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Abstract 
Android has been targeted by malware developers since it has emerged as widest used operating system for 

smartphones and mobile devices. Android security mainly relies on user decisions regarding to installing applications 

(apps) by approving their requested permissions. Therefore, a systematic user assistance mechanism for making appropriate 

decisions can significantly improve the security of Android based devices by preventing malicious apps installation. 

However, the criticality of permissions and the security risk values of apps are not well determined for users in order to 

make correct decisions. In this study, a new metric is introduced for effective risk computation of untrusted apps based on 

their required permissions. The metric leverages both frequency of permission usage in malwares and rarity of them in 

normal apps. Based on the proposed metric, an algorithm is developed and implemented for identifying critical permissions 

and effective risk computation. The proposed solution can be directly used by the mobile owners to make better decisions 

or by Android markets to filter out suspicious apps for further examination. Empirical evaluations on real malicious and 

normal app samples show that the proposed metric has high malware detection rate and is superior to recently proposed risk 

score measurements. Moreover, it has good performance on unseen apps in term of security risk computation. 
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1. Introduction 

Android becomes the most popular operating system 

for smartphones and tablets which made its users the 

largest target group for security threats. This operating 

system security architecture reduces the attack surface by 

restricting applications using permissions and sandboxing. 

Therefore, in order to perform malicious activities, e.g., 

stealing user’s data, sending premium messages and 

making phone call, an attacker must deceive users to 

install a malicious app since other ways of intrusion are 

almost closed in Android. For installing an app, Android 

requires the user to grant privileges through the requested 

permissions. There are large number of applications 

(Apps) developed for this operating system which 

requires various permissions based on their functionalities. 

For an application, these permissions are displayed in the 

first screen of the installation program. The end user of an 

Android based mobile device must approve these 

permissions or discard to install the application. The 

privileges are remain unchanged until they are revoked 

from the app when the user issues the app removal 

process. Although, this security mechanism is very simple 

and straight forward for users, it causes many challenges. 

First, users usually does not spend much time for studying 

the permissions and think about their effects. Therefore, 

they tend to go forward and to complete the installation 

process. Moreover, an ordinary user does not have 

technical skills about the Android permissions and their 

impacts. Therefore, this security model is not effective 

regarding to security and privacy of end users in order to 

preserve their personal information from disclosure or to 

prevent monetary resource abuse by various type of 

potential malwares. Consequently, an Android malware 

e.g., spyware, Trojan, Adware, can deceive the users by 

introducing itself as a useful app and stole their personal 

or business data as well as using their mobile phone credit 

and monetary. There exists some research regarding to 

enhance the Android security model and its security risk 

communication mechanism. Using better and intuitive 

titles for permissions, categorization of permissions based 

on their effects, reducing the number of permissions by 

merging similar ones, utilizing user reviews about apps, 

using visual security indicators for risky apps, and etc. are 

some samples of these efforts [1-6]. Additionally, a 

number of statistical and mining models have so far been 

presented in order to measure the security risk of Android 

apps. The number of critical permissions and the number 

of critical permissions combinations requested by an app 

are simple examples of the statistical measures of security 

risk for apps [2]. Based on an effective security measure, 

it can be possible to compute the security risk of an app 

and fire a warning signal to the user if the computed risk 

exceeds a predetermined threshold. Moreover, the users 

can compare similar functionality apps in term of their 

risk scores. Furthermore, Android markets require an 
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effective risk computation metric to identify suspicious 

apps among vast number of newly submitted apps by 

developers for further examination. The reason is detailed 

analysis and deterministic malware detection for each app 

is a very time consuming process and systematic filtering 

of low risk apps is an important requirement. However, 

our evaluations show that current measures and models of 

Android risk computation do not have acceptable 

performance. That is, they don’t compute relative high 

risk values for known malwares and low risk quantities 

for benign apps to well recognize malicious apps from 

non-malicious ones. In this paper, a new security risk 

score measurement has been proposed which has better 

performance with respect to previously proposed ones. 

This risk score benefits from statistics of permission 

usages in known malicious and clean apps. However, it 

can be simply extended to other features of Android apps 

including static and dynamic ones. Moreover, we have 

attempted to give better definition of permission 

criticality to aim users for making the best decision for 

new apps installation. We have shown effectiveness of the 

proposed metric through extensive experiments on large 

number of real Android app samples including both 

malwares and goodwares. The paper is organized as 

follows. In the next section, some previous research 

works regarding to Android security and malware 

detection are reviewed. The problem statement is 

presented in Section 3. In Section 4, the new security risk 

score metric is introduced. In this section, our algorithm 

for risk computation by the proposed metric is also 

described. Extensive experimental evaluations of the 

proposed measure with respect to previously proposed 

ones are presented and illustrated in Section 5. These 

experiments have been performed using known malwares 

in the Android world and ordinary useful apps belong to 

Google App store. Finally, Section 6 concludes the paper.  

2. Related Works 

The user of a mobile phone participates in their device 

security by approving requested permissions of an app or 

decline the permissions which is equal to cancel the 

installation process. Research findings show that, most 

users discard checking permissions requested by an 

Android app. There are researchers trying to overcome 

this problem and thus enhance the Android security 

architecture [3-6]. However, Android security architecture 

requires a simple and straightforward for risk computation 

of new untrusted applications. Felt et al [3] proposed 

solutions like changing the categorizations of the Android 

permissions, emphasizing on the security risk instead of 

permissions, and a method of approving permissions. In 

[7] it is suggested that a high level critical information 

access regarding to the user privacy including personal 

data, location information, and contact list are displayed 

instead of the permission names in the first installation 

page. However, similar to permission list, this high level 

information might be bypassed by end users. In order to 

reduce the required space for displaying permissions and 

assisting the user for fast and effective decision making, 

in [1] visualizing summary risk and safety scores are 

suggested. These scores are quantities which can be 

computed based on various permissions requested by an 

app. It is shown that, for most users, displaying a 

summary of risk or safety scores by graphical indicators 

are more effective than textual information of the 

permissions in term of user notification. However, metric 

of risk or safety value computation for untrusted apps is 

not the main concern in [1]. Peng et al [8] introduce 

statistical measures and mining models to compute 

security risk scores and ranking apps based on the 

requested permissions. The approach can rank the 

applications in an Android app store like Google play 

based on their security risk values. Such a ranking aims 

the users to select more secure apps where there exist a 

number of apps with the same functionality and different 

security risk values. Moreover, similar definitions were 

introduced for the concept of security risk regarding to the 

list of permissions requested by apps. In [2], the work in 

reference [8] has been extended and a number of 

statistical and probabilistic generative risk scores for 

Android apps using permission usage patterns have been 

precisely described. All of the measures are defined based 

on the concept of critical permission which is defined as a 

permission which can access sensitive software and 

hardware mobile resources and its usage pattern in 

malicious apps. An Android malware usually abuses 

critical permissions and corresponding API functions 

within its code to perform a malicious activity. The 

proposed risk scores in [2] and [8] are generative and are 

mainly computed using benign apps permission usage 

information. However, for improving the performance, 

authors increase the impact of some critical permissions 

on the resulting risk score values. They manually selected 

nine critical permissions that can be misused by malwares 

but details of the approach for critical permission 

selection was not described. In fact, a systematic 

approach for recognizing critical permissions using 

information contained in previously known malicious and 

non-malicious apps is required. An automated system 

called RiskRanker was introduced in [9] to examine 

whether a particular app is risky in term of having 

dangerous behavior. While a mobile antivirus rely on 

known malware signatures in a reactive manner, 

RiskRanker system can proactively spot zero day Android 

malwares. Since deterministic detection of zero day 

malwares requires further analysis, the system can be 

used as a preprocessing step to sift through a large 

number of apps from an Android market by producing a 

prioritized list of suspicious apps based on their computed 

security risk. However, for risk computation of untrusted 

apps RiskRanker only relies on analysis of known 

malwares and does not take the information of known 

benign apps into account. Enck et al. [10] developed a 

system named Kirin which examines combinations of 

risky permissions to determine whether the permissions 

requested by an app satisfy a certain global safety policy. 
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In this system, permission combinations e.g., 

WRITE_SMS and SEND_SMS are manually specified. 

These combinations could be used in a malicious apps 

and therefore, are used to identify malwares. However, a 

systematic approach for identifying risky permissions or 

combination of them is required.    

A number of approaches have been proposed in the 

literature to classify Android apps into malwares and 

benign apps [11-13]. The aim is to construct a mining 

model like naïve bayes, based on labeled apps augmented 

by some information regarding to static and dynamic 

behavior of malwares and clean apps in order to classify 

future malwares. However, in this context classification 

models usually suffer from significant misclassification 

error on unseen data since there is not a crisp boundary 

between malicious and non-malicious apps. Therefore, 

measuring amount of risk for newly unseen apps is 

preferable for decision making compared to deterministic 

malware detection by classification models. There is other 

category of researches which use static code analysis of 

decompiled apps to analysis malicious activates and 

behaviors within malwares. In this approach, permission 

to function mapping is performed as a preprocessing step 

to recognize which function calls are used and what is 

their ordering. For example, accessing contact list or 

storage and then sending a SMS is a malicious behavior 

used in some malwares. In this way, the extracted 

knowledges and patterns are used to distinguish malicious 

apps from ordinary applications [14-17]. Malware 

detection and risk score computation based on static 

source code analysis can be regarded as complementary 

method for permission analysis. However, it faces some 

challenges like code obfuscation and code writing 

techniques exploited by malware writers which prevent to 

extract suitable features for risk computation. Dynamic 

behavior analysis of the running Android apps is another 

method to detect malwares [18-21]. In this approach, an 

app is running in a testing environment to identify when 

and how a part of code is executed and which resources 

are misused. Both static and dynamic analysis are time 

consuming processes. Ordinary users and Android 

markets require fast approach of risk computation. 

Permission based security analysis and malware 

detection are considered by a large number of researches. 

This is due to its simplicity, explainability, effectiveness, 

and faster analysis. Moreover, it can be augmented by 

static and dynamic analysis. A main drawback of this 

approach is unused permissions of apps since an app can 

request a permission without actually using it, i.e., over 

privileged Android apps. This offers opportunities to 

malware developers to gain access to otherwise 

inaccessible resources. However, this shortcoming can be 

overcome by static and dynamic analysis of source code 

and technique like the function to permission mapping in 

order to confirm permission usage and remove unused 

permissions. In [22], a certification technique, is proposed 

to identify over privileged application in the direction of 

better risk management assessment. In this technique both 

runtime information and static analysis are combined to 

profile mobile applications and identify if they are over 

privileged or follow the least privilege principle. Coarse 

grain nature of permission is another problem since 

granting a permission for an app is equal to allow it to call 

a couple of API functions. Fortunately, almost all security 

measures, analysis, and classification based on 

permissions can also be extended to work using function 

calls in order to obtain more detailed evaluations. Other 

challenges and arising issues regarding to Android based 

security analysis including, incompetent permission 

administration, insufficient permission documentation, 

over claim of permissions, permission escalation attack, 

and TOCTOU (Time of Check to Time of Use) attack 

were reviewed in [23] and existing countermeasures were 

addressed. These findings are useful for better risk 

estimation using requested permissions. Barbara et al [24] 

proposed an approach to evaluate security models based 

on permissions by using the self-organizing maps (SOM). 

They apply the approach on thousands of apps in order to 

analysis permission distributions. They showed that, how 

requesting permissions by apps is related to applications 

categorization. Analyzing decompiled source code of an 

Android app was used in [25] in order to detect data leak 

within the app. In [26] a security tool named MAST has 

been developed to identify high probable malware apps 

using static code and permission usage analysis. PScout 

[27] is another Android security tool developed for source 

code analysis to extract permission to function mapping. 

Applying this tool on the Android source code reveals 

that its permission system has a little redundancy and this 

property remains stable within newer versions of the 

operating system. DREBIN is a system which works 

based on detailed set of static features of apps including 

function call, permission list and hardware usage to 

recognize malware by an SVM based classifier [28]. 

Androgaurd is a reverse engineering tool to disassemble 

and to decompile Android apps. It is designed to analyze 

malicious and non-malicious Android apps [29]. Some 

malicious apps repackage malicious codes into benign 

apps and spread the resulting malwares for easily 

deceiving end users. Although, this method can be 

prevented by verifying digital signature of the original 

apps, some end user might be deceived. In [30], a 

mechanism named SCSdroid (System Call Sequence 

Droid) is devised which adopts the thread-grained system 

call sequences used by apps to extract the truly malicious 

common subsequences from the system call sequences to 

identify repackaged malicious apps without requiring the 

original benign applications. Static dataflow analysis of 

malwares and goodwares have been utilized in [31] to 

construct a k-nearest neighbor based classifier. In this 

classifier, dataflow related API-level features of malicious 

and non-malicious apps have been used as training 

samples for future malwares detection. Feizollah et. al in 

[32] review various types of features including static 

features, dynamic features, hybrid features and 

applications metadata which are used in the literature for 
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Android malware detection. Deterministic recognition of 

Android malwares encounters some challenges since the 

boundary between malwares and goodwares is not crisp. 

Therefore, it is preferred to compute security risk scores of 

apps instead of binary warning signal regarding to being 

malwares or goodwares. However, it requires to have 

effective risk score measurements for precise estimation of 

the risk value. In this study, we have proposed a new risk 

score measurement based on a decision making 

architecture to aim user and systems for making better 

decisions related to potential Android malwares. 

3. Problem Statement 

As mentioned previously, users require a convenient 

method to detect malicious application and make a correct 

decisions. However, at any time, all malwares and their 

signature are not fixed and known, i.e., zero day malwares. 

Therefore, in order to fire a warning signal about using a 

suspicious application a risk score measurement is 

desirable. This measure can be exploited in a security tool 

or embedded in Android to warn a user about malicious 

apps. It can utilize different aspect of an app to compute 

its security risk value. These aspect include, permissions, 

function calls, static or dynamic behavior and etc. 

Android permissions show what might be called or used 

in an app. In order to perform malicious activities, a 

malware requires using critical permissions. Critical 

permissions are those that can give an app access to 

sensitive resources and information. Here, permission list 

of apps are utilized in order to compute their security risk. 

We assume that there is a set P containing |P| permissions 

in a mobile operating system: P = {p1, p2, p3,…,pn}. A 

mobile application A can request a subset of P to perform 

its activities. We use a binary variable named xAp to 

represent the status of permission xp in application A. In 

the other words, xAp can be set when the permission xp is 

requested by an application A. Otherwise it is unset. The 

problem is to measure the security risk of an input 

application A using its requested permissions. This 

measurement requires a formulation and a model which 

can well exploit historical statistics about previously 

known malwares and useful apps. For example consider 

the Table (1) which contains information regarding to 

permissions requested by a number of known apps 

including both malwares (+) and goodwares(-). 

Table 1. Information about some malwares(+) and useful apps(-) 

ID Permissions Malware 

1 INTERNET, READ_PROFILE - 

2 BATTERY_STATS, BLUETOOTH - 

3 BROADCAST_SMS,WRITE_SMS + 

4 
INTERNET,INSTALL_PACKAGE, 

READ_SMS 
+ 

5 
READ_SMS, 

WRITE_EXTERNAL_STORAGE 
- 

6 BATERY_STATS, INTERNET - 

7 INSTALL_PACKAGE, READ_PROFILE - 

8 INTERNET, READ_SMS, BLUETOOTH - 

 

In this table, the second column shows the list of 

permissions really used in each app. For each app, the 

status or label of being malicious or useful are depicted in 

third column. A risk score of an unlabeled app is a value 

which can be computed based on the list of its permissions. 

The criticality of each permission is not pre-determined 

and changes over time. Since the permissions have 

different criticalities based on their historical usage or 

misusage, their contribution in computing risk score might 

be different from each other. A permission’s criticality 

value can be related to its nature and amount of its usage 

in the previously known malware and goodwares.  

An effective security risk score must compute higher 

values for malware samples than benign apps instances. 

The more relative risk score value for an untrusted app, 

the more potentiality of being malware is. In this study, 

the aim is to propose an effective, simple, and explainable 

security risk measurement. This measure of security can 

be used for user warning signal when they are going to 

install or use a suspicious application. Moreover, it can be 

used for apps prioritization based on their security risk or 

safety. Therefore, our aim is not to classify Android apps 

into malwares and goodwares but we are going to propose 

a security risk metric which is meaningful for both 

malicious and useful apps and can well distinguish 

malwares from goodwares by assigning higher risk values 

to malicious apps. Therefore, effectiveness of a risk 

measurement means having high detection rate for 

malwares within a set of unlabeled apps. Figure (1) 

illustrates the overall process of our decision making 

architecture based on the risk computation.  
 

 

Fig. 1. Overall decision making architecture.  

This process computes the risk of untrusted apps using 

analyzed previously known malicious and clean app 

samples. As shown in this figure, labeled malwares and 

benign apps are used to construct the model which 

consists of three main stage including data pre-processing, 

risk parameter estimation, and risk computation. The 

constructed model uses an effective measurement to 

compute risk of future input apps. In fact, the risk of an 

untrusted app or set of apps can be computed by the 

model. The computed risks can be seen as a guiding light 
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for selecting low risk apps for usage or selecting high risk 

apps, i.e., potential malwares for further analysis which 

leads to identify Android malicious apps. 

4. The Proposed Method 

Our evaluation shows that previously proposed 

criterions for risk measurements of Android apps do not 

have good performance because they operate based on 

imprecise definition of the criticality for permissions. We 

require a simple risk score which precisely benefits from 

the underlying statistics of known malwares and benign 

apps and exploit their discrimination power of 

permissions for identifying new malwares. In order to 

analysis statistical properties of permissions in apps and 

defining an effective risk score measure, we have used 

thousands of normal and malicious Android apps. For 

each app sample, requested permissions can be extracted 

using the Android Manifest.xml file exist inside the apk 

package file. Before, gathering statistics, a preprocessing 

can be performed to remove duplicate apps, i.e., several 

different versions of the same app and removing useless 

permissions by permissions to function mapping within 

each app. We have numbered permissions based on their 

alphabetical order from 1 to |P| where P is the set of 

permissions in Android operating system. In order to 

obtain a better risk score metric based on permissions, 

808 malwares and 71331 benign apps are analyzed. In 

this study, we have proposed a risk score measurement 

for effective risk computations of Android apps. As 

mentioned in [2], a good risk measurement has two main 

properties, high detection rate and high explainability.  

In the devised measurement, we have designate a new 

formulation to assign higher risk values to permissions 

which have higher usage in malwares and very lower 

usage in benign apps. The idea is quite simple but 

produces interesting results. That is, the security risk of a 

permission is directly related to its usage in malware and 

inversely proportional to its usage in non-malicious apps. 

Given estimated risk values of permissions, one can 

compute risk of an Android app based on its permission 

list. We name our risk metric as RF(Rarity and Frequency 

based risk metric). Since the proposed measurement 

computes the risk values of permissions according to 

simple statistics of known malwares and useful Android 

apps, it has good explainability. Users can be effectively 

informed regarding to danger about approving risky 

permissions. They can made reasonable decision based on 

total risk score of an app which can be simply computed 

using security risks of its requested permissions. 

Moreover, Android markets can use the devised metric to 

handle the large number of daily submitted apps for 

security analysis by filtering out top most risky apps and 

examining them using time consuming and deterministic 

malware detection methods.  

 

 

A. RF Metric 

As mentioned previously, we require a simple risk 

score which precisely benefits from the underlying 

statistics of known malwares and benign apps. We 

leverage permission statistics of both malwares and 

goodwares to devise an effective risk metric. Permissions 

which are used frequently in malicious apps and rarely 

required by normal apps must have more impact on risk 

score measurement. For each permission, frequency of 

usage in malwares or rarity of usage in goodwares are not 

solely symptoms of having high risk. The reason is, it 

might also have high usage in both malwares and 

goodwares. On the other hand, requesting a permission 

might be rarely occurred in both normal and malicious 

apps. Therefore, an effective risk metric must take both of 

rarity in normal apps and frequency in malwares into 

account. In the proposed metric, for each Android 

permission, its frequency in both benign apps and 

malwares are considered. Based on this idea we have 

designed RF metric for computing security risk of apps 

according to the following equation:  
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In the above equation, |P| and xip are total number of 

permissions and status of pth permission in app xi, 

respectively. Moreover, Cpm and M are usage count of pth 

permission in available malicious apps and total number 

of malwares, respectively. Finally, N and Cpb are total 

number of training benign app samples and the count of 

permission usage in the set of these samples, respectively. 

ε is a very smaller value used to prevent infinite or 

undefined numbers where the permission is not used by 

any analyzed normal apps. In this formulation, Cpb is 

computed as follow: 
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In the above equation, xip =1 if ith app xi, uses pth 

permission and xip=0 otherwise. Similarly Cpb is 

computed according to equation (3): 
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In formulation (1), the higher the score, the more risky 

the application is. In fact, for an app xi, formulation (1) is 

the summation of risks for used permissions in the app. 

Therefore, RF metric can be also defined for each 

permission xp as:  

).).(()(
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p
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     (4) 

The symbols are defined similar to the previous 

equations. We named this risk score measurement, Rarity 

and Frequency based risk score measurement (RF) since 

for risk score computation, it takes the impact of both 

rarity of permissions in benign apps, i.e., the first 

component of the equation and frequency of them in 

malicious apps, i.e., the second component of the 
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formulation, into account. As can be inferred from 

formulation (4), a permission which is used more 

frequently in normal apps, its impact on risk computation 

of apps is reduced. On the other hand, a critical 

permission is frequently requested by malwares. For a 

permission, as the frequency in malwares and rarity in 

clean apps is large it is more critical and more risky. 

For 20 top most obtained risky permissions, Table (2) 

represents their rank based on RF metric, their weights in 

malwares and goodwares, and their RF risk values. The 

permissions are sorted in descending order of their RF 

weights. RF values are not normalized and are computed 

according to equation (4).  

Table 2. Information of top most critical permissions based on RF weights  

Rank Based 

on RF 
Permission Name 

Usage in 

malwares 

Usage in 

benign apps 

RF 

Metric 

1 WRITE_APN_SETTINGS 0.324 0.003 108 

2 INSTALL_PACKAGES 0.218 0.003 72.667 

3 DELETE_PACKAGES 0.062 0.001 62 

4 WRITE_SMS 0.562 0.016 35.125 

5 READ_SMS 0.679 0.023 29.522 

6 DISABLE_KEYGUARD 0.29 0.014 20.714 

7 READ_LOGS 0.269 0.013 20.692 

8 RESTART_PACKAGES 0.348 0.022 15.818 

9 WRITE_CONTACTS 0.417 0.031 13.452 

10 
MOUNT_UNMOUNT_ 

FILESYSTEMS 
0.104 0.008 13 

11 RECEIVE_SMS 0.46 0.036 12.778 

12 CHANGE_WIFI_STATE 0.262 0.021 12.476 

13 SEND_SMS 0.489 0.043 11.372 

14 
RECEIVE_BOOT_COMP

LETED 
0.566 0.059 9.5932 

15 ACCESS_WIFI_STATE 0.671 0.076 8.8289 

16 
ACCESS_LOCATION_ 

EXTRA_COMMANDS 
0.126 0.016 7.875 

17 CALL_PHONE 0.415 0.069 6.0145 

18 READ_CONTACTS 0.392 0.085 4.6118 

19 READ_PHONE_STATE 0.931 0.222 4.1937 

20 
ACCESS_NETWORK_ 

STATE 
0.808 0.2941 2.7474 

 

As would be seen in the experimental section, the 

relative values of estimated risks are considered to 

compute and to compare the risks of apps. As shown in 

Table (2), a permission with a relative high usage weight 

in malwares, might have a lower RF weight and thus low 

rank with respect to the other permissions. For example in 

this list READ_PHONE_STATE, has most usage in 

malwares but it has nineteenth rank regarding to RF risk 

value. On the other hand, for a permission, the rarity of 

usage in benign apps solely does not determine amount of 

risk value since it might be also rarely requested by 

malwares. For instance, in Table (2), 

DELETE_PACKAGES is rarer than 

WRITE_APN_SETTINGS and INSTALL_PACKAGES 

but it is less risky than these permissions. Based on the 

proposed risk score measurement we have re-defined the 

criticality concept of permissions in Android platform. 

Criticality of a permission: It is a relative and 

variable property which directly proportional to its usage 

in the current malware samples, and inversely 

proportional to its normal usage in benign apps. 

There are some important points regarding the above 

definition. First, the criticality is a relative property. That 

is, we cannot categorize permission into two separate sets, 

i.e., critical and not critical.  In the other words, the 

permission can be compared together based on their 

criticality or risk value. This value can be estimated using 

a metric like RF in equation (4). The second point is 

regarding to the variable nature of the criticality. That is, 

based on permission usage pattern for current malwares 

and useful apps development, the criticality of 

permissions and number of critical permissions might be 

changed over time. It is obvious that the amount of risk 

for a permission is not fixed and must be periodically 

recomputed or updated due to developing new malwares 

and thus new permissions usage patterns. Finally, the last 

point is about approach for accessing critical resources 

and sensitive data through permissions by malicious apps. 

Malware developers are not interested in using some 

permissions to perform malicious activities due to some 

reasons despite critical resources and private data access 

through the permissions. For example, based on our 

analyses which is partly shown in Table (2), permissions 

related to using Bluetooth capabilities, i.e., 

BLUETOOTH and BLUETOOTH_ADMIN are not used 

frequently in malicious apps and have RF values very 

close to zero. This might be due to restrictions of using 

such capabilities.  

B. The Algorithm 

In this section, the pseudo code of algorithms for 

computing risk of permissions and apps based on the 

proposed RF metric are described. In these algorithms, it 

is supposed that preprocessing is performed on all app 

samples including malwares, benign apps, and untrusted 

input apps. The preprocessing consist of permission 

extraction, removing unused permissions, and removing 

duplicate apps, i.e., various versions of distinct apps, and 

etc. Figure (2) depict pseudo code of the algorithm for 

computing RF metric for the permissions based on 

training normal and malicious app samples. Algorithm for 

prioritizing a set of apps based on their security risk value 

is shown in Figure (3). This algorithm gets three 

parameters named SP, SB, and SM which are the set of 

Android permissions, set of benign app samples, and set 

of malwares, respectively. In line 1, the number of normal 

and malicious apps are obtained. In lines 2 through 14 for 

all permissions, the RF metric is computed. For each 

permission, in lines 3 through 7 counts of the permission 

usage in normal apps is accumulated in Cpb variable. 

Similarly, using lines 8 through 12 similar counting and 

accumulation is performed for malwares using Cpm 

variable. According to equation (4), in line 13, for each 

permission xp, Cpb and Cpm are used to compute risk value 

of the permission based on the rarity value of the 

permission in normal apps and its frequency value in 

malicious apps, respectively. Finally, in line 15 a list 

containing computed risk values of all permissions is 

returned. These values are used for computing risk values 

of input apps which is described by the next algorithm. 
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Algorithm RFCompute(SP, SB, SM) 

Begin 

1. N = |SB|; M = |SM|; 

2. for each permission SPxp   do 

3.    for each sample SBs do 

4.         If px  is requested by s then  

5.                   Cpb = Cpb + 1; 

6.         end if; 

7.    end for;  

8. for each sample SMs do  

9.          If 
px  is requested by s then 

10.                   Cpm = Cpm + 1;       
11.          End if; 

12.   End for;  

13. )()()( M

C

C
N

p
pm

pb
xRF  

 

14. End for;          

15. return RF; 

End; 

Fig. 2. Risk computation for set of permissions 

The overall structure of RFCompute algorithm 

consists of an outer loop and two inner loops. The number 

of rounds for outer loop is equal to |P| which is the 

number of permissions in SP set. First and second inner 

loops have |SB| and |SM| numbers of iterations, 

respectively which are the sizes of benign set and 

malware set, respectively. Usually the number of 

analyzed benign apps are greater than the number of 

malicious apps as you can see in our analysis and 

experimentation. Therefore, the complexity of 

RFCompute algorithm is calculated as follow:  
 

O(RFCompute)=O(|P|×(|SB|+|SM|))=O(|P|×|SB|+|P|×|

SM|)= O(|P|×|SB|)    (5) 
 

Therefore, as the number of analyzed app is increased, 

a more time is required for risk computation of Android 

permission. However, the process of risk computation is 

performed once and risk value of each future app can be 

computed using obtained risk of permissions. 

Risk computation can be performed for an individual 

apps. However, risk values of Android apps are also 

meaningful where untrusted apps are compared together 

based on their risk or where high risk apps must be 

identified. For example, when a user wants to compare 

some same functionalities untrusted apps to select lowest 

one or when top most risky apps must be selected for 

further examination to identify zero day malwares in an 

Android market or in a user device. In this situations, a 

prioritized list of available untrusted apps is desirable. 

Figure (3) briefly describes risk computations based on 

RF metric for a list of preprocessed input apps in order to 

prioritize them according to their risks. In this algorithm, 

SP, SA, and RF, respectively, are set of permissions, set of 

untrusted input apps, and the list of computed RF risk 

values of the permissions as illustrated in the previous 

algorithm. In lines 1 through 3, risk of each input app is 

computed. In line 4 apps are sorted based their risk and 

finally the sorted list of apps as well as their risk values 

are returned in line 5. The sorting order can be either in 

descending or ascending order based on the application of 

risk computation.  
 

Algorithm RiskPrioritization(SP, SA, RF) 

Begin 

1. for each app SAxi   do 

2.       );)(()(  


SPx ipipi
ip

xRFxxRF  

3.      end for; 
4. SA= Sort(SA, RF);  

// Sort input apps based on their RF risks  in descending 

order 
5. return SA; 

End; 

Fig. 3. Apps prioritization based on RF metric  

C. An Exampl 

For better describing the overall process based on the 

proposed metric, after preprocessing of malicious and 

clean app samples, consider the following example. In 

this toy example which is designed similar to a real 

situation, our approach for computing risk of the 

permissions and any app A is explained.  

Example: Suppose that, there is a set of labeled apps 

including both malwares and useful apps according to Table 

(1). Here, it is not important how these apps were labeled.  

In order to compute security risk score of unknown 

apps, the risk values of all permissions must be computed. 

For all Android permissions, statistics regarding to their 

rarities in goodwares and their frequencies in malwares 

must be computed to obtain risk score of future apps. 

Suppose that based on the above example, we have an 

unlabeled Android app A which requires 

INSTALL_PACKAGES, INTERNET, READ_SMS, and 

BLUETOOTH permissions. For these permissions, the 

value of rarity and frequency are computed. For the first 

permission, it is requested by one benign and one 

malicious apps. These values for the second permission 

are 3 and 1, respectively. READ_SMS is requested by 2 

benign and one malicious apps, respectively. Finally, 

BLUETOOTH is requested only by two normal apps. 

Based on obtained values of rarity in benign apps and 

frequency in malwares, the security risk of this app 

according to equation (1) is estimated as: 
 

RF(A)=RF(INSTALL_PACKAGES)+RF(INTERNET)+RF(READ_S

MS)+RF(BLUETOOTH)= (6/1×1/2)+ (6/3×1/2)+ (6/2×1/2)+ 

(6/2×0/2)= 3+1+1.5+0 =5.5     (6) 
 

As can be inferred from the above computation, in this 

example, BLUETOOTH permissions don’t have any 

contributions in the resulting value since it was not used by 

any malware. The computed risk value can be used to 

prioritize several apps based on their risks. For an app, 

having a security risk essentially is not a reason for being 

malicious but it is a warning signal for the user or can be 

used as a pre-processing step for more detailed analysis. 

Risk scores of apps are also relative values and can aid users 

to select low risk apps. That is, having more than one app 

with the same functionality and various security risk scores, 

selecting lowest risk app is a more preferable decision. 



 

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016 
 

251 

5. Experimental Evaluation 

In order to evaluate the proposed risk score 

measurements, required codes are developed using Matlab 

2013. We have obtained publically available preprocessed 

malwares and goodwares datasets as well as source codes of 

some previous approaches belong to authors of reference [2] 

from the web
1
. For useful ordinary apps, Market 2011 and 

Market 2012 are used which we named them as Benign 2011 

and Benign 2012, respectively, since they contains non-

malicious apps of Google app store at year 2011 and 2012 

A.D. These dataset contain permission information of 71331 

and 136534 useful apps, respectively. Both malwares and 

benign apps datasets have 122 columns which are 

alphabetically ordered permissions of apps in recent versions 

of Android operating system. Table (3) summarizes 

characteristics of the used datasets for our evaluations. 

Table 3. Android apps datasets specifications for evaluation and comparisons 

Dataset 

Name 

Number 

of Apps 
‌Brief Description 

Benign2011 71331 
Useful apps of Google App store in 2011 

A.D 

Benign2012 136534 
Useful apps of Google App store in 2012 

A.D 

Malwares 808 A number of known Android malwares 
 

In order to compare the proposed measurement 

against previously proposed ones, our proposed RF and 

couple of previously proposed risk score measurements 

have been evaluated. Table (4) summarizes all of these 

metrics. Some of them are statistical and others are 

probabilistic mining models. The interested readers are 

referred to [2], [8], and [23] for more details. 

Table (4): Summarization of previous risk scores 

Risk Metric Meaning 

RCP Rare Critical Permission 

RPCP Rare Pairs of Critical Permissions 

RS Rarity based risk Score 

RSS Rarity based risk Score with Scaling 

BNB Basic Naive Bayes model 

PNB Naive Bayes with informative Priors 

MNB Mixture of Naive Bayes models 

HMNB Hierarchical Mixture of Naive Bayes models 

Kirin Certain combinations of dangerous permissions 
 

In the experimentation, the main concern is detection 

rate. That is, detecting malwares by assigning relative 

higher risk to them. Using Benign 2011 and Malware 

datasets, the detection rates are computed with respect to 

a range of warning rates from 0 to 1. 

A. ROC Curves 

Figure (4) shows resulting ROC curves of all metrics 

where horizontal and vertical axes are warning rate and 

detection rate, respectively. The only exception is Kirin 

method which contains fixed rules and does not require 

warning rate parameter. For this method, instead of ROC 

curve, its fixed detection rate value is depicted by a single 

point. In order to evaluate a risk metric, we have placed 

all malwares and ordinary apps in the same list and sort 

                                                           
1. https://github.com/hao-peng/AppRiskPred 

them in descending order of computed security risk 

values of the metric. The more malwares placed in the top 

of sorted list, the stronger security risk score is. For 

evaluation, we use 10-fold cross validation approach. For 

this purpose, Benign 2011 and malwares are placed in the 

same list and at each fold, both models are made using 90 

percent of the list. Using each model separately, the 

ordered remaining 10 percent of the list is obtained. For 

various percentage values, top most security risk score 

apps are selected from the ordered list. Subsequently, for 

each model’s ordered list, it is determined that what 

percent of malwares are contained in the selected apps. In 

this setting, the percentage of selection from each ordered 

list and determined percentage of malwares are named 

warning rate and detection rate, respectively. In the other 

words, number of false positives and true positives are 

directly proportional to warning and detection rates, 

respectively. Although, the ranges of computed risk 

scores of the compared measurements are different, based 

on this approach, they can be fairly compared together 

since there is not any absolute warning rate threshold. It is 

obvious that, as a risk measurement is stronger, a larger 

number of malwares are resided on the top of the ordered 

list and thus the measurement has more detection rate. 

Additionally, a stronger risk score measurement has high 

detection rate in smaller warning rate e.g., 1%, 5% since 

in this experimental setting smaller warning rate is equal 

to smaller fraction of top most risk score apps. In the 

other words, the end user expects that the top high risk 

score apps are malicious not normal. 
 

 

Fig. 4. Detection rate for various warning rates.  

As can be seen from Figure (4), the proposed metric is 

superior to the other approaches especially for smaller 

warning rates. As warning rate increases, the performance 

gaps are reduced and all metrics converge to full detection 

rate. However, smaller warning rate is more desirable for 

user where number of false positives are smaller. 

Moreover, area under the curve for RF metric is close to 

one which shows the effectiveness of the proposed risk 



 

Deypir & Sharifi, An Effective Risk Computation Metric for Android Malware Detection 

 

252 

score measurement. Therefore, obtained results confirms 

the superiority of RF in term of assigning relative higher 

risk values to malicious apps than non-malicious ones. The 

reason is, RF considers both rarity of permissions in normal 

apps and frequency of misused ones in malicious apps.  

B. Area Under The Curves (AUC) 

For better illustration of this experiment, Area Under 

Curve (AUC) of ROC curves are computed for various 

risk scores metrics since some ROC curves are very close 

to each other especially in larger warning rate values. The 

AUC is computed up for small warning rate values of 

ROC curves. The results is plotted in Figure (5).a and 

Figure (5).b for 1 percent and 5 percent of warning rates, 

respectively. Similar results are obtained for other values. 

As shown in this figure, the proposed RF measure has 

better performance than other metrics. In fact, RF is 

significantly better than other metrics especially for small 

warning rates where users are interested in. The reason is 

the better distinguishing power of RF which can better 

differentiate malwares from goodwares. Moreover, the 

proposed RF metric utilizes permission usages statistics 

of both malwares and goodwares together while the other 

risk scores mainly focuses on malware or goodware 

permission usage patterns or manually take the impact of 

malware statistics into account. 
 

 

Fig. 5. Comparison of Area Under Curve (AUC) 
up to 1% and 5% warning rates. 

For example, RSS which has closest detection rate to 

our proposed RF metric, considers only the rarity of 

permissions in benign apps augmented by scaling factors 

to increase the impact of some manually selected critical 

permissions. This measurement takes the weights of rare 

permissions into account and exploit it to compute 

estimated value of risk. However, a permission may be 

rarely used in both malicious and non-malicious apps.  

 

C. Performance on Unseen Data 

In order to evaluate generalization of the proposed risk 

measurement, we must apply it on unseen apps. For this 

purpose, we repeat the above experiment using Benign 

2012 and malwares. That is, we obtain usage statistics of 

permission using Benign 2011 and test it on Benign 2012. 

In the other words, we use whole set of Benign 2011 for 

training and whole set of Benign 2012 for test. In training 

and testing phases, RF values of permissions are 

computed according to usage statistics of the permissions 

in Benign 2011. Subsequently, detection rates of various 

warning rates for Benign 2012 and Benign 2011 are 

computed and resulting ROC curves are obtained and 

shown in Figure (6). As can be seen from this figure, the 

metric has high performance for seen and unseen apps. 

However, for unseen apps, detection rate is slightly 

degrades. This is due to change in permission usage 

patterns in newly developed apps which leads to change 

in risk of permissions and apps. Therefore, in order to 

obtain better estimation of security risk, usage statistics of 

permissions must be periodically updated since the 

criticality values of permissions are not fixed. 
 

 

Fig 6. Performance of the proposed risk metric  
for seen and unseen apps 

In fact, permission usage pattern of Android apps is 

changed over time since new apps with various services 

and capabilities and thus new permission requirements are 

introduced in the world. On the other hand, malware 

developers use new techniques to entice users for 

malicious apps installation which also leads to change in 

permission usage pattern.  

6. Discussion and Conclusion 

In this study, a new risk score metric namely RF is 

devised which has better detection rate with respect to 

other measurements due to precise identification of the 

critical permissions. Empirical evaluations on real 
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Android apps show that RF computes relative high risk 

values for known malwares rather than ordinary apps 

since it can well differentiate between permissions in term 

of their usage in malwares and clean apps. As a result, RF 

has high detection rate in comparison to previous risk 

score measurement. Moreover, the proposed measurement 

is highly explainable since it can be computed for an app 

by simply summation of the risk values of critical 

permissions requested by that app. Risk values of the 

permissions can be pre-computed using available known 

malwares and goodwares. An overview on top most 

critical permissions listed in Table (2) obtained by the 

proposed metric shows that these permissions are 

examples of those ones that an app can perform malicious 

activities by granting a subset of them. In this study, all 

analyzed malicious apps are categorized into the same 

category named malwares. However, by using larger and 

categorized malware datasets we can compute risk scores 

more precisely. In the other words, exploiting prior 

knowledge of malware types including Trojan, Adware, 

Spyware and etc. could enhances the obtained 

performance since various malware types have different 

impacts and thus various security risk values. For 

example, an Adware can be less dangerous than a 

spyware. Computing RF for pair of permissions can 

further improve the performance of devised approach and 

thus obtaining better estimation of security risk values. 

Although the proposed approach is based on permission 

analysis it can be extended to or completed using other 

features like Android function calls and dynamic running 

flow analysis which contain more detailed information.  
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