and particle swarm 

optimization (PSO) algorithms were combined with each other. The experimental results of simulation are shown that the 

proposed algorithm optimizes the average makespans of the HEFT_UpRank, HEFT_DownRank, HEFT_LevelRank and 

MPQMA for 100 independent task graphs scheduling with 10, 50 and 100 tasks. Total optimization of makespans by the 

proposed algorithm against the other algorithms were 6.44, 10.41, 6.33 and 4.8 percent respectively.  
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1. Introduction 

In the recent years, with huge advancement in IT 

(information technology) based systems [1-3], cloud 

computing is considered as one of the most important 

trends [4]. Cloud computing is considered to be a novel 

scientific tool and asset for high-performance computing 

(HPC). It refers to a technology which uses internet and 

central distant service provision in order to maintain data 

and applications. Moreover, this technology can be used 

in high-performance computing to centralized storages, 

memory, processing and bandwidth. Cloud computing is 

used as a technology to supply the resources of 

information and communication technology (ICT) 

dynamically and scalably all over the internet. Also, cloud 

computing is a pattern which provides computational 

resources are delivered to users on demand over the 

Internet as a public service [5]. Furthermore, Task 

scheduling in software defined networks (SDNs) [6] 

based cloud computing is an important challenges for 

future work. Scheduling is regarded as a decision-making 

process which is regularly used in the majority of 

production and service-providing industries which is used 

to enhance efficiency optimization [7]. Indeed, scheduling 

refers to the allocation of limited resources to tasks 

throughout time [8]. It should be noted that unique 

features and characteristics of resource management and 

service scheduling distinguish cloud computing from 

other computing methods. Whereas centralized 

scheduling in a clustered system is aimed at enhancing the 

efficiency of the entire system, distributed scheduling in a 

grid computing system is intended to enhance efficiency 

for a certain final user. When compared with other 

systems, scheduling in cloud computing is much more 

complicated; hence, a centralized scheduling is required 

[9]. Each cloud provider is obliged to provide services for 

the users. It should be noted that the cloud provider 

provides services without mentioning the location of host 

infrastructures and data centers. On the other hand, 

commercial features make it necessary for cloud 

computing to consider the users‟ needs and preferences 

with respect to the quality of services all over the world. 

In cloud computing, there is a data center which 

includes interconnected equipment and machines where 

they have high-speed links and connections with each 

other. Such an environment is appropriate for processing 

a mass of diverse tasks and activities. Scheduling in 

distributed systems refers to the allocation of multiple 

tasks to multiple machines which intends to enhance 

optimization; hence, it is considered to be an NP-

complete. It can be argued that heuristic algorithms are 

usually used as less than ideal and desirable algorithms to 



 

Kamalinia & Ghaffari, Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms 

 

272 

achieve relatively good solutions. Hence, in recent years, 

evolutionary algorithms are used to better optimize 

solutions.In this paper, a novel algorithm has been 

proposed where genetic and particle swarm optimization 

algorithms were combined and also the HEFT algorithm 

was used to schedule tasks in the context of cloud 

computing. Also, we simulated and evaluated proposed 

scheme and analyzed it statistically. The results of 

simulation and statistical analysis of proposed method 

indicate that the proposed algorithm is optimized the 

average makespans of the HEFT_UpRank, 

HEFT_DownRank, HEFT_LevelRank and MPQMA for 

100 independent task graphs scheduling with 10, 50 and 

100 tasks. Percent of the total optimization of makespans 

for the mentioned algorithms were 6.44, 10.41, 6.33 and 

4.8 respectively.  

The reminder of the paper is organized as follows: in 

Section 2, studies related to task scheduling are briefly 

reviewed. In Section 3, HEFT algorithm is described and 

discussed. In Section 4, genetic algorithm (GA) is 

described and reviewed. Section 5 is concerned with PSO 

algorithm. Section 6 describes the algorithm proposed in 

this paper. Section 7 describes experimental results of the 

proposed algorithm. Finally, Section 8 presents the 

conclusion and suggestions for further research.  

2. Related Works 

Most of studies on task scheduling issues has been 

studied in distributed high performance computing (HPC) 

environments such as clusters, Grid [10] and also cloud 

computing. Numerous research studies have been 

conducted on the issue of scheduling in cloud computing. 

Some of the related studies are reviewed in this section 

of the study. Researchers considered the virtualization 

features and commercial features in cloud computing to 

propose a task scheduling algorithm for the first time 

based on Berger model [11]. This algorithm maintains 

the dual fairness limitation in the process of task 

scheduling. The first categorization limitation selects the 

user‟s tasks based on service quality priorities by 

creating a public wait function. In selecting a user‟s 

tasks, task categories are taken into consideration to 

avoid the fairness of resources in the selection process. 

The second limitation is related to define resource 

justice function which is used to judge about the justice 

and fairness of resource allocation. The main motivation 

of researchers in [12] was to design and develop a cloud 

resource server for efficient handling of cloud resources 

and doing tasks for scientific programs with respect to 

the deadline determined by the user. The deadline was 

based on task scheduling. Task scheduling was 

combined and implemented with particle swarm 

optimization algorithm. This solution was intended to 

reduce task execution time and cost based on the defined 

fitness function. Researchers developed a new task 

scheduling algorithm for executing massive programs 

and applications in cloud [13]. This economical and 

low-cost task scheduling algorithm operates based on 

two heuristic methods. The first strategy dynamically 

maps the tasks to the best virtual machines in terms of 

cost according to the Pareto dominance. The second 

strategy which complements the first strategy reduces 

financial costs from unimportant tasks.  

Researchers in [14], proposed a novel memetic task 

scheduling algorithm on cloud environment using multiple 

priority queues which named MPQMA (multiple priority 

queues and a memetic algorithm). This algorithm employs 

a genetic algorithm with local search algorithm to solve 

scheduling problem in heterogeneous computing systems. 

The main goal of this algorithm is using advantage of MA 

to increase the convergence speed of the solutions. 

Experimental results of randomly generated graphs 

discovered that the MPQMA algorithm optimized the 

other four current algorithms in terms of makespan with 

fast convergence of solutions. In work [15], the 

researchers proposed a population based meta-heuristic 

algorithm based on particle swarm optimization (PSO) to 

schedule applications on cloud resources. This algorithm 

considers both computation cost and data transmission 

cost. Experiment results are gained with a workflow 

application by varying its computation and communication 

costs. The algorithm is compared with existing „Best 

Resource Selection‟ (BRS) algorithm in terms of the cost 

savings. The results illustrated that PSO betters BRS in 

times cost savings and distribution of workload onto 

resources. In research [16], the concept of project 

scheduling with the workflow scheduling problem are 

integrated to formulate a mathematical model that aims to 

minimize the makespan. In order to solve the workflow 

scheduling optimization problem two Artificial Bee 

Colony algorithms are applied. This algorithm is 

compared with the optimal solutions obtained by Gurobi 

optimizer to evaluate performance of ABC on the different 

workflows. The experimental results depict that ABC can 

be utilized as a practical method for complex workflow 

scheduling problems in the cloud computing environment. 

In [17], a task scheduling based on Ant Colony 

Optimization (ACO) for task scheduling problem is 

proposed to minimize the makespan of the tasks 

submitted on the cloud environment. In addition, the 

ACO is applied to improve the efficiency of Cloud 

computing system. Experimental results are achieved by 

Cloud simulator which called CloudSim. In this work, the 

various graph from 100 to 500 of tasks are used to 

evaluate the algorithm in different situations. 

Using genetic algorithm and multiple priority queues 

called MPQGA, the researchers proposed a task 

scheduling method in heterogeneous computational 

systems [18]. The rationale behind this method was to 

benefit from both heuristic and evolutionary algorithms 

and make up their shortcomings. The algorithm proposed 

in [18] utilized the genetic algorithm for allocating task 

priority and made use of the EFT heuristic method for 

mapping and dedicating tasks to the processor. In MPQGA 
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method, crossover and mutation operators, and the 

appropriate fitness function were designed for the scenario 

of directed acyclic graph. The results of experiments 

indicated that the MPQGA algorithm performed better 

than the two non-evolutionary methods and the random 

search method with respect to scheduling quality. 

3. HEFT Algorithm 

In general task scheduling algorithms divided into 

static or dynamic [19]. The static task scheduling 

algorithm HEFT was first introduced in [20]. In this 

method, the scheduling algorithm was used for a limited 

number of heterogeneous processors. It was used for 

parallelizing the processors so as to enhance efficiency and 

fasten scheduling. Before discussing the HEFT algorithm, 

it is necessary to introduce the terms EFT (earliest finish 

time) and EST (earliest start time). EST and EFT refer to 

the earliest starting time and the earliest finishing time of 

the execution of the task ni on the processor pj. The value 

of EST for then try task is equal to zero which has been 

defined in Equation (1). For other tasks in the graph, the 

values of EST and EFT are defined recursively according 

to Equations (2) and (3). For measuring the EFT of task ni, 

all the procedures of this task should be scheduled. In 

these equations, pred(ni) stands for the entire procedures 

of the task ni and      * +refers to the earliest time of the 

pj processor which is ready to execute the task. If nk is a 

recent task which is dedicated to the processor pj, then, 

     * +refers to the time at which the processor pj has 

finished the execution of task nk and it is ready to execute 

another task in case it has used a non-insertion-based 

scheduling method. Internal max in Equation (2) measures 

the time at which all the required data for ni has arrived at 

pj. After task nm has been scheduled on the processor pj, 

the earliest starting time and the earliest finishing time of 

task nm on the processor pj will be equal to AST (actual 

start time) and AFT (actual finishing time). It should be 

noted that, according to Equation (5), AFT will be equal to 

the smallest obtained EFT for that task. After the 

scheduling of all the graph tasks, the scheduling makespan 

will be equal to the AFT of the exit task. In case there are 

several output tasks or in case there are no pseudo-task, 

the makespan of the scheduling will be obtained through 

Equation (4). Moreover, cm,i refers to the communication 

costs from node m to node i. If the two tasks m and i are 

allocated to the same processor, cm,i will be equal to zero.  
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In the HEFT algorithm, the priorities are determined 

recursively based on task upward rank according to Equation 

(7). In this equation, succ(ni) refers to a set of the successors 

of task ni and      stands for the average cost of the 

communication edge (i,j) and    refers to the average 

computational cost of task ni which is measured through 

Equation (8). As its name denotes, since rank starts from the 

output node and is measured recursively, hence, it is referred 

to as upward rank. The upward rank of the output node is 

measured through Equation (6). Basically,      (  ) refers 

to the length of critical path from task ni to the output task 

which also includes the computational cost of task ni. 
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Similarly, downward rank is obtained recursively 

through Equation (9).     (  ) refers to the set of 

procedures of the task ni. As the name suggests, 

downward rank is obtained recursively through the 

downward graph movement of the task which starts from 

the input node of graph. The downward rank of the input 

node is equal to zero. In general,      (  ) is the longest 

distance from the input node to the task ni where the 

computational cost of the task is not considered.  
 

(9)      (  )     
       (  )

(     (  )         ) 

 

The HEFT algorithm has two phases. The first phase 

is concerned with prioritization of tasks so that the 

priorities of all tasks are measured. The second phase is 

concerned with the selection of the processor so that task 

are chosen based on their priorities and the scheduling of 

each selected task is allocated to the best processor which 

can minimize the finishing time of the task.  

Task prioritization phase: in this phase, the priority of 

each task can be measured through different methods some 

of which are mentioned below. The priority of each task is 

determined through upward rank and downward rank 

according to the procedure reported in [20] which have been 

defined in Equations (7) and (9). Also, priorities can be 

measured by combining the two methods which have been 

described in [18] in which Equation (10) is first used to 

level the graph; then, the values of levels and the values of 

upward rank and downward rank are used to produce a new 

prioritization queue. As a result, those tasks which are at the 

same level are arranged in a descending order. After one of 

the mentioned methods is selected and their values for each 

task are calculated, a list of tasks is produced based on 

descending order of tasks. In case the value of the selected 

method is equal for several tasks, the tasks are randomly 
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selected. It should be noted that upward rank is based on 

average computation and communication cost. It is obvious 

that the descending order of the upward rank values create a 

topological order of tasks which is regarded as a linear order 

in which precedence limitations are preserved.  
 

(10) 
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 {

                                                             

   .     (  )/
       (  )

             

 

Processor selection phase: in the majority of task 

scheduling algorithms, the earliest time for the 

accessibility of the processor pj for executing a task is 

when pj has finished the previous task. Moreover, some 

algorithms have the insertion-based policy. As a case in 

point, HEFT is based on insertion-based policy which 

considers the probability of inserting a task in the idle time 

slot between two previous scheduled tasks. The length of 

the idle time slot of the processor is the distance between 

the starting execution time and the finishing time of two 

tasks which were consecutively executed on the same 

processor. At least, it should be able to execute the 

computational cost of the task. Furthermore, scheduling an 

idle time slot should consider the precedence limitations.  

4. Genetic Algorithm 

Genetic algorithm is deemed to be a search and 

optimization method which is based on the principles of 

genetics and natural selection [21]. Genetic algorithm is a 

type of evolutionary algorithms which has been inspired 

by the Darwin theory about evolution. This algorithm was 

developed by John Holland at the Michigan University 

during the 1960‟s and 1970‟s. Later, one of Holland‟s 

students named David Goldberg was able to propose a 

solution based on evolutionary algorithms to a challenging 

issue about the control of gas pipeline transmission [22,23]. 

The major contribution of Holland was published in a 

book entitled “Adaptation in Natural and Artificial 

Systems” [24]. Holland‟s theory was expanded and now it 

was developed into a powerful algorithm for solving the 

search and optimization problems. This algorithm has the 

following three operators: selection, crossover and 

mutation operators. The details about the implementation 

of these operators have been discussed later in this paper.  

5. PSO Algorithm 

Particle swarm optimization (PSO) algorithm is a 

population-based random optimization method which was 

proposed by Russell Eberhart and James Kennedy in 1999. 

The development of this algorithm was inspired from the 

swarm behavior of birds or fish [24,25]. This system begins 

with a population which has random solutions and it updates 

the generation to find an optimal solution. In contrast with 

genetic algorithm, none of the evolutionary operators such 

as crossover and mutation are available in the PSO 

algorithm. Solutions in PSO algorithm are referred to as 

particles which move in the problem search space and 

follow the current optimal particle [26]. In this algorithm, 

each particle follows the particle which has a better fitness 

function among all the particles. However, it does not forget 

its own experience. Hence, it follows the condition and state 

in which it has the best fitness function. Thus, in each 

iteration of the algorithm, each particle determines its next 

position based on two values: first, the best position that the 

particle has ever had indicated by pbest and also the best 

position that all the particles have ever had indicated by 

gbest. In other words, gbest refers to the best pbest in the 

entire population. Conceptually, pbest for each particle 

refers to the memory which a particle has experienced about 

its best position. gbest represents the public knowledge of 

the population and when particles change their positions 

based on gbest, they try to keep up with the knowledge of 

the population. Conceptually, the best particle connects all 

the particles of the population with each other [26,27]. In 

this method, the next position for each particle is determined 

according to the following equation:  
 

(11) 
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In Equation (11),   ( ) refers to the speed or velocity 

of particle i in the time unit of t. Also, w which is 

indicated byα refers to the coefficient or inertia weight for 

controlling exploitation and exploring the search space. 

C1 and C2 are the learning parameters. In other words, 

they are constant accelerators which change the speed 

changes of the particle towards pbest and gbest. Indeed, 

the value of these two variables are equal to 2.The values 

of r1 and r2 are two random variables which vary between 

0 and 1. In Equation (12),   ( ) represents the position of 

particle i in the time unit of t.  

6. The Proposed Algorithm 

The input of the problem is a directed acyclic graph 

which is indicated by   (   ). Each node is a member 

of V set which is a vertex of the graph and indicates one 

task from all the set of tasks; the weight of these nodes 

determine the execution time of the tasks. This graph also 

includes a set of edges; in other words, it includes E 

which indicates the prerequisite relations among the tasks. 

In case there exists an edge such as (ti, tj), it means that 

task tj cannot start until task ti is finished. These edges are 

weighted and the weight of each edge indicates the 

communication cost of sending a message between two 

tasks. This cost exists when two related tasks are executed 

on different processors or machines and in case they are 

executed on the same processor or machine, the cost of 

communication between them will be zero.  
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Directed acyclic graph illustrated in Figure 1 includes 

the following tasks:   و   ،  ،   ،  ،  ،  ،   ،  ،   ،    

which are the input of the proposed algorithm. The node 

t0 is the entry task and t10 is the exit task. Table 1 indicates 

the costs of executing tasks on the m0, m1 and m2. Also,   

indicates the average costs of executing tasks on the 

machines. As noted, each task is executed with a different 

cost on each machine which indicates the heterogeneity of 

the computational context of tasks.  
 

 

Fig. 1. DAG with 11 tasks 

Table 1. Task execution costs on machines  

           Tasks 

8 8 9 7    

11 14 9 10    

6 6 7 5    

7 7 8 6    

8 6 8 10    

13 15 13 11    

15 18 15 12    

10 7 13 10    

9 10 9 8    

13 13 11 15    

9 10 9 8     
 

One of the most important challenges in scheduling tasks 

in the cloud computing context is the selection of the best 

solutions for allocating resources to the tasks so that the cost 

and task finishing time are reduced. Inasmuch as there are a 

lot of tasks and there are different solutions for different tasks, 

hence, the selection of a solution is not a unique choice. That 

is, there is a set of choices and each choice is not preferred to 

the other choice. In the proposed hybrid method in this paper, 

a set of answers is produced by the genetic algorithm; then, 

these answers are considered as the initial population for the 

PSO algorithm and based on these answers, the next 

population for the genetic algorithm is produced with the help 

of PSO algorithm. At the end of this stage, based on the PSO 

algorithm, the whole produced answers are updated and the 

stages are repeated again. In each repetition, first, the particles 

find answers with respect to the operators of mutation and 

crossover. Then, PSO algorithm is used to produce children 

without moving entry and exit nodes. Hence, an optimal 

population is produced. It should be noted that if the 

children‟s priority is violated after the production of children, 

they will be sorted from left to right so that the priorities are 

not violated. In the proposed algorithm, the solutions 

prevented premature convergence before achieving an 

absolute optimal solution. It should be noted that after the 

crossover and mutation operators are executed each time, the 

replacement process is carried out so that the produced 

children are compared with their parents. If the fitness 

function of the children are not better than their parents, then, 

they are eliminated. Otherwise, they will replace and 

eliminate their parents. Figure 2 illustrates the flowchart of 

the genetic and PSO algorithms proposed in this paper.   

In the PSO algorithm, each particle includes a solution 

which cover the context of the problem. In each iteration, 

the fitness or cost function is measured for all the particles. 

Then, the memory of each particle (pbest) is compared with 

the obtained value and in case the value of particle cost 

function is smaller than the value of its memory, particle 

memory will be equal with the current state of that particle; 

if these conditions occur, then, in this way, the memory 

value will be compared with the gbest value. As a result, 

the minimum solution is obtained for the problem. The 

implementation of the PSO algorithm is considered to be 

computationally simple; in case appropriate values are used 

for its parameters, it is highly probable to find an optimal 

answer. To avoid local optimality, the PSO algorithm 

functions in a way that when it is placed in an optimality, 

the particles mutate to other parts of the search space. Then, 

in other parts, they search for optimal answers. 

In the genetic algorithm, once the initial population is 

created, the appropriateness of the answers is measured 

by means of the fitness function value. For having an 

optimal answer in the proposed method, the proposed 

model should have a small value for the fitness function. 

 
Fig. 2. Flowchart of the proposed algorithm in this paper  
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6.1 The Production of Initial Population 

The initial population includes particles which are 

independent of each other where the sizes of 

chromosomes are fixed. In this paper, for having variety 

and appropriate initial values, three traditional heuristic 

methods were used to give initial values to the three 

particles. The three methods include upward rank, 

downward rank and a combination of these two methods 

based on their rank [18]. The initial values of the three 

particles were given according to the above-mentioned 

methods for the graph included in Figure 1. Indeed, 

multiple priority queues are produced which is shown in 

Table 2 for the directed acyclic graph. The remaining 

particles were randomly valued which is explained later 

in the paper. That is, the beginning and end of the 

chromosome which are the start and exit nodes are 

established in the chromosome. Those between these two 

nodes are randomly selected from left to right and are 

sorted provided that the priorities are not violated.  

Table 2. Task Priorities  

     (  )       (  ) level      (  )      (  ) Tasks 

102 0 0 102    

99 1 20 79    
102 1 22 80    

91 2 39 52    

96 2 46 50    

99 2 42 57    

102 2 41 61    

96 3 62 34    

87 3 62 25    

102 3 70 32    
102 4 93 9     

6.2 Measuring Makespan for each Particle 

For measuring makespan for each particle in this 

paper, tasks should be executed based on a processor or 

machine allocation method. This operation was conducted 

by means of the HEFT processor allocation method on 

each particle which is discussed below.  

6.3 Fitness Function 

The fitness value plays a significant role in deciding 

which particles should be used to produce the next 

generation. In this paper, makespan of a DAG is obtained 

from finishing time of exit task in an application which 

this makespan assumed the fitness of algorithm. In 

scheduling issue, the purpose of allocating task is to 

reduce the makespan without violating priorities. The 

makespan is obtained through Equation (4) and the fitness 

function is obtained through Equation (13).  
 

(13)                    

6.4 Selection Operator 

One of the significant parts of genetic algorithm is 

selection which has a remarkable impact on convergence. 

Indeed, a particle with a better fitness value is more likely 

to mate. One of the best implementation methods is the 

roulette wheel. This method assumes that the selection 

probability is a ratio of particle fitness. Some of the 

particles will be reselected for the genetic operation based 

on their fitness. A particle with the highest fitness is 

highly probable to be selected. Particles are measured 

according to their fitness. The value of the fitness function 

is always greater than zero. pi stands for the probability of 

each particle to be selected is measured through Equation 

(14). Algorithm 1 shows the selection pseudo code.  
 

(14)    
        

∑         
       
   

 

Algorithm 1. Roulette wheel pseudo code 

1: Generate a random number   ,   - 
2: For i=1 to PopSize do 

3:   If       then 

4:     Select the chromosome; 

5:     Return the chromosome; 

6: end if 

7: end for. 

Algorithm 2. Pseudo code of single-point combination operator 

1: Choose randomly a suitable crossover point i; 

2: Cut the first parent‟s chromosome and the second 

parent‟s chromosome into left and right segments 

3: Generate a new offspring, namely the child one; 

4: Inherit the left segment of the first parent‟s chromosome 

to the left segment of the child one‟s chromosome; 

5: Copy genes in second parent‟s chromosome that do not 

appear in the left segment of first parent‟s chromosome 

to the right segment of child one‟s chromosome; 

6: Generate a new offspring, namely the child two; 

7: Inherit the left segment of the second parent‟s chromosome 

to the left segment of the child two‟s chromosome; 

8: Copy genes in first parent‟s chromosome that do not appear 

in the left segment of second parent‟s chromosome to the 

right segment of child two‟s chromosome; 

9: if offspring‟s fitness values are better than their parents 

then replace them 

10: if step 9 is true then compare fitness value of offspring 

with local best if offspring‟s fitness value is better then 

replace it. 

11: if step 10 is true then compare fitness value of 

offspring with global best if offspring‟s fitness value is 

better then replace it. 

6.5 Crossover Operator 

The population of a genetic algorithm is evolved and 

completed by crossover and mutation. In the method used in 

this paper, the crossover operator is regarded as a significant 

operation. Crossover is a function of replacing some genes 

of one parent with genes of another parent. In the task 

scheduling issue, the crossover operator combines the two 

parents with each other so as to produce two valid children.  

In this paper, single-point crossover was implemented 

according to the method mentioned in [18]. That is, firstly, 

a random point between l and n is selected and the 

crossover point takes the priority queue of both parents 

from left to right in case they are not identical. For 

example, consider the particles depicted in Figure 3. The 

crossover point which is equal to 6 produces the single 

point of two new children. Indeed, it uses crossover 
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operator to replace some genes. The left part of children 

inherit their parents‟ genes. Then, some selected genes are 

eliminated from the parent and the remaining genes are 

added to the child from left to right. Consequently, the 

child will also be valid [18]. Then, the value of fitness 

function will be measured for each child. The fitness 

values of children are compared with those of parents and 

in case the fitness values of children are better than those 

of parents, the children will replace parents. Then, the 

fitness value of each child will be compared with the 

memory of that particle (pbest). If the fitness value is 

better than pbest, it will replace the memory of that 

particle. Also, if the mentioned conditions occur, the 

fitness value of particles will be compared with the gbest 

value. In case the pbest value of particle is less than the 

gbest value, it will replace it. Algorithm 2 represents the 

pseudo code of this operator.  
 

 

Fig. 3. Crossover operator  

6.6 Mutation Operator 

This operator replaces a gene with another one based on a 

certain probability. Mutation operator causes variety and 

diversity in the population. Accordingly, it expands the search 

space and prevents the algorithm from local optimization. 

Usually, this operator is done after the crossover operator 

and helps to gain a better solution. a new chromosome is 

obtained by exchanging two genes if the precedence 

constraint is not violated [18]. In this paper, the mutation 

operator is inspired from [18]. In other words, at first, a gene 

is randomly selected. Then, based on this method, the first 

successor for the task (tj) from the mutation point to the end 

is obtained. If there is m
th
 gene which is a member of 

,       - and the priorities of tm are not in front of ti, ti 

and tj can be replaced with each other which is illustrated in 

Figure 4. If these conditions do not occur, hence, the 

mutation operator will be executed from the beginning. After 

exchanging the gens, the fitness of the child is calculating by 

fitness function. The fitness value of the generated child will 

be compared with its parent. If the fitness results of the child 

is better, the child will replace with the parent. After that, the 

fitness value of the child will be compared with the memory 

of that particle (pbest). The fitness value of the particle is 

replaced with pbest if the obtained fitness betters the pbest. 

Moreover, if this condition is established, the fitness value of 

the particle will be compared with the gbest value and in 

case the value of this particle is less than the gbest value, it 

will be replaced with the gbest. Algorithm 3 represents the 

pseudo code of the mutation operator.  
 

 

Fig. 4. Mutation operator  

Algorithm 3. Pseudo code of two-point mutation operator 

1: A randomly chosen chromosome. 

2: Choose randomly a gene    in the selected chromosome; 

3: Find the first successor        ( ); 

4: Choose randomly a gene    in the interval ,       -; 
5: if l  < i for all        ( ) then 

6:    Generate a new offspring by interchanging gene    and 

gene   ; 

7:    return the new offspring; 

8: else 

9:     Go to Step 1; 

10: if the fitness of the new offspring is better than its parent 

then replace it with parent 

11: if step 10 is true then compare fitness value of offspring 

with local best if offspring‟s fitness value is better then 

update local best. 

12: if step 11 is true then compare fitness value of offspring 

with global best if offspring‟s fitness value is better then 

update global best. 

6.7 Termination Condition 

The genetic and PSO algorithms are regarded as 

random methods which can be executed for ever by 

means of a rule. In practice, a termination condition 

should be carried out. The usual methods operate by 

considering the fitness evaluations or the working times 

of the computer or by exploring the population diversity. 

In this paper, the termination condition is realized when 

the algorithm has been executed for 1000 times.  

6.8 Complexity Analysis 

The complexity of the proposed method is O (geners 

×n
2
 × e × m), where geners is the number of iterations, n 

is the number of subtasks, e is the number of edges and m 

is the number of machines. 

7. Experimental Results 

Certain measurement criteria were used for evaluating 

efficiency which are mentioned later in the paper. It should 

be noted that the entire implementation procedure was 

conducted in Visual Studio 2013 and the C#.net 

programming language was used to implement the 

algorithm. There are some parameters in the combined 

algorithm which have a significant impact on the 

performance of the algorithm; these parameters are given in 

Table 3. In this table, the parameter ini determines the 



 

Kamalinia & Ghaffari, Hybrid Task Scheduling Method for Cloud Computing by Genetic and PSO Algorithms 

 

278 

number of population (particles) and the parameter w 

stands for the inertia weight which is aimed at balancing 

the speed of particles. The values of the parameters C1 and 

C2 help particles learn how to locate the optimal points. 

The parameters srate, crate, mrate refer to the rates of the 

selection, crossover and mutation operators, respectively.  

Table 3. Values of the parameters  

Values parameters 

80 ini 

1.5    

1.5    

Randomly    

Randomly    

0.4 W 

30 srate 

80 crate 

20 mrate 

7.1 Comparing Measurements 

In this section the proposed algorithm is compared with 

other three heuristics and a GA algorithms in term of the 

makespan. To do this, some metrics such as SLR and CCR 

are used in comparison. Furthermore, random graph and 

statistical analysis are used in experimental comparisons. 

7.1.1 Task Makespan 

The makespan of the directed acyclic graph, as shown 

in Figure 1, was simulated on three prioritization methods 

by means of upward rank, downward rank and the 

combination these two methods and MPQMA algorithm. 

The simulation results for Figure 1 with the proposed and 

other algorithms are illustrated in Figure 6, Figure 7, 

Figure 8 and Figure 9 respectively. The obtained results 

as in mentioned figures were 76, 74, 76 and 70 for the 

four algorithm. When scheduling by the proposed 

algorithm is finished, the makespan for graph execution is 

equal to 68 which is illustrated in Figure 10. These gained 

results from algorithms are shown in Figure 5 by Bar 

chart which depicts that the makespan of scheduling for 

the proposed algorithm has better performance than the 

other four algorithms.   
 

 
Fig. 5. Bar graph representing the makespan vs. number of tasks for the 

graph of Fig. 1 

 
Fig. 6. Gantt chart for task scheduling with upward rank prioritization 

(Makespan = 76) 

 
Fig. 7. Gantt chart for task scheduling with downward rank prioritization 

(Makespan = 74) 

 
Fig. 8. Gantt chart for task scheduling with both upward and downward 

ranks (Makespan = 76) 

 
Fig. 9. Gantt chart for task scheduling with MPQMA (Makespan = 70) 
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Fig. 10. Gantt chart for task scheduling with a combination of the 

prioritization of genetic and PSO algorithms (Makespan = 68) 

7.1.2 Scheduling Length Ration (SLR) 

In this paper, for measuring SLR, the minimum 

critical path between the processors or machines should 

be obtained. Hence, the critical path method (CPM) was 

used [28].  

The measurement of the main efficiency of the 

scheduling algorithm on the graph is the scheduling 

length. Since a large collection of task graphs with 

different features is used, the scheduling length to the low 

bound should be converted into a rule which is referred to 

as scheduling length ratio (SLR). The value of SLR on the 

graph is obtained through Equation (15). 

The denominator of the ratio is the set of minimum 

computation costs of the tasks on CPmin. In an 

unscheduled directed acyclic graph, if the computation 

cost of each node ni is adjusted with less value, then, the 

critical path will be based on minimum computation costs 

which are indicated by CPmin. The SLR of a graph cannot 

be less than one. In the task scheduling algorithm, the 

smallest SLR will have better efficiency [18]. 
 

(15)     
        

∑    
    

( (     ))        

 

7.1.3 Communication to Computation Ratio (CCR) 

CCR indicates that the used DAGs in this paper is 

either communication-intensive or computation-intensive. 

For a graph, the value of CCR is obtained by measuring the 

mean communication cost (numerator of Equation (16)) 

divided by the mean computation cost (denominator of 

Equation (16)) in the computational system. Hence, CCR 

value is measured through the following equation [18].  
 

(16) 

    

 

 
∑  (     )    (     )  

 

 
∑  (  )    

 

7.2 Comparison of SLR vs. CCR for Graph 

Depicted in Fig. 1 

The comparison of SLR vs. CCR calculations in the 

proposed method was done and simulated using upward 

and downward ranks and using the combination of priority 

methods. The results of comparisons are depicted in 

Figure 11. As shown in this figure, the method proposed in 

this paper has less scheduling length rate which is 

attributed to the fact that the makespan in the proposed 

method is less than other methods. Consequently, this 

leads to the minimization of Equation (15).  

 
Fig. 11. Bar graph of SLR vs. CCR for the proposed graph  

7.3 Comparing SLR vs. CCR for Random graph 

In this paper, for a more extensive comparison and 

evaluation, randomly produced graphs were used. In this 

section, a random graph is examined. The directed acyclic 

graph which was randomly produced has 30 tasks; in total, 

it has 72 edges. This graph was executed on 9 machines. 

As illustrated in Figure 12, the proposed method has less 

SLR than the other methods. Furthermore, in the 

proposed method, the makespan on the random graph was 

176. Accordingly, with respect to the results demonstrated 

in Figure 13, it can be maintained that the proposed 

method has better performance than the other methods.  
 

 
Fig. 12. Bar graph of SLR vs. CCR for the random graph  

 
Fig. 13. Bar graph of the makespan vs. the number of tasks for the 

random graph  
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7.4 Evaluation of the Randomly Produced Graphs 

For evaluating results on different graphs with 10, 50 

and 100 tasks using 8 machines, 100 iterations of the 

three mentioned tasks were produced. Figure 14, Figure 

15 and Figure 16 represent the results obtained from the 

experiments. In Figure 14, average makespans of 100 

independent task graphs with 10 tasks for HEFT_UpRank, 

HEFT_DownRank, HEFT_LevelRank, MPQMA and the 

proposed algorithms are: 99.27, 101.03, 99.48, 92.64 and 

92.18 respectively. With respect to the obtained results 

the proposed algorithm has better performance than the 

other methods. 
 

 
Fig. 14. Makespan of the produced 10-fold graph with 8 machines and 

100 independent executions  

According to the results in Figure 15, the average 

makespans of 100 independent task graphs scheduling 

with 50 tasks for the HEFT_UpRank, HEFT_DownRank, 

HEFT_LevelRank, MPQMA and the proposed algorithms 

are 469.29, 487.41, 469.69, 461.54 and 435.97 

respectively. With respect to the obtained results the 

proposed algorithm betters makespans of the other methods. 
 

 
Fig. 15. Makespan of the produced 50-fold graph with 8 machines and 

100 independent executions 

Furthermore, the obtaining average makespans results 

of 100 independent task graphs with 100 tasks in Figure 16 

for HEFT_UpRank, HEFT_DownRank, 

HEFT_LevelRank, MPQMA and the proposed algorithms 

are: 948.79, 985.41, 946.52, 939.73 and 897.3 respectively. 

According to the results the proposed algorithm optimizes 

the other methods in terms of makespan. 

 
Fig. 16. Makespan of the produced 100-fold graph with 8 machines and 

100 independent executions 

8. Conclusion and Suggestions for Further 

Research 

As discussed in the paper, task scheduling is 

considered to be one of critical challenges in cloud 

computing systems. In the past, numerous task scheduling 

methods have been used in cloud computing. In this paper, 

to enhance resource efficiency and minimize the total task 

execution time, the researchers used a novel cost function 

which was based on a combination of PSO and genetic 

algorithms. The cost function was used to measure task 

execution time on available resources in the context of 

cloud computing. The purpose of proposing the hybrid or 

combinatory model was to benefit from the capabilities 

meta-heuristic methods since they have high speed in 

finding optimal solutions. The new method introduced in 

the proposed algorithm was intended to reduce and 

shorten the length of the critical path and reduce the 

communication costs among the processors. Finally, the 

obtained results from the implementation of the proposed 

method indicated that it optimizes other mentioned 

current algorithms. In future, it is possible to design an 

appropriate scheduling for similar algorithms.  
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