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Abstract 
This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble 

classification is an efficient method to improve the performance of the classification system. This method gains the 

advantage of a set of expert classifiers. A speaker verification system gets an input utterance and an identity claim, then 

verifies the claim in terms of a matching score. This score determines the resemblance of the input utterance and pre-

enrolled target speakers. Since there is a variety of information in a speech signal, state-of-the-art speaker verification 

systems use a set of complementary classifiers to provide a reliable decision about the verification. Such a system receives 

some scores as input and takes a binary decision: accept or reject the claimed identity. Most of the recent studies on the 

classifier fusion for speaker verification used a weighted linear combination of the base classifiers. The corresponding 

weights are estimated using logistic regression. Additional researches have been performed on ensemble classification by 

adding different regularization terms to the logistic regression formulae. However, there are missing points in this type of 

ensemble classification, which are the correlation of the base classifiers and the superiority of some base classifiers for 

each test instance. We address both problems, by an instance based classifier ensemble selection and weight determination 

method. Our extensive studies on NIST 2004 speaker recognition evaluation (SRE) corpus in terms of EER, minDCF and 

minCLLR show the effectiveness of the proposed method. 

 

Keywords: Speaker Recognition; Speaker Verification; Ensemble Classification; Classifier Fusion; IBSparse. 
 

 

1. Introduction 

Scientific studies have shown that, there are varieties 

of information in a speech signal which can help speaker 

recognition. Speaker recognition is a process of decision 

making about a speaker’s identity using the person’s 

speech signal. The field of speaker recognition contains 

two main branches; speaker verification and speaker 

identification. In speaker verification, an identity claim is 

first constructed and then the claim is accepted, or 

rejected, based on the information extracted from the 

corresponding speech signal. On the other hand, a speaker 

identification system, at first, registers a set of target 

speakers and then determines the identity of the owner of 

an incoming speech signal. Since a speaker verification 

system can lead to speaker identification and there are 

more sophisticated criteria to evaluate a speaker 

verification system, the majority of speaker recognition 

research is devoted to speaker verification tasks. To gain 

advantage of different information of speech in the 

verification process, an ensemble of base classifiers can 

be used. Classifier fusion is an important subject in 

speaker verification which can be performed on the 

feature, score or decision level [1]. On the feature level 

fusion, different feature vectors are concatenated to 

construct a new feature vector. In speaker verification, 

fusion of scores includes obtaining matching scores for 

each base classifier and obtaining a final score from these 

base scores using a proper role. On the decision level 

fusion, the final decision is a logical fusion of decision 

output of different classifiers or modalities. This logical 

fusion can be "AND", "OR" or a combination of both. In 

this paper, we focus on score level fusion where the final 

score is a weighted summation of base scores. Contrary to 

most of the classifier fusion for speaker verification 

works, which use the weighted sum of scores for all test 

instances [2], or a simple arithmetic mean of scores as the 

final score [3], we use an instance-specific ensemble of 

classifiers whose weights are adopted separately for each 

test instance. Despite that using permanent weights for 

score fusion in a speaker verification task, may be 

effective in some situations, obtaining optimum weights 

which are effective for all test instances is troublesome. In 

these methods a set of unique weights are learned on 

training or held back data. Thereafter, these weights are 

used in the verification process of all trials. This may not 

be generalizable to all test samples, since some base 

classifiers may be effective for some of the test samples 

and not for others. In this paper, we consider this issue 

and exploit the instance-specific behavior speaker 

classifiers. To do this we were inspired by [2], [4] and [5], 

and act in the following procedures: 
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 We determine the weight of each classifier 

according to the test instance. Then, we calculate 

the final score as a weighted sum of scores 

obtained from all base classifiers. 

 We also consider sparse classifier fusion using the 

behavior. Therefore, in this case, the final score is 

a weighted sum of scores from a few base 

classifiers. 

 We introduce a new formula to determine the final 

fusion score. 

Logistic regression with elastic-net regularization is 

also considered as a baseline to show the effectiveness 

and generalization power of the proposed method. 

2. Base Classifiers 

A typical speaker verification system consists of train 

and test phases. In the train phase we introduce target 

speakers to the system. In the test phase incoming 

unlabeled utterances are claimed as belonging to one of 

the enrolled targets and the system verifies validity of this 

claim. Figure 1 shows workflow of such a system. 

Speaker feature extraction methods transform the original 

speech signal to a compact representation. These methods 

aim at holding speaker specific information it the 

resulting representation.  

To create powerful base classifiers, we used four 

widely used speech features in speaker recognition. These 

features are mel-frequency cepstral coefficients (MFCC), 

perceptual linear prediction (PLP), stabilized weighted 

linear prediction (SWLP) [6], and linear predictive 

cepstral coefficient (PLCC) [7]. Conventional linear 

prediction (LP) determines a pth order autoregressive 

model for a speech frame, by minimizing the sum of 

squares of prediction errors. Weighted linear prediction 

(WLP) is obtained by introducing temporal weighting of 

the squared prediction error. The SWLP which is used in 

our research, is a variant of WLP that guarantees the 

stability of WLP filter. A concise description of MFCC 

and PLP feature extraction is provided in [8]. 

In the matching step, the system tries to specify the 

similarity of enrolled target features (templates) and 

incoming speech features, in terms of a verification score. 

In the late steps of the verification, the score is compared 

to a predefined threshold value. This threshold value is 

computed from training data. If the score of the trial is 

more than the threshold, the claim is accepted, otherwise 

it is rejected.  

We used three different powerful modeling methods 

of speakers. These methods are, GMM-SVM-KL [9], 

GMM-SVM-BHAT [10] and ivector-PLAD [11]. SVM 

based methods have been successful in text independent 

speaker verification. In these methods, the SVM is 

combined with the GMM supervector concept. They 

derive a kernel (we used Kullback-Leibler (KL) 

divergence and Bhattacharya (BHAT) distance), then 

apply the Nuisance Attribute Projection (NAP) [12] to the 

kernel. Total variability or ivector systems provide an 

elegant way of dimensionality reduction of speech 

features. This technique converts a sequence of feature 

frames to a fixed length low dimensional vector. This 

vector represents the whole utterance (i.e. the whole 

speaker) and can be an input to a standard pattern 

recognition algorithm. We then use Probabilistic Linear 

Discriminant Analysis (PLDA) for scoring.  

 

 

 

Fig. 1. Block diagram of a typical speaker verification system 

 

3. Score Fusion in Speaker Verification 

There are three main levels on which biometric 

classifier fusion can occur: feature level fusion, score 

level fusion and decision level fusion. Feature level fusion 

(early fusion methods) occurs before the invocation of the 

matching block (Figure 1). In this process a new feature 

vector is created. This new feature vector is a 

combination of previously extracted features. The 

matching step is performed on the new feature vector. In 

score level fusion (late fusion methods), which is our 

main subject, some basis expert classifiers are firstly 

employed to obtain the matching score between each test 

sample, and the previously stored templates. It is shown 

that score level fusion methods provide better results than 

feature level fusion [5]. In decision level fusion 

approaches, accept or reject decision of individual 

classifiers serve as input to the fusing function [13].  
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In the case of score fusion, the final score is obtained 

as,       ∑     
 
   , in which L is number of base 

classifiers,    is added to calibrate the final score and    
and    are weight and score of lth classifier, respectively. 

Regardless of training individual classifiers, there is a 

need to train the fusion process. An intuitive way of 

obtaining a final score from ensemble classifier scores is 

to estimate the fixed weight for each classifier. To do this 

one needs a set of labeled scores, whose labels are either 

0 (    ) if the utterance belongs to the claimed target or 

1 (    ) if the utterance does not belong to the claimed 

target. If the number of training scores is     , a 

development set   *(                )+ is used to 

train this model. Such a system does not need to know 

anything about how individual classifiers are trained or 

the speech features. After selecting proper training scores 

an optimization method is employed to minimize an error 

criterion or maximize an efficiency measure. The 

optimization can be directly performed using a neural 

network [14], heuristic algorithms [15] or the widely used 

logistic regression [2].  

3.1 Logistic Regression Based Fusion 

State-of-the-art speaker verification systems use 

multiple classifiers to make a reliable decision. Linear 

regression is a discriminative model [16] which is 

commonly used to fuse scores in speaker verification. In 

this section we explain why this method is widely used 

and accepted in speaker verification and how it is 

improved in recent years. 

In test phase of an ensemble speaker verification 

system, an identity is firstly claimed for an incoming 

utterance signal. Each classifier in the ensemble, 

measures validity of the claim, in terms of similarity score. 

At this stage the system needs a score fusion method to 

accept or reject the claim. The score fusion method 

should realize a mapping from    space to a binary space 

{0, 1}, where 0 means the identity claim is accepted and 1 

means it is rejected. We can cast the problem as two 

target classification problems with an n dimensional input 

feature vector. Elements of these vectors should be of the 

same type, e.g. probability. One may calculate best 

weights, which minimize classification error for the 

training set, using a brute force approach. But, there is a 

question of generalization. There is considerable variation 

between training and runtime scores. This is why it is 

recommended to use estimates of real probabilities as 

scores [17]. Bayesian framework [16], which minimizes 

classification error probability, can be used to reach those 

probabilities. We will provide a general overview of the 

Bayesian decision rule next here.  

Suppose there are two classes,   and  , representing 

target and non-target (Imposter) classes, respectively. For 

a given random score vector of X, which may belong to 

either of class the cost of classifying a class i score vector 

into a class j event, can be a zero-one loss function 

(Equation (1)): 
 

    {
         
         

 (1) 

 

This assigns zero loss to a correct classification and a 

unit loss to a miss classification. Under this assumption, 

Bayes rule defines the posterior probability of class i as 

Equation (2): 
 

 (    )  
 (    )  (  )

 ( )
 (1) 

 

Where  ( )  is prior probability of X and  (  )  is 

prior probability of   . We need to estimate probability 

distribution correctly, to get reliable scores. In [17] it is 

explained how we can reduce Equation (2) to  (    ) 
using assumptions about prior probabilities. If we suppose 

different base classifiers are independent of one another, 

 (    ) results in equation (3): 
 

 (    )   (          )  ∏ (     )

 

   

 (2) 

 

Where K is the number of base classifiers,    is a label 

for class i and    is the kth element of score vector. Since 

the scores for   class (target) are correlated, the recent 

assumption is not intuitive. This is due to the fact that if a 

trial belongs to a target class, scores of all good classifiers 

are close to unity. It is more reasonable to believe that    

for the imposter and (    )  for the target are not 

correlated. The posterior probability of target class can be 

derived as equation (4) [17]: 
 

 (         )  
 

    {(∑   
 
   )   }

 (3) 

 

Where      
 ( )

 ( )
, and      

 (    )

 (    )
 . 

 

If we suppose that the probabilities are members of 

the exponential family (equations (5) and (6)): 
 

 (    )   (  )  
(         ) (4) 

 

 (    )   (  )  
(         ) (5) 

 

Then equation (4) is reduced to logistic regression 

(LR) model or logistic distribution function (equation (7)): 
 

 (         )  
 

     ( )
   (6) 

 

Where: 
 

 ( )                   (7) 

   ∑(       )

 

   

   
 ( )

 ( )
 (8) 

         (9) 
 

A particular case of the exponential family is a 

Gaussian distribution. If we suppose distribution of the 

classes are Gaussian, equations (9) and (10) become equal 

to equations (11) and (12). 
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Where   
  and   

  are the mean of the target and 

imposter distributions, respectively, and   
  is the 

common variance. An interesting result of this method is 

that, the weight of the kth classifier,   , is proportional to 

the difference of the means of, the target and imposter 

distributions and if the classifier has scattered target 

scores it is not reliable and has a lower weight.     

To this point we should find optimal weights (   in 

equation (8)), so that  (         ) , indicated by 

equation (7), is maximized. To solve the problem, 

researchers took many issues in to consideration and 

introduced cost functions. One of the most recent defined 

cost functions is     (   )[2] which is given by: 
 

    ( )  
    
  
∑   (     

              )

  

   

 
      
  

∑   ( 

  

   

   
              ) 

(12) 

 

Where           
  (     (    )       (      

   )), depends on the prior probability of a target speaker 

(    ), the cost of miss classification (     ) and the cost 

of false acceptation (   ). The aim of defining such a cost 

function is to find the optimal weights which minimize 

the cost function. Equation (14) formulates this 

optimization problem: 
 

         
 

    ( ) (13) 
 

This formulation changed to (15) when V. Hautamӓki, 

et.al. showed in [2] that, a regularized version of equation 

(14), which takes a sparse number of classifiers in the 

ensemble, acts better. This optimization problem is 

regularized using a combination of ridge and LASSO 

regressions which is called elastic-net.   
 

         
 

*    ( )

  ( ‖ ‖  (   )‖ ‖ 
 )+ 

(14) 

 

Where coefficient,  , which is a Lagrange multiplier, 

determines the amount of shrinkage of the weights. The 

constraint ‖ ‖  is known as LASSO and ‖ ‖ 
  

corresponds to ridge regression.In elastic-net, the LASSO 

part causes most of the weights to be near zero. This means 

that, it is a sparsity promoting constraint. The other part of 

the elastic-net is ridge constraint, which causes the weights 

not to push as aggressively as LASSO only constraint. 

Coefficient   determines the amount of participation of the 

LASSO and ridge in the equation. This problem can be 

solved using the ProjectL1 algorithm [18]1.  

Although this method tries to increase the 

generalization capability of the classifier fusion, it 

identifies a unique weight for every classifier. These 

weights are obtained from training or held-out data and 

are used on all instances. This method also chooses a 

sparse number of classifiers during the training process 

and omits most of them from the test process. We show 

that a classifier, which is omitted from the ensemble set, 

has better performance for specific test instances. Recent 

studies showed that, taking the instance based behavior of 

classifiers improves generalization of the ensemble 

classifier [4],[5]. In the following section we introduce 

the proposed method to take the instance base behavior of 

speaker verification experts. 

3.2 Instance Based Ensemble and Weight Selection 

Weights which are selected based on a test sample, 

should score the prediction capability of each classifier on 

that sample. If the test sample in a trial is positive (real 

target), and the score of a classifier is high, then its weight 

should be high, and the weight should be low when this 

score is low. If the sample is negative (is not target), and 

the score of a classifier is high its weight should be low 

and if its score is low, it means that the classifier has 

made a reasonable decision, and the weight should be 

high. We call the proposed method instance based sparse 

classifier fusion (IBSparse). 

Discovering individual weights for each trial is a 

challenging task. Since there is no information about the 

real label of the trial, we do not know if the classifier 

decision is correct or not, and as a result, it is not clear 

how to derive a specific weight for the classifier.  

3.2.1 Clarity Index 

Clarity index is an objective that can be used to obtain 

sample specific weights [4]. This objective is based on 

test scores and previously obtained training scores and 

has nothing to do with low level features. Each classifier 

has    positive and    negative training scores, which are 

obtained in the training phase. The positive scores are 

those scores whose related utterance originated from the 

target and negative scores are scores that belong to the 

impostor utterances. The Clarity index depends on two 

factors. The first factor is Relevance Loss (RL) which 

determines the position of a test score vector,    , against 

negative training scores (  
   ). Equation (16) defines RL: 

 

  (     )  
 

  
∑ (    

         )

  

   

 (15) 

 

Where   is the weight vector,     is the test score 

vector,    is the number of negative training scores and U 

is the unit step function. RL is a fraction of the non-target 

                                                           
1 Available online at: 

"http://www.cs.ubc.ca/~schmidtm/Software/code.html" 
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training scores divided by the total number of non-target 

scores. Therefore, this value is in the range of [0,1]. For a 

target trial, the ideal state is that the test score will be 

higher than all negative training scores. As a result, this 

value is desired to be close to 0. For a non-target trial, the 

ideal state is that the test score would be less than all 

negative training scores, consequently, the value is 

desired to be close to one.  

The second factor is irrelevance loss (IL) which 

determines the position of a test score vector against the 

positive training scores (  
   

). Equation (17) defines IL: 
 

  (     )  
 

  
∑ (          

   
)

  

   

 (16) 

 

Where    is the number of positive training scores. IL 

is desired to be close to 1 for a target trial and 0 for a non-

target trial. 

The raw clarity index is then defined as the difference 

between RL and IL (Equation (18)): 
 

   (     )    (     )    (     ) (17) 
 

An absolute value of RCL it called the clarity index 

(Equation (19)): 
 

  (     )     (     )    (     )  (18) 
 

The range of the clarity index is [0,1]. As it is 

mentioned, for a target trial the ideal value of RL is 0 and 

IL is 1, thus the ideal value of CL is 1. For a non-target 

trial, the ideal value of CL is also 1. Thus a higher value 

for the clarity index means that the decision is more 

dependable. Therefore we use it to select a sparse number 

of classifiers and use it in the weight learning process.  

3.2.2 Weight Learning and Ensemble Selection 

By using the clarity index in the classifier selection we 

solve three problems. The first problem is as a result of 

the fact that classifiers have different performance with 

respect to different test samples. This in fact, affects both 

classifier selection and weight determination, which is not 

exploited in previous works. The second problem is in 

choosing an efficient number of classifiers and the third is 

the correlation between the classifiers. There may be a 

different number of efficient classifiers for different test 

samples and they may or may not correlate in different 

situations. In sparse classifier fusion for speaker 

verification, these problems are not efficiently addressed 

either. By using the clarity index and a proper threshold 

value, we can choose an adaptive number of efficient 

classifiers. The proper threshold value is chose from the 

training scores so that the final EER for the training 

scores is minimized. In the case where the clarity index of 

all classifiers falls below the threshold, we use a 

predefined minimum number of classifiers.  

In the ensemble selection process we do not have the 

weight vector to calculate the clarity index for each 

classifier. Thus, we change RL and IL formulation and 

replace     
    and     

   
 with   

    and   
   

 

respectively.    
              are negative scalar scores 

and   
   
           are positive scalar scores related to 

the classifier. 

We use two strategies for sample based classifier 

ensemble selection. In the first scenario, we choose a 

fixed threshold on the clarity index. Classifiers with a 

clarity index higher than the threshold are used in the 

ensemble. With this strategy, different classifiers are used 

for different test samples. In the case where all the indices 

are lower than the threshold, all 12 classifiers participated 

in the ensemble. In the second strategy, the threshold is 

not fixed and varies according to the values of the clarity 

index, related to each test sample. In this scenario, the test 

score of each classifier is first calibrated to log the 

likelihood ratio [19] then we use the threshold to select 

confident classifiers. 

To take the sample specific behavior of classifiers and 

gain the generalization ability of equation (15) we 

propose to use equation (20): 
 

      
 

    ( )    ( 
      ) (19) 

 

Where   is a function of the test sample, current 

weights, and positive and negative training samples. If we 

directly substitute CL into the equation (20), the 

optimization becomes generally intractable, because due 

to the definition of RL and IL it is a discrete measure and 

cannot be differentiated. Thus we approximate the 

discrete relevant and irrelevant losses by differentiable 

sigmoid functions (Equations (21) and (22)):  
 

  (     )  
 

  
∑

 

      
 (  

       )

  

   

 (20) 

  (     )  
 

  
∑

 

   
    (     

 
   
)

  

   

 (21) 

 

By choosing the correct value for   and   these two 

equations can be close to the original values of RL and 

IL. Setting a high value for   and   results in a closer 

approximation to the true values of RL and IL, but, results 

in several local optima for CL. On the other hand, a low 

value of these two parameters may result in a poor 

approximation of CL. Consequently these parameters 

have considerable effect on the performance of the 

classification. Even with this modification we still do not 

substitute CL into equation (20) because it is an absolute 

value of difference between RL and IL, and is not 

differentiable at zero. To get rid of this we use the ridge 

regression [16] of the raw clarity index (RCL).  

Finally we define the optimization problem as: 
 

      
 

    ( )   ‖   ‖ 
  (22) 

 

Although the optimization process is performed in the 

test phase, it is fairly fast and in less than half a second 

converges to the optimal points. This problem can be 

solved using standard packages [16]. For the case of 

faster optimization, we propose to optimize weights for 
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all possible combinations of classifiers, and use proper 

weights after the ensemble selection using CL. Using this 

method, at first, we determine all combinations of 

classifiers. If we have n classifiers, the number of these 

combinations is ∑
  

(   )   

 
   . There are 4095 combinations 

when we have 12 base classifiers. Then, equation (24) is 

solved for each combination separately to obtain a table 

of weight vectors: 
 

      
 

    ( )   ‖ ‖ 
  (23) 

 

In this equation, ridge regularization keeps weights small.  

In the test process the score of each classifier is first 

calibrated. Then the clarity index is computed for each 

calibrated score, and confident classifiers are selected 

using the clarity index. Finally, confident scores are fused 

using related weights. Figure 2 depicts the block diagram 

of proposed ensemble classification system. 
 

 

Fig. 2. Block diagram of the proposed ensemble classification system. 

Each of the classifiers C1-C12 contain score templates.  

4. Experimental Results 

4.1 Databases 

We used NIST 2004 Speaker Recognition Evaluation 

(SRE), and switchboard II in our experiments. Since we 

use many classifiers and each classifier or feature has an 

ability to detect special characteristics of a speech signal, 

we preferred not to restrict training or test data to 

originating from a male or female, or specific language. 

NIST 2004 contains 6244 training files. The Universal 

background model is trained on these data. This dataset 

also contains 660 male and female speakers, and 4623 test 

utterances. These utterances are from five different 

languages: Arabic, English, Mandarin, Russian and 

Spanish. In the case in which an utterance has more than 

one minute duration we split the utterance to have more 

test data. Switchboard II (2348 conversation sides) is also 

used to train the PLDA dimensionality reduction process, 

 , and nuisance attribute projection (NAP). 

4.2 Experimental Setup 

It is believed that diversity of base classifiers 

improves the performance of ensemble classification [20]. 

In addition, features used and the methods of 

classification should be efficient enough for the 

classification. Therefore, our experiments are conducted 

on three well-known different classifiers and four 

different feature vectors. We used MFCC, PLP, SWLP, 

and PLCC as different speech features.  

 

Table 1. Twelve different base classifiers implemented on NIST04 dataset, using four different features and three methods plus fusion systems. Proposed 

spample based (Instance basced) methos spesified as IBSparse1&2 

 
 

At first energy based voice activity detection is 

performed on each utterance. Then, feature extraction is 

performed using a 25ms hamming window with 50% 

overlap (12.5ms). Voicebox MATLAB toolbox 1  is 

employed to extract MFCC features. To obtain PLP 

                                                           
1 Available online at: 

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.zip 

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.zip
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features, we used RASTAMAT MATLAB toolbox which 

is available online1. SWLP features, which we have used, 

are briefly described in [21], and there are MATLAB 

codes available online 2 , to extract these features. To 

extract LPCC features, we used msf_lpcc.m MATLAB 

implementation3. We choose a feature vector dimension 

of 14 for all four features. 

We used a 2048 Gaussian mixture model to create a 

universal background model on the training part of NIST 

2004 speaker recognition evaluation corpus. MSR toolbox 

is used to extract all GMM models, and i-vectors [22]. 

GMM_UBM_KL and ivector_PLDA are implemented 

using MSR toolbox and voicebox. The i-vector 

dimensionality was 400, which is reduced to 200 using 

PLDA. An important matter in score fusion is that, scores 

from different classifiers may vary significantly, as a 

result of using different feature vectors and classification 

methods. Using results of [2] we used z-cal(clipped) as 

pre-calibration method.  

To evaluate base classifiers and fusion method we 

considered EER, minDCF and minCLLR using 

BOSARIS MATLAB toolkit [23]. 

4.3 Results 

In this section we consider three methods to fuse 

individual scores. In the first method we use a weighted 

logistic regression cost,     , regulated by E-net (  
   ) [2]. In the second method we replace the 

regularization term with our proposed sample specific 

term, and perform ensemble selection using the clarity 

index (IBSparse1). In this method optimization is 

performed on each test sample. In the last experiment we 

calculated weight vectors for all possible combinations of 

the ensemble set (IBSparse2). We empirically found that 

best results can be obtained when the size of the ensemble 

is limited between 4 and 8 classifiers. In this situation, 

most suitable classifiers are selected based on the test 

sample and the optimization of weights is not performed 

in the test stage. 

Table 1 shows that different classifiers have instance 

based behaviors. For example ivector-PLDA which uses 

PLP features, has the best EER for the development set, 

while this is not suitable for the evaluation set. The next 

evidence is the whole performance of GMM-SVM-KL in 

comparison to which is good with respect to other 

classification methods and is worse for the evaluation set. 

Comparing the performance of GMM-SVM-KL using 

LPCC features and ivector-PLDA using MFCC features 

supports the same idea.  

As an example of performance improvement, we 

observed, sparse classifier fusion [2] results in the score of 

5.1484 for the verification of the utterance 'xalm.sph' which 

belongs to NIST SRE 2004, and class 1 (the first model in 

the database). Because this is a target score, it is better to be 

higher. The clarity index for this trial is as follows: 

                                                           
1 Available online at: http://labrosa.ee.columbia.edu/matlab/rastamat  
2 Available online at: http://users.spa.aalto.fi/jpohjala/xlp/  
3 Available online at: 

https://github.com/jameslyons/matlab_speech_features/archive/master.zip  

[0.845,0.555,0.825,0.66,0.355,0.64,0.935,0.53,0.72,0.

87,0.98,0.875] 

The proposed method chooses the 6 most confident 

classifiers which are: 1st, 3rd, 7th, 10th, 11th and 12th 

classifiers (of Table 1). The Fusion of scores of these 

classifiers results in a fused score of 7.2706.  

To use the clarity index in ensemble set selection, a 

threshold value should be used. Values higher than the 

threshold are considered as confident classifiers and lower 

values are considered as belonging to unconfident 

classifiers. We obtained the threshold value from the 

development set and used it in the evaluation set for 

classifier ensemble selection. A comparison of three 

speaker verification fusion systems is shown in Figure 3. 

This curve is obtained using MSR MATLAB toolbox. It 

is clearly observed that the proposed method 1 shows the 

best results in almost all parts of the plot, with the cost of 

optimization of weights in the test phase. 
 

 

Fig. 3. DET plot of three speaker verification  fusion systems (plotted 

using MSR MATLAB toolbox) 

4.4 Correlation of Classifiers 

Diversity of classifiers is an important issue in 

ensemble classification. A More diverse set of classifiers 

increases the chance of taking more aspects of the 

classification in to account. Correlation is the opposite 

point of diversity. One can use one of the two highly 

correlated classifiers without significant reduction in 

performance. In the case of our experiment we indirectly 

take the correlation into account. As it is mentioned in 

subsection 3.2.1, if the score of a classifier is less than all 

non-target scores, the classifier confidently tells that test 

sample does not belong to the claimed class and if the 

value is greater than all the target scores the classifier 

confidently tells that test sample does belong to the 

claimed class. In both the situations CL value is 1. 

Therefor higher values of CL belong to confident 

classifiers and lower values belong to unconfident ones. 

By choosing a proper threshold value of for the clarity we 

omit very unconfident classifiers. Therefore the remaining 

classifiers are assumed to be confident enough to 

http://labrosa.ee.columbia.edu/matlab/rastamat
http://users.spa.aalto.fi/jpohjala/xlp/
https://github.com/jameslyons/matlab_speech_features/archive/master.zip
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participate in the ensemble. A question that is raised here 

is what happens if some of the classifiers are highly 

correlated. For example, if seven classifiers are in the 

ensemble and four of them are highly correlated, it means 

they exploit the same speech characteristics and lower the 

effectiveness of other uncorrelated classifiers. If the 

weight of every classifier is fixed for all test samples, this 

effect reduces the performance of the ensemble, due to 

the fact that classifiers have different correlations for 

different samples. This issue remains while weight 

learning is performed in the development phase, including 

our sample specific fusion method 2. But when weights 

are learned in the test phase, even if the mentioned four 

classifiers are in the ensemble set, and exploit the exact 

same characteristics of the utterance, the weight learning 

algorithm gives them the most efficient weights. 

5. Conclusions 

We introduced a sample specific classifier fusion for 

speaker verification, which selects an adaptive number of 

best classifiers and determines sample specific fusion 

weights for each selected classifier. The method 

implements a group of well-known base classifiers for 

speaker verification, and ranks them using information 

obtained from labeled samples and individual unlabeled 

samples. The weight learning process uses logistic 

regression and the optimization problem is constrained 

with a sample specific term.  

Extensive experiments on unconditioned, large variant 

NIST 2004 demonstrated the effectiveness of the 

proposed method. It would be interesting to perform 

experiments about the weight of constraint ( ) and the 

timing of the optimization formula.  
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