

* Corresponding Author

A Bio-Inspired Self-configuring Observer/ Controller for Organic

Computing Systems

Ali Tarihi
Department of Computer Engineering and Science, Shahid Beheshti University, Tehran, Iran

a_tarihi@sbu.ac.ir

Hassan Haghighi*
Department of Computer Engineering and Science, Shahid Beheshti University, Tehran, Iran

h_haghighi@sbu.ac.ir

Fereidoon Shams Aliee
Department of Computer Engineering and Science, Shahid Beheshti University, Tehran, Iran

f_shams@sbu.ac.ir

Received: 04/Jul/2015 Revised: 29/Jun/2016 Accepted: 25/Jul/2016

Abstract
The increase in the complexity of computer systems has led to a vision of systems that can react and adapt to changes.

Organic computing is a bio-inspired computing paradigm that applies ideas from nature as solutions to such concerns.

This bio-inspiration leads to the emergence of life-like properties, called self-* in general which suits them well for

pervasive computing. Achievement of these properties in organic computing systems is closely related to a proposed

general feedback architecture, called the observer/controller architecture, which supports the mentioned properties

through interacting with the system components and keeping their behavior under control. As one of these properties, self-

configuration is desirable in the application of organic computing systems as it enables by enabling the adaptation to

environmental changes. However, the adaptation in the level of architecture itself has not yet been studied in the literature

of organic computing systems. This limits the achievable level of adaptation. In this paper, a self-configuring

observer/controller architecture is presented that takes the self-configuration to the architecture level. It enables the system

to choose the proper architecture from a variety of possible observer/controller variants available for a specific

environment. The validity of the proposed architecture is formally demonstrated. We also show the applicability of this

architecture through a known case study.

Keywords: Organic Computing; Observer/ Controller Architecture; Self-* Properties; Self-Configuration; Formal

Verification.

1. Introduction

The arising complexity in computer systems has led to

the introduction of new paradigms such as Autonomic

Computing [1], Organic Computing (OC) and Pervasive

Computing [2] that cope with complexity. Organic

Computing is centered around cooperating entities which

are sometimes called agents [2]; each of which has a set

of capabilities. These capabilities are mostly sensors and

actuators that enable the agents to interact with their

environment and perform what is expected from them.

Agents are also capable of communicating with each

other and ultimately contribute to the creation of a single

collective OC system. Because of the complexity in OC

systems, an explicit design cannot be given for each

possible situation. Therefore, a degree of freedom in

decision making is given to the agents, so that the system

can be managed collectively based on the local decisions

[3]. This leads to the emergence of properties, like self-

healing, self-configuration, and self-optimization at the

system level that are called self-* in general [2].

The main drawback of obtaining self-* properties in

this manner is the possible emergence of unwanted

behaviors due to the lack of system-wide vision in the

local decisions. Coping with this problem implies using a

control mechanism. To achieve this goal, the

Observer/Controller architecture or o/c (for short) has

been proposed for OC systems [3]. The observer as the

name suggests has to observe the system passively and

reports to the controller for proper actions. The part of the

system that is under observation is usually called System

under Observation and Control (SuOC) [2]. The generic

o/c architecture [3] is the most known and cited o/c

architecture, and many of the existing researches in OC

refine the generic o/c architecture for their own purposes;

for example, see [4]-[6]. The generic o/c architecture is

studied deeper in Section 2.

Self-configuration, which is related to the ability of

the system to reconfigure itself dynamically [7], is among

self-* properties that the o/c architecture tries to control.

It is defined as ―the set of all system and environmental

attributes that can be modified by control actions‖ [8];

these attributes are divided into two categories: internal

and external [8]. The former attributes that controlled by

the system while the latter are controlled by the user or an

external entity.

Journal of Information Systems and Telecommunication, Vol. 4, No. 3, July-September 2016 135

In OC, self-configuration is mainly achieved in the

SuOC level, meaning that the SuOC is reconfigured

accordingly by the o/c component. In this way, the benefit

of the self-configuration property is not present in the

component level, or in other words, OC systems are

committed to have a fixed o/c component governing the

SuOC. Therefore, any rearrangement or change in the o/c

component is prevented, which will be a major drawback

to environments where multiple o/c components

configurations are applicable. This issue motivated us to

enable the self-configuration property at the o/c

component level and achieve a first step toward a self-*

enabled o/c component for the o/c architecture.

Hence, the main contribution of this paper is focused

on promoting the self-configuration property to the o/c

component level. In order to achieve this goal, we

propose a bio-inspired self-configuring o/c architecture

that configures itself according to the operational

parameters. The bio-inspiration in our work comes from

the notion of cell differentiation process [9]. We also use

the feature model concept from the software architecture,

or more precisely, the software product line so as to

capture o/c component configurations. In addition, we

present and evaluate our ideas using formal methods.

For this purpose Section 2 is dedicated to the

background concepts, especially the biological ones while

Section 3, the related work is reviewed, and then the

proposed o/c architecture is presented in Section 4. In order

to validate the proposed architecture, it is specified and

verified using formal methods in Section 5. Section 6 shows

the applicability of the proposed o/c architecture through a

known case study, and finally, the last section is devoted to

the conclusion and some directions for future work.

2. Background

2.1 The Generic o/c Architecture

The generic o/c architecture [3] consists of a set of

components shown in Fig. 1. The observer component in

this architecture is composed of several sub-components

that monitor and use data from the SuOC for analysis and

prediction; the results are aggregated and then used by the

controller.

The controller component is in charge of executing the

decisions made by its learning components for the SuOC.

Three sources of data are given to the ―aggregator‖, and

then the aggregated data is used by the ―mapping‖ (rule

base) and ―rule performance evaluation‖ subcomponents

of the controller. This component has both online and

offline learning subcomponents. The ―rule performance

evaluation‖ subcomponent is for online learning, which

updates the existing rules as needed, whereas the ―rule

adaptation‖ and ―simulation model‖ subcomponents are

due to offline learning, they create new rules and delete

the old ones. The ―objective function‖ represents the user

interactions that affect the control of the system. Finally,

an ―observation model‖, which is applied by all the

observers in the OC system, is selected by the controller

to indicate the observable attributes and the proper

analysis method and parameters for observation (e.g., the

sampling rate).

The generic o/c architecture has three variants [3]: The

centralized variant that consists of a single o/c component

and a single SuOC, while decentralized variant has many

SuOCs, each with a dedicated o/c component. The third

variant is the multi-level o/c architecture, in which one of

the o/c components is in the highest level, while the

underlying SuOC consists of a collection of smaller

SuOCs. These smaller SuOCs in turn can have their own

SuOCs, resulting in a fractal like structure.

Fig. 1. The generic o/c architecture [3]

2.2 Cell Differentiation

For introducing the notion of cell differentiation, it is

helpful to have a few words about the functionality of

cells and the difference between them.

Multicellular organisms (or metazoons) need different

types of cells (e.g., blood cells and neurons) so as to

survive. Each cell type has a variety of functions to

perform, some are common to all, while others are special

to that type of cell. From a Biochemical point of view,

proteins contribute to any biological function, and therefore,

the difference between the cells comes from the difference

in the proteins they have. For example, red blood cells have

the special function of transferring oxygen in the blood

because of hemoglobin, a protein that they have.

Regarding the mentioned concepts, interesting

questions arise: 1) where proteins come from and 2) what

makes each cell produce a special subset of proteins? The

precise answer to this question is a major research topic in

modern biology. But, we intend to present a brief answer

from the biology literature that is both related and useful

for the bio-inspiration mechanism used in this paper. All

proteins inside a cell are encoded in a large biochemical

molecule named DNA, which has many sections called

genes that are used in a process called ―transcription‖ [9].

In this process, the cell produces proteins from the DNA

(the answer to the first question).

When a gene is used in creating proteins, it is said to

be expressed. The term ``repressed'' is employed when a

gene is not used for some reason such as some chemicals

[9]. In other words, the expression/repression of genes

controls the function of cells via proteins. This means,

that the difference in the proteins produced by the cells

Tarihi, Haghighi & Shams Aliee, A Bio-Inspired Self-configuring Observer/ Controller for Organic Computing Systems

136

comes from the expression/repression of their genes (the

answer to the second question).

With this introduction, cell differentiation can be

defined as follows. All of the multicellular organisms

begin in an embryonic state (before the birth) from a

single cell called zygote, and all the cells evolve from it.

With each generation, some genes are

expressed/repressed, and ultimately, specialized cells are

evolved. This process which is most active before the

birth is known as cell differentiation, which has critical

role in the life of multicellular organisms. There are some

decisive factors that affect cell differentiation [9],

especially the gene expression/repression, that results in

different functionalities in the cell. Cell differentiation

also depends on some chemicals, like growth factors and

inducers, which can cause or prevent cell differentiation

[9]. Another factor that affects cell differentiation is the

micro-environment (also called niche) which surrounds

the cells. For instance, keratinocytes (skin cells) are

affected by the micro-environment, and in this way,

specialize and form the skin [9].

This is only a brief introduction to cell differentiation,

the interested reader is referred to [9] for more information.

2.3 Feature Model

The feature model comes from Feature-Oriented

Domain Analysis [10] ―describe a hierarchy of properties

of domain concepts‖ [11]. This model helps to determine

which combinations of features can be selected for

domain concepts. If we consider the domain of wrist

watches as an example, some of the general statements

that can be given are: The watch can be either digital or

mechanical, displaying the time by digits or hands. , and

in some showing the date.

Fig. 2. A simplified feature diagram of the wrist watch example [10].

Feature diagram is the graphical representation of a

feature model. Fig. 2 is a simplified feature diagram of

the wrist watch example. The full dots indicate the

―mandatory‖ features (like Time Display) that must be

present in any domain concept regarding this feature

model, while the empty dots indicate an ―optional‖

property (like Date Display). The arc between Digital and

Mechanical denotes ―alternative‖ relationship (i.e., only

one of these two features must be selected). There is

another ―or-relation‖ (for example, between Hands and

Digit) that indicates any number of features that can exist

together (e.g., a digital watch can have either digital

hands or digits). Other two common relationships are

―require‖ and ―exclude‖ relationships [12]. The ―require‖

relationship between Digit and Digital represented by a

dashed arrow indicates that Digit display cannot be

selected without a digital wrist watch. For example, digit

display is only available to digital wrist watches. The

―exclude‖ relationship is used to indicate that two features

cannot exist together. It is usually displayed by double

headed dashed arrows in feature diagrams. Having these

relationships, feature models have many uses. In software

product lines they are used for defining products and

configurations [11]. In Section 4, we use the feature

models for the configuration definition.

3. Related Work

Brinkschulte et al. [13] proposed an OC operational

mechanism called Artificial Hormone System for task

distribution among heterogeneous processing elements

based on three types of hormones, namely, eager value,

suppressor, and accelerator. The eager value determined the

appropriateness of a task to be executed on a processing

element. The suppressor and accelerator had two opposite

effects on the process elements. The former increased the

chance for taking tasks, while the latter tried to repress the

execution of tasks. The Artificial Hormone System achieve

d many self-* properties by employing various sub-

types of these three hormones [2] that participate in a

hormone based control loop [2], in which each process

element declares the appropriateness of a given task

execution. Hormones from other process elements

affected appropriateness value declared by the process

elements. The overall effects of hormones on the control

loop decided which process element would execute the

task. The OC system achieved self-configuration by

finding a suitable initial configuration for tasks based on

the function of these hormones.

Roth et al. [14] suggest an OC middleware consisting

of an organic manager and a set of ordinary services (like

a database service) that communicated via the middleware

running on distributed nodes for ubiquitous and pervasive

computing. The goal of the middleware was to enable

self-* properties (including self-configuration) for

ordinary services. In this regard, the organic manager

monitored the middleware and incorporated some self-*

services, each of which was responsible for one self-*

property. Using these self-* services required specific

information provided by each ordinary service. However,

since self-* services are independent, they might make

conflicting decisions. Using the approach of Satzger et al.

[5], a high-level planner component was added to the

middleware in order to resolve the possible conflicts.

The o/c component of the middleware was inspired

from the MAPE cycle of IBM autonomic computing [1]

consisting of ―Monitor‖, ―Analysis‖, ―Plan‖ and ―Execute‖

stages. In the monitor stage, an information pool manager

component managed the information pools containing the

Journal of Information Systems and Telecommunication, Vol. 4, No. 3, July-September 2016 137

information needed for the control mechanism. The

analyze stage had an event manager and a fact base

components; when an event occurred, in order to use the

event for planning, the event was transformed into facts.

The plan stage, consisted of both a low level planner and

a high level planner components. A plan was devised and

then executed so as to solve any detected problem using

these two planners. The low level planner component had

a reflex manager component that managed the low level

reflexes subcomponent. The reflexes subcomponent acted

like a cache for previous system rules. Having this cache,

if a previous decision was applicable to the current state,

it would be applied. The high-level planner finds

solutions to situations that are not solved by the low level

planner. The high-level planner is managed by the high-

level manager that converts the facts into a high-level

language to solve by the planner. Finally, the actuator

executes the plan given by the plan stage. Using this

structure, the self-configuration service in this

middleware determines the required resources for

ordinary services and ―triggers an auction‖ [14] so as to

find the best node for that service.

Nafz et al. [6] proposed the Restore Invariant

Approach (RIA) controller in which a set of

reconfiguration algorithms processed a set of resources

and agents having the required capabilities. The OC

system tried to keep a set of invariants, regarding these

invariants, result checker component examined the results

of the used reconfiguration algorithms before the actual

reconfiguration. Reconfiguration algorithms component

was responsible for achieving self-configuration and was

used in determining which capability must be active on

which agent (as the initial configuration). These

algorithms were also used for reconfiguring the agents

whenever the invariant was violated.

The ORCA project was aimed at ―transferring self-*

properties to robotic systems‖ [15]. In this project a multi-

level o/c architecture with decentralized modules was

proposed. One type of these modules included Organic

Control Units that monitored and controlled other

modules and configured them for operation. The lower-

level organic control units were themselves monitored by

higher-level organic control units leading to a multi-level

self-configuration mechanism.

In summary, it can be said that all of the mentioned

works only covered self-configuration in the SuOC level

and do not extend it to the o/c component; hence, it lost

the advantages of self-configuration in this level by having

a fixed o/c component. The fixed architecture prevents any

rearrangement or change in the o/c components, which

will be a major drawback to environments where multiple

o/c component configurations are applicable.

4. Proposed Architecture

Our approach to enabling bio-inspired self-

configuring o/c (sco/c) is architectural. We try in this

section, which is divided into several subsections, to

explain the rationale behind our architectural decisions.

First, we explain the influence of the bio-inspiration from

the cell differentiation on our architectural decisions as

principles extracted from cell differentiation. Then, an

illustrative example is introduced that will be used

throughout the paper for demonstrating our proposed

architecture. The third subsection presents an architectural

meta-model that incorporates our core ideas.

4.1 Bio-inspiration for Self-Configuration

The cell differentiation process can be considered as

an advanced form of self-configuration in which each cell

self-configures its functionality accordingly. To be able to

apply the benefits of cell-differentiation, we need to have

building blocks analogous to the cells. This leads us to the

agents and the first core principle in sco/c architecture.

Principle 1. In sco/c architecture, the system is

considered as a collection of communicating agents.

Though this principle is not novel, it is required as a

base for the application of the other bio-inspired

principles. Based upon Principle 1, we can adopt the

concept of genes. The difference between the cells is

related to the expressed/repressed genes. This must be

shown in the sco/c architecture, too. Subsequently, we

must be able to express the system in terms of genes,

which their active/inactive state affects the behavior of

the agents and ultimately the system.

Just like the multicellular organisms, where

everything is expressed through the genes, we need an

alternative concept so as to capture the sco/c architecture.

We propose the use of the ―capability‖ concept that has

also been used in organic computing [2] as well as multi-

agent systems.

Principle 2. For all the agents, every function must be

definable in terms of capabilities. Every functionality is

available if and only if the corresponding capability is

activated. Likewise, the deactivation of any capability

will result in the lack of corresponding functionality.

This is analogous to gene expression/repression in cells.

This principle shows what the agents do. In relation to this

principle the question of that what should be done about

the ―capabilities‖ of the o/c component may arise, which

can be answered in various ways. Regarding the bio-

inspiration, it can be noticed that all the functionalities of a

living organism, even the control mechanisms, are coded

into the genes. Since we have chosen capabilities as

counterpart of the genes, the control mechanism of the

system must be represented in terms of capabilities.

This is a key principle in sco/c architecture that results

in a uniform view of the system that makes the agents more

like cells in multicellular organisms. This means everything,

including the control mechanism is represented using one

concept. This principle blurs the distinction between SuOC

and the o/c component compared to other o/c architectures.

So as to simplify the architecture description, we

distinguish the capabilities representing the o/c component

from the rest of the capabilities.

Tarihi, Haghighi & Shams Aliee, A Bio-Inspired Self-configuring Observer/ Controller for Organic Computing Systems

138

We promote the concept of agent capabilities by

introducing another set of capabilities called Organic

Computing capabilities.

Principle 3. The Organic Computing capabilities or

OC capabilities are related to the o/c component. They

participate in the observation and control of the OC

system. The set of OC capabilities includes the sub-

components of the o/c component and follow Principle 2

in terms of activation and deactivation.

In order to distinguish between the OC capabilities

and the capabilities that have nothing to do with the

control mechanism, we will refer to the latter as normal

capabilities. In other words, agents use normal

capabilities in performing their normal tasks. This

includes the agent sensors and actuators for interacting

with their environment.

For example, when the RIA controller is identified as

the suitable o/c component, the invariant monitor,

reconfiguration algorithms and result checker are the

needed OC capabilities. In addition, the ―reconfiguration

algorithms‖ capability needs the ―invariant monitor‖

capability, while in turn it is needed for the ―result

checker‖ capability.

Principle 4. In order to form the control mechanism,

the required relationships between the OC capabilities

must be established.

For example, an OC capability like ―data analyzer‖

from the generic o/c architecture (Section 2), so as to

operate, needs to be somehow connected to a monitoring

OC capability. In this way, a set of relationships between

the OC capabilities is formed. It can be said that o/c

architecture can be realized via cooperation of agents

using OC capabilities with regard to their relationships.

So far, the presented principles can create the foundation

needed for sco/c architecture. The self-configuration

property of the sco/c architecture is also influenced by

bio-inspiration as follows. In the beginning stages of cell

differentiation, only zygote exists with no differentiation.

After that, some genes are expressed in the following

generations, and thus, specialized cells appear.

Principle 5. In the beginning, no OC capability is ―active‖

The control mechanism is the first thing to be realized.

Since the control mechanism is realized by OC

capabilities, OC capabilities must be activated in such a

way that the relationships between them are preserved.

This principle ensures that the system only operates

when there is a control mechanism formed using OC

capabilities (Principle 4). This principle prevents the

system from operating without a control mechanism.

Principle 6. Micro-environment and the chemicals

present in it are required for the cell differentiation process.

The micro-environment is achieved using the concept of

neighborhood that is common in multi-agent systems

meaning that when an OC capability is active in a

neighborhood, it can prevent the other agents from

activating it. Also, when a needed OC capability is absent

from a neighborhood, it must be activated. For the

chemicals (for example, inducers and growth factors),

messaging will be used. Similarly, when an OC capability

residing in a different agent is needed by another OC

capability (having ―require‖ relationship) messaging is used.

Principle 7. Each cell differentiates using its genes.

Gene expression/repression play a key role in deciding

what gene should be expressed/repressed.

This principle implies that local control of gene

expression/repression is needed. Each agent must know

the relationship between the OC capabilities and when it

should activate them, and it must be able to

activate/deactivate them when needed.

Based on these principles, the sco/c architecture can be

presented, but first, an illustrative example is presented in the

next subsection in order to help understand the application of

the bio-inspired principles in the sco/c architecture.

4.2 Illustrative Example

The example is a self-organizing resource-flow system

[5], [6] and [16] in which a number of resources are

processed by independent agents. The process of each

resource consists of a set of tasks performed on each

resource by the agents. Each agent has a collection of

tools, each of which can perform a specific task. These

tools might fail, rendering the agent unable to perform

one or more of its tasks. The goal is to reconfigure the

agents in a way that the processing of resources can still

continue. The reconfiguration mechanism changes the

assignment of tools to the agents, or in other words,

changes the tasks they perform. It must be noted that at

some point no reconfiguration can be done so as to keep

the process going on. For instance, when all the instances

of a tool is broken, no agent can perform the task related

to that tool anymore. This will leave no possible

reconfiguration. The number of tasks for the resources is

not restricted to any specific number, but in [5] , [6] and

[16] three tasks for each resource were considered for

identical agents, which were drilling a hole in the

resource (it a work piece), inserting a screw in it and

tightening the screw.

In order to keep the illustrative example simple and

tangible as possible, we will use this particular instance of

self-organizing resource-flow system (as defined in Satzger

et al. [5] and Nafz et al. [16]) as the illustrative example.

4.3 Architecture Meta-Model

Fig. 3 shows the sco/c architecture meta-mode that

supports and incorporates the bio-inspired principles

mentioned before. The reason for proposing this meta-model

is to point out the sco/c architecture works for systems that

follow this meta-model and have its main elements.

A closer look at the meta-model shows the influence of

principles 1, 2 and 3 clearly, since the meta-model is based

on interacting agents with normal capabilities and general

OC capabilities. Communication between agents realizes

Principle 6 (i.e., micro-environment and chemicals in it).

Journal of Information Systems and Telecommunication, Vol. 4, No. 3, July-September 2016 139

There are two additional OC capabilities in the meta-model,

named regulation and expression. The introduction of these

two mandatory OC capabilities helps to realize the needed

local control (Principle 7) and contribute to the self-

configuration in the whole system. These two OC

capabilities are defined more precisely as follows:

- The regulation capability must identify the proper

o/c component configuration by activating the

needed OC capabilities and deactivating the

unnecessary ones. This function is similar to what

happens inside each cell.

- The expression capability resolves the dependencies

between OC capabilities that are identified by

regulation. The expression capabilities of various

agents collaborate with each other when needed.

Returning to our illustrative example, the robots are

independent identical entities that can be safely considered

as agents. Their capabilities are drilling, insertion and

tightening. In this way, principles 1 and 2 are satisfied. The

OC capabilities and activation/ deactivation of these

capabilities in the example will be introduced later.

4.4 Self-Configuration for the SCO/C Architecture

The demonstration of self-configuration in the sco/c

architecture requires the description of the usual behavior

of the system. The scenario for sco/c can be described in

short as follows. The system begins in an embryonic state

in which no OC capability is active (Principle 5).

Fig. 3. The sco/c architectural meta-model

Firstly, both the regulation and expression are

activated, so the local control is realized. The regulation

capability identifies the OC capabilities needed to be

activated. The expression capability resolves the

dependencies. After that, the OC capability/capabilities

that must be activated in each agent is indicated by a

distributed algorithm. Finally, the desired OC capabilities

are activated by the regulation capability.

Until the end of this section, the above mentioned

scenario is presented with more details. The identification

of the needed OC capabilities in the current sco/c

architecture is in form of rules supplied by the architect in

the design time (wrong rules will lead to undesired

outcomes). Therefore, the validity of the mechanism is

totally dependent on the mindset of the architect since the

control mechanism in the sco/c architecture cannot

understand the semantics of such rules. These rules have

the generic form of ―if-then‖ meaning that if a condition

is matched, some capabilities are considered to be needed

(i.e., an o/c architecture configuration).

The feature model (Section 2-3) is a good candidate

for capturing the OC capabilities and their relationships in

the form of a hierarchy. The possible configuration for the

o/c component can be given through the feature diagram.

Fig. 4 shows a feature diagram for the illustrative

example incorporating [5] and [16] as the two related

works presented in Section 4-2 (the organic middleware

[5] and the RIA controller [16]). The OCu represents the

organic middleware controller. It must be mentioned that

other o/c component configurations can be incorporated

in the feature diagram, but we used the ones that suit our

illustrative example the best. As can be seen, the o/c

component mandates both observer and controller. The

observer can have one of the two o/c components

(invariant monitor and information pool manager). The

―require‖ relationship indicates inter-tree relations

between the OC capabilities. For example, the RIA

controller can be realized using the ―require‖ relationship

between invariant monitoring and RIA controller. The

final subcomponents of the RIA controller must be

realized because of the mandatory relationship between

the result checker and the reconfiguration algorithm.

After the identification of the OC capabilities by the

regulation capability in each agent, all of the agents know

that the o/c component configuration must be activated.

Next, each agent compares its OC capabilities with the

needed OC capabilities for realizing the selected o/c

component configuration. There might be multiple

instances of each needed OC capabilities identified by the

agents. In other words, many agents may have the needed

OC capabilities. They are announced to the neighborhood

and ultimately all the system. After that, a distributed

election algorithm, such as the one introduced in [17],

elects the desired OC capabilities. The algorithm denotes

which OC capability in which agents must be activated.

Therefore, any other OC capability except those indicated

by the algorithm must be deactivated. The reason for

deactivation is that there might be a previous o/c

component configuration. If this deactivation does not

happen, there might be another configuration active, and

this might lead to unexpected results. This causes the

sco/c architecture to be usable in variety of environments,

i.e., if the regulation can determine the type of the o/c

component configuration, it make the system operate

automatically and without manual intervention. If the

activation/deactivation process is completed, all the

desired OC capabilities are activated, and a special

configuration of the o/c architecture can be realized. After

a successful configuration, the OC system starts to

operate. It can be said that, in the sco/c architecture, there

are two distinct self-configuration and operation stages.

Self-configuration is involved with the realization of the

control mechanism, while in the operation stage, the

SuOC is reconfigured accordingly.

If we consider Fig. 4 as the feature diagram, the

following argument can be presented for the RIA

Tarihi, Haghighi & Shams Aliee, A Bio-Inspired Self-configuring Observer/ Controller for Organic Computing Systems

140

controller and the organic middleware: The former uses a

centralized variant of the o/c architecture, while the latter

uses a decentralized one. The decisions are centralized in

the former and easier to achieve, while in the latter, the

decisions are made independently and then coordinated.

So, a key architectural decision would be to choose and

employ a proper new configuration from these two

alternative o/c architectures. As one of the configurations,

we can assume the computational power of the agents in

the regulation rules supplied by the architect. The

computational power is chosen because the organic

middleware requires that its instances run on each agent

and make decisions, therefore requires higher

computational power, and consequently power usage.

This power usage is a major concern when it comes to

general applications of pervasive or ubiquitous computing.

On the other hand, the RIA controller is centralized and

has more lightweight components (or in other words, less

computational power) than the organic middleware.

When the decision is made and one of the variants is

chosen, the required components should be identified. For

instance, if we want to select the RIA controller itself, all

the agents should choose the respective components:

invariant monitor, reconfiguration algorithms and result

checker. In our illustrative example, since the agents

(robots) are identical, all of them announce the three

needed OC capabilities. The distributed election algorithm

will eventually specify the appropriate allocation of the OC

capabilities. The expression of each robot activates the

selected OC capabilities and deactivates the others. After

that, the system can begin its normal operation.

5. Formal Specification and Verification

In order to present the sco/c architecture more

precisely and with less ambiguity, and verify its self-

configuration property formally, the sco/c architecture is

specified. We also used Linear Temporal Logic (LTL) [18]

for expressing invariants needed for the sco/c architecture.

Our approach for verification is using model checking

capabilities of the Maude formal tool [18].

5.1 Specification

Our specification is focused on the self-configuration

phase because it involves all of the contributions of this paper.

Specifications 1 through 5 describe the regulation and

expression capabilities and the governing conditions in Maude.

Specification 1. This specification formalizes

Principle 7 for the regulation capability. It is a collection

of rules supplied by the architect.

 (1)

 (2)

 (3)

(4)

 represents any information (such as the

number of agents or agent distribution) that can be used

for decision making and selecting the OC capabilities.

 (Declaration 1) is a function that takes a set of

parameters (as a specific condition) into account and

returns a Boolean value representing the validity of that

condition. For example it checks if
and as two parameters constituting a

specific condition holds or not. (Declaration 3)

is defined as a set of (Declaration 2)

 defines the elements of the regulation

capability in the form of a rule that specifies a proper set

of capabilities for each condition. The function

(Declaration 4) specifies the regulation function of the

regulation capability. It takes a condition and the set of

 and returns the capabilities that are

needed to be activated in that condition.

Specification 2. Similarly, (Declaration 5)

denotes the expression capability. It shows the

relationships between the OC capabilities

according to the feature diagram. This specification

formalizes Principles 3, 4 and 7.

 ()
 * +

(5)

This specification formalizes the relationships

discussed in Principle 4. Using defined in this

specification, the relationships between OC capabilities

can be represented.

Apart from these specifications, additional ones are

needed in order to specify operations and normal

capabilities of the agents. Since we have focused on OC

capabilities, the specification can be simplified by ignoring

other operations and normal capabilities of the agents.

Specification 3. Based on the sco/c meta-model and

principles 1, 2 and 3, the agent can now be defined

(Declaration 6) regarding an instance of , an

instance of , a set of active OC capabilities and

a set of inactive OC capabilities. The active OC capabilities

represent the active/expressed OC capabilities, while the

inactive OC capabilities represent the deactivated/repressed

OC capabilities. These two sets of OC capabilities have no

intersection. In other words, no capability can be both

active and inactive at the same time; see Equation 7.

(6)

 ()

(7)

A few auxiliary functions are needed for simplifying

the specification. They are presented in declarations 8 to

11. The and functions represent

the actions of enabling and disabling capabilities,

Journal of Information Systems and Telecommunication, Vol. 4, No. 3, July-September 2016 141

respectively. They take a set of capabilities and

enable/disable them in an agent. Therefore, they return an

agent with new capabilities. The function takes sets

of pairs of relationship types (mandatory, optional,

requires and excludes) and OC capabilities (
) alongside a relationship type (the second

argument of in Declaration 10) for filtering and

returns the set of OC capabilities whose relationship type

is the same as the type determined as the second argument

of . For instance, this function can assist in

extracting the OC capabilities that are mandatory or

needed. Declaration 11 denotes a simple auxiliary

function which returns all the capabilities (either active or

inactive) of an agent.

 (8)

 (9)

 ()

(10)

 (11)

Specification 4. The specification of the used election

algorithm is in the form of a function (in

Declaration 12) that returns the set of pairs of agents and

the set of OC capabilities (())

denoting which OC capability or capabilities of each

agent must be activated. Regarding Declaration 13,

 is another auxiliary function related to the
function that returns the elected OC capabilities

() for an agent () through an election

(()).

 ()
 ()

(12)

 ()

(13)

Having these functions in place, we are ready to

define the self-configuring mechanism in form of function

application. To do so, we need to declare the required

variables (Declaration 14).

 * +

(14)

Equations 15 and 16 show a few abbreviations and

variable definitions to simplify Specification 5.

 are the mandatory, optional and required

OC capabilities involved in the sco/c architecture.

Equation 17 is of particular interest. It shows the

candidates of agents (and their capabilities across the

system) that can take part in the sco/c architecture

according to the regulation and expression (see the

definition of in Definition 16). These

candidates resulted as follows: for each agent, its OC

capabilities (members of ()) that are

involved in is obtained. The excluded

capabilities are used later for disabling the unnecessary

OC capabilities (see Equation 19). The resulting

candidates and the set of the involved capabilities are

finally given to the function which determines the

required OC capability or capabilities for activation.

 (
 ())

 (15)

 ()

 ()
 ()

 (16)

 ⋃(())

 (17)

 () (18)

Specification 5. Finally, to specify the self-

configuration mechanism, the system is specified in

Equation 1, and the self-configuration mechanism is

shown in form of a function application. Initially, for each

agent, the excluded OC capabilities are disabled, and then,

the elected OC capabilities of that agent are enabled. The

formed OC system has thus all the OC capabilities

required for the selected o/c architecture enabled by the

regulation capability of the agents.

 * +

 (()
 ((
)))

(19)

5.2 Verification

In order to verify the self-configuration property of the

sco/c architecture, we use LTL model checking. What is

important in terms of self-configuration is that the system

will be eventually in a state of proper operation [4], which

means that: First, an o/c component configuration has

been selected. Second, the OC capabilities are

successfully identified, and the agents that must activate

them are specified via the election algorithm. Third, the

activation/deactivation of OC capabilities is done.

Having all the above mentioned conditions, it can be

said that ―the system is in a valid o/c component

configuration‖. These phrases can be expressed in the

form of an invariant (Formula 20) where comes

from Equation 19, and comes from Declaration 14.

 (
 (())

(20)

The function is an auxiliary function that

checks the validity of the OC system. It uses a condition

variable () that the sco/c architecture has been selected.

Therefore, the OC capabilities are extracted from the OC

system and used for comparison so as to see the conformation

to the valid model returned by the function.

It should be noted that the validity of sco/c depends on

the rules defined in the regulation. With wrong rules

(such as impossible configuration or unreachable

conditions), sco/c does not work, and the system cannot

be configured. These conditions include applying those

rules that employ non-existing OC capabilities or when

the needed capabilities cannot be found in the agent and

Tarihi, Haghighi & Shams Aliee, A Bio-Inspired Self-configuring Observer/ Controller for Organic Computing Systems

142

its neighborhood. Also, when none of the conditions can

be evaluated to , and sco/c cannot self-configure. The

same can be said when more than one o/c architecture can

be selected. In this condition, the agents will split into two

or more groups each trying to achieve a specific o/c

architecture. Depending on the OC capability distribution

among each group, different outcomes can be expected

(such as zero, one or more successful o/c architecture

configuration). But, any outcome in this state cannot be

accepted, and even, if it works, it will be accidental.

The verification was performed successfully for various

possible scenarios using the Maude tool. The target

scenarios were divided into two types. The focus of the first

type was on situations in which a variant of the o/c

architecture could be applied. The goal was to see whether

the proper variant was selected and activated in such

scenarios. The second type of scenarios included the ones

in which no variant were applicable. Also, the verification

was performed for impossible and unreachable

configurations. In all of the scenarios, the specification of

the sco/c architecture proved to be sound and correct.

6. Case Study

In this section we demonstrate the applicability of the

sco/c architecture on the example illustrated in subsection

4.2 using our formal specification and verification

approach. We will first specify the general form of the

problem, meaning the number of tasks and robots is not

limited to what has been specified in [5] and [16]. Next we

will use this general form to verify the illustrative example.

6.1 General Description

Most of the specifications needed for this example have

been already provided. Apart from our intention to present a

case study for the application of the sco/c architecture, we

also intend to specify normal operations (along with the

sco/c architecture specification), resulting in a complete

system specification. Specification 6 describes a generic

robot in which has already been introduced in

Declaration 6. is used for indicating a

set of normal capabilities (sensors and actuators), and

 for a set of resources that the robot is working

on. This set can be when there is no resource.

Specification 6. Robot definition.

 (
)

(21)

We defined a simple behavior for each robot based on

[6] and then applied the general theme discussed above.

The behavior of each robot in our specification consists of

three general actions, i.e., acquire, process and release

(Specification 7): the resource is acquired, processed and

finally released. It is important to note that no action must

be done unless the sco/c architecture is formed. This

guarantees the formation of the self-configuration phase.

As discussed in the previous section, the
function has the responsibility of checking the

conformance between the current formed architecture and

the desired one. We use this function as a guard (whose

result is used as the Boolean parameter in equations 22

through 24) for all of the actions in our case study.

 indicates the set of all available resources;

with each acquire operation for a resource (as

the third argument for the function) or when a

resource is completely processed, it is removed from the

resource set. Because the definition of has an

occurrence that indicates the resource the

robot is working on, when this set changes, the
needs to change. Therefore, the is considered as

both input and output in declaration 22 to 24. By the

 function (Declaration 23), a task is performed on

a resource or resources. Finally, when the process is done

or a problem happens (e.g., one of the robot tools is

broken), the resource is released by the robot (Declaration

24) and added to the resource list.

Specification 7. Simple behavior for the robots.

(22)

 (23)

(24)

After using these behaviors and completing the

required definitions (i.e., specifying ,

 , , etc.), the LTL formula 20 is

verifiable. The next subsection completes these items for

the illustrative example and performs the verification.

6.2 Specification and Verification of the

Illustrative Example

This subsection presents definitions specific to the

illustrative example.

The first step is to define the regulation which consists

of two rules (and given below).

Based on the computing power of the robots (as the

condition), one of the o/c variants can be selected: The

OC middleware (mentioned in section 3) is more suitable

for higher computational power since it needs an instance

of the middleware running on each robot, making it

suitable for the decentralized variant, while the RIA

controller needs less computational power compared to

that of the OC middleware.

 (25)

 (
 *

 +)

(26)

 (*

(27)

Journal of Information Systems and Telecommunication, Vol. 4, No. 3, July-September 2016 143

 +)
 * + (28)

Definition 25 specifies as the

required condition. This function returns true when the

computational power is suitable for running the OC

middleware; when the function returns false, it means the

RIA controller should be used.

Based on the above specification, the function

should be called with as the first

parameter. Due to space limitation, the specification of

expression capability has been ignored, but it can be easily

extracted from Fig. 4. Declaration 29 shows the

specification of used in the robot definition for the

illustrative example. As can be seen, the components

have been replaced by definitions from this section.

 has been defined as sequence of

 , meaning that each task is represented

by the corresponding tool. When each task is performed, the

first task in the sequence is removed from . An

empty represents a resource on which all the

required tasks have been successfully performed.

 (
 ())
 (
))

(29)

 * + (30)

 () (31)

Now robots for the illustrative example can be defined

using Declaration 32.

 (32)

As for the verification, the LTL formula 20 was

verified using the Maude tool. Also, verification was

performed after the self-configuration phase in order to

verify the function as the guard of declarations

22 through 24. The verification phase showed that when

the condition of the o/c component configuration changed,

the system stopped operation, configuration was chosen,

and then the system resumed normal operation. In cases

that were designed for impossible operation, as expected,

the system stopped all operations.

7. Conclusions and Future Work

In this paper, the sco/c architecture which uses the

idea of cell differentiation has been presented in order to

achieve self-configuration in the o/c component level. In

order to support this idea, an architectural meta-model

that considers the OC system as a collection of agents

with some capabilities has been proposed. Among these

capabilities, there are OC capabilities representing the

capabilities that can perform operations related to the o/c

architecture. Also, these capabilities are responsible for

the self-configuration in the level of architecture itself.

The sco/c architecture uses some rules provided by the

architect based on the parameters of the system or

environment. This architecture is then configured, and

finally, the system operates. However, we believe that the

rules should be adapted accordingly by considering the

prior executions. In biology this notion is called genetic

memory [9]. As a future work, we are planning to use the

mechanisms related to this notion in order to improve the

bio-inspiration and to step closer to living systems. Also,

we consider the use of a simple ontology in the OC systems

so as to create a semantic base. This can help to create a

knowledge-based self-awareness that can assist greatly in

cases like the selection of the proper o/c component

configuration in the sco/c architecture. This potentially can

increase the interoperability between organic systems. This

can be especially useful when two or more ubiquitous or

pervasive systems are needed to cooperate.

References
[1] J. O. Kephart and D. M. Chess, ―The vision of autonomic

computing,‖ Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds.,

Organic Computing - A Paradigm Shift for Complex

Systems. Springer, 2011.

[3] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and H.

Schmeck, ―Towards a generic observer/controller

architecture for Organic Computing.,‖ GI Jahrestag. 1, vol.

93, pp. 112–119, 2006.

[4] A. Berns and S. Ghosh, ―Dissecting self-* properties,‖ in

Self-Adaptive and Self-Organizing Systems, 2009.

SASO’09. Third IEEE International Conference on, 2009,

pp. 10–19.

[5] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer,

―Using automated planning for trusted self-organising

organic computing systems,‖ in Autonomic and Trusted

Computing, Springer, 2008, pp. 60–72.

[6] H. Seebach, F. Nafz, J.-P. Steghöfer, and W. Reif, ―How to

Design and Implement Self-organising Resource-Flow

Systems,‖ in Organic Computing—A Paradigm Shift for

Complex Systems, Springer, 2011, pp. 145–161.

[7] M. Salehie and L. Tahvildari, ―Self-adaptive software:

Landscape and research challenges.,‖ TAAS, vol. 4, no. 2,

Jul. 2009.

[8] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U.

Richter, ―Adaptivity and self-organization in organic

computing systems,‖ ACM Trans Auton Adapt Syst, vol. 5,

no. 3, pp. 10:1–10:32, Sep. 2010.

[9] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D.

Watson, Molecular Biology of the Cell, 4th ed. Garland, 2002.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson,

―Feature-Oriented Domain Analysis (FODA) Feasibility

Study,‖ Software Engineering Institute, Carnegie Mellon

University, CMU/SEI-90-TR-21, 1990.

Tarihi, Haghighi & Shams Aliee, A Bio-Inspired Self-configuring Observer/ Controller for Organic Computing Systems

144

[11] M. Riebisch, ―Towards a more precise definition of feature

models,‖ Model. Var. Object-Oriented Prod. Lines, pp. 64–

76, 2003.

[12] K. Lee and K. C. Kang, ―Feature dependency analysis for

product line component design,‖ in Software Reuse:

Methods, Techniques, and Tools, Springer, 2004, pp. 69–85.

[13] U. Brinkschulte, M. Pacher, and A. Von Renteln, ―Towards

an artificial hormone system for self-organizing real-time

task allocation,‖ in Software Technologies for Embedded

and Ubiquitous Systems, Springer, 2007, pp. 339–347.

[14] M. Roth, J. Schmitt, R. Kiefhaber, F. Kluge, and T. Ungerer,

―Organic Computing Middleware for Ubiquitous

Environments.,‖ in Organic Computing, C. Müller-Schloer, H.

Schmeck, and T. Ungerer, Eds. Springer, 2011, pp. 339–351.

[15] W. Brockmann, E. Maehle, K.-E. Grosspietsch, N.

Rosemann, and B. Jakimovski, ―ORCA: An organic robot

control architecture,‖ in Organic Computing—A Paradigm

Shift for Complex Systems, Springer, 2011, pp. 385–398.

[16] F. Nafz, J.-P. Steghöfer, H. Seebach, and W. Reif, ―Formal

modeling and verification of self-* systems based on

observer/controller-architectures,‖ in Assurances for Self-

Adaptive Systems, Springer, 2013, pp. 80–111.

[17] V. C. Barbosa, An introduction to distributed algorithms.

MIT Press, 1996.

[18] M. Clavel, F. Dur’an, S. Eker, P. Lincoln, N. M. Oliet, J.

Meseguer, and C. Talcott, All About Maude - A High-

Performance Logical Framework: How to Specify, Program,

and Verify Systems in Rewriting Logic. Springer, 2007.

Ali Tarihi received his BS and MS degrees in Software
Engineering from Shahid Beheshti University, Tehran, Iran. He is
currently a Ph.D student at the Computer Science and
Engineering Faculty, Shahid Beheshti University, Tehran, Iran.

Hassan Haghighi received his BS, MS and PhD degrees in
Software Engineering from Sharif University of Technology,
Tehran, Iran. He is currently an assistant professor at the
Computer Science and Engineering Faculty, Shahid Beheshti
University, Tehran, Iran.

Fereidoon Shams Aliee received his BS and MS degrees from
Shahid Beheshti University and Sharif University of Technology,
respectively. He received his Ph.D in Software Engineering from
Department of Computer Science, Manchester University, UK. He
is currently an associate professor at the Computer Science and
Engineering Faculty, Shahid Beheshti University, Tehran, Iran.

