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Abstract 
Retinal image assessment has been employed by the medical community for diagnosing vascular and non-vascular 

pathology. Computer based analysis of blood vessels in retinal images will help ophthalmologists monitor larger 

populations for vessel abnormalities. Automatic segmentation of blood vessels from retinal images is the initial step of the 

computer based assessment for blood vessel anomalies. In this paper, a fast unsupervised method for automatic detection 

of blood vessels in retinal images is presented. In order to eliminate optic disc and background noise in the fundus images, 

a simple preprocessing technique is introduced. First, a newly devised method, based on a simple cell model of the human 

visual system (HVS) enhances the blood vessels in various directions. Then, an activity function is presented on simple 

cell responses. Next, an adaptive threshold is used as an unsupervised classifier and classifies each pixel as a vessel pixel 

or a non-vessel pixel to obtain a vessel binary image. Lastly, morphological post-processing is applied to eliminate 

exudates which are detected as blood vessels. The method was tested on two publicly available databases, DRIVE and 

STARE, which are frequently used for this purpose. The results demonstrate that the performance of the proposed 

algorithm is comparable with state-of-the-art techniques. 
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1. Introduction 

Retinal blood vessel segmentation provides 

information for diagnosis, treatment, and evaluation of 

various cardiovascular and ophthalmologic diseases such 

as hypertensions, diabetes and arteriosclerosis [1]. 

Various features of retinal blood vessels such as length, 

width, and tortuosity guide ophthalmologists to diagnose 

and/or monitor pathologies of different eye anomalies [2-4]. 

Automatic segmentation of retinal blood vessels is the 

first step in the development of a computer-assisted 

diagnostic system. A large number of methods and 

algorithms that have been published are related to retinal 

blood vessel segmentation [5]. Each of these methods 

have their own merits and shortcomings. The algorithms 

in this field can be classified into techniques based on 

match filtering, pattern recognition, morphological 

processing, multiscale analysis and vessel tracking.  

As with the processing of most medical images, the 

signal noise, drift in image intensity, and lack of image 

contrast cause significant challenges in the extraction of 

blood vessels. The vessels can be expected to be connected 

and form a binary treelike structure. However, the shape, 

size, and local grey level of blood vessels can vary and 

background features may have similar attributes to vessels.  

The vessel intensity profiles approximate to a Gaussian 

shape, or a mixture of Gaussians. Therefore, Gabor filters, 

which are a multiplication of Gaussian and cosine 

functions, may be a good approximation of the vessel 

intensity profiles. Gabor filters are also utilized to model 

simple cells in the primary visual cortex. The simple cells 

in the human visual system respond vigorously to an edge 

or a line of a given orientation and position. It can be 

expected that a computational model of a simple cell by a 

Gabor filter may extract blood vessels effectively.  

In this paper, we offer an unsupervised approach for 

retinal blood vessel segmentation in fundus images. Our 

method was inspired by operations of the human visual 

system in perception of edges and lines at different directions. 

This paper is organized as follows: a review of other 

published vessel segmentation solutions in section two, a 

presentation of the proposed method in section three, results 

and comparisons with other existing methods in section four, 

and finally, the main conclusions of this work in section five.   

2. Related Work 

Retinal blood vessel segmentation methods can be 

divided into two broad categories: unsupervised and 
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supervised methods. Due to the fast algorithms of 

unsupervised methods, they are generally preferred over 

supervised methods for medical decision support systems 

and real time applications. As the proposed method is also 

an unsupervised method, it will be more focused on in the 

review section of this paper. 

2.1 Unsupervised Methods 

Unsupervised methods perform vessel segmentation 

without any prior labeling information to decide whether 

a pixel belongs to a vessel, or not. A match filtering 

technique is one of the common unsupervised approaches 

in retinal vessel segmentation [6]. Matched filtering 

convolves the image with multiple matched filters for 

detection of blood vessels. The matched filter was first 

introduced by Chaudhuri et al. [7]; they proposed a two-

dimensional linear kernel with a Gaussian profile to 

detect the blood vessels. The kernel is rotated in 12 

directions and the maximum response is selected for each 

pixel. This method was improved by Hoover et al. [7] 

who combined local and region-based properties of the 

vessels. They employed a thresholding technique with 

iterative probing for each pixel. Gang et al. [8] also 

extended Chaudhuri et al.’s method by an amplitude-

modified second order Gaussian filter. Gang et al. 

optimized the matched Gaussian filter by the vessel width. 

To summarize, all of these matched filtering methods 

suffer from low signal-to-noise ratio (SNR). 

There are some unsupervised segmentation methods 

which improved accuracy and/or speed of the 

segmentation. Cinsdikici and Aydin in [9] present a 

combination of ant colony optimization algorithm and a 

hybrid model of the matched filter. They employ some 

preprocessing techniques and combine matched filter 

results with an ant colony algorithm to extract blood 

vessels. High computational cost and set parameters are 

the main drawbacks of this approach; however Cinsdikici 

and Aydin increased the accuracy of match filters.  

In order to address high computational costs, Amin 

and Yan proposed a high speed vessels detection 

algorithm which extracted blood vessels in 10 seconds for 

each retinal image [10]. They used a phase congruency to 

enhance the vessel intensity in the algorithm. The phase 

congruency of an image is computed by a Log-Gabor 

wavelet. Afterwards, blood vessels are segmented by 

using a threshold probing technique on phase congruency 

response images. In the Amin and Yan method, several 

phase congruency images should be obtained from a 

single retinal image for different parameters and the best 

one is determined based on the ROC curve. The phase 

congruency image that produces the highest area under 

the ROC curve is considered an optimum image; and 

related parameters are recorded. As a result of high 

computational costs, their method suffers from a complex 

parameter adjustment procedure. 

Zana and Klein [11] presented a different approach to 

extract the vessels. They used mathematical morphology 

and curvature evaluation in a noisy environment. Their 

method is based on four steps: noise reduction, linear 

pattern with Gaussian-like profile improvement, cross-

curvature evaluation and linear filtering. Like other 

morphological processes, Zana and Klein’s method 

depends heavily on the length of linear structure elements, 

and causes difficulties with highly tortuous vessels. 

Fraz et al. [12] combine vessel centerlines with bit 

plane slicing to identify the vessel patterns in the retina. 

Fraz et al. used an orientation map to segment blood 

vessels. The orientation map of vessels is generated by 

using a multidirectional top-hat operator with a linear 

oriented structuring element which emphasizes the 

vessels in the particular direction. Then, significant 

information is obtained from the greyscale image using 

bit plane slicing. Finally, the vessels map is acquired by a 

combination of the vessel centerlines and the orientation 

maps. In this method, the vessel centerlines, vessel shape, 

and orientation maps play crucial roles in the 

segmentation of the vascular tree. Therefore, because of 

the prominent light reflection of some vessels like 

arterioles, and a mismatch between the highest local 

intensity across the blood vessels and the vessel center, 

this approach is less suited for all blood vessels in the 

retinal images. Mendonca et al. [13] also propose a vessel 

centerline detection in combination with multiscale 

morphological reconstruction. The vessel centerlines are 

generated by applying Difference of Offset Gaussian 

(DoOG) filter. Vessel highlighting is acquired by a 

modified top hat operator with variable size circular 

structuring elements. They employ multiscale 

morphological reconstruction to obtain binary image. 

Lam and Yan, on the other hand, propose a vessel 

segmentation algorithm based on the divergence of vector 

fields [14]. They locate vessel-like objects by using 

Laplacian operator and pruning noisy objects based on the 

centerlines. Consequently, the vessel-like patterns which are 

far away from the centerlines are removed. Although Lam 

and Yan’s method is almost robust, it is a time-consuming 

approach. It requires around 25 minutes to produce the 

vessels for a single retinal image [14]. Recently, Lam et al. 

have presented a vessel profile model to detect blood 

vessels [15]. This algorithm is based on regularization-based 

multi-concavity modeling. A differentiable concavity 

measure on perceptive space is designed to extract blood 

vessels in retinal images with bright lesions. A line-shape 

concavity measure is also presented to distinguish dark 

lesions from the vessels. The vessels are obtained by a 

lifting technique. A main disadvantage of Lam et al.’s 

method is high computational cost. It takes, on average, 13 

minutes to extract blood vessels. 

Al-Diri et al., alternatively, present an active contour 

model for segmenting retinal vessels [16]. They detect 

blood vessels by growing a ‘Ribbon of Twins’ active 

contour model which employs two pairs of contours to 

capture each vessel edge. Initially, a tramline filter is used 

to locate an initial set of potential vessel segment 

centerline pixels. Then, the segment growing algorithm 

converts the tramline image into a set of segments. 
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Finally, a junction resolution method extends the discrete 

segments and resolves various crossings and junctions. 

Al-Diri et al. gained good results, but the method suffers 

from high computational complexity. 

2.2 Supervised Methods 

Due to the limited success of unsupervised methods in 

achieving an acceptable output, some researchers have 

focused on development of supervised algorithms [17-22]. 

In supervised methods, observer data (gold standard) is 

firstly used for the classification of vessels based on given 

features. Then, a feature vector is required for each pixel. 

Lastly, a classifier is needed to classify each pixel as a 

vessel pixel or a non-vessel pixel such as k-nearest 

neighbors (KNN), feed-forward NN and Bayesian classifier. 

All the supervised methods use a variety of 

approaches to calculate the feature vector and also to 

classify each pixel. Niemeijer et al. [19] introduce a long 

feature vector (31-Dimension) for each pixel consisting of 

the Gaussian filter and its derivatives at five scales. They 

also compare three classifiers and they show the 

performance of k-nearest neighbors (KNN) classifier is 

superior for all experiments. Staal et al. [20] also 

employed the same classifier, however they utilize ridge 

profiles to compute features for each pixel. On the other 

hand, some methods use a short feature vector. For 

instance, Soares et al. [21] utilize a six-D feature vector 

and Marin et al. [22] introduce a 7-D feature.  

Although supervised methods are robust for many retinal 

images, they are costly in terms of processing time. They 

also need ground truth data that are already classified, which 

may not be available in real life applications. Therefore, 

supervised approaches are not as common as unsupervised 

algorithms for medical decision support systems and real 

time applications. As a result, we focused on unsupervised 

methods in this research. In this paper, we propose a new 

unsupervised algorithm based on a directional line sensitivity 

model of the human visual system to detect blood vessels in 

the retinal fundus images in almost real time. 

3. The Proposed Method 

Fundus images contain Red, Green, and Blue (RGB) 

images of the retina. The green channel and grey-level 

images provide the best vessel-background contrast of the 

RGB-representation, while the blue channel offers poor 

dynamic range and the red one is the brightest colour 

channel and has low contrast. Therefore, grey-level and 

green channel images are the best choices for image 

segmentation. In this research, we employed grey-level 

retinal images. A flow chart of our method is shown in 

Fig. 1 which consists of four main steps. These steps will 

be described in detail in the following sections. 

3.1 Preprocessing 

Retinal fundus images are not uniform images. The 

contrast of the retinal fundus images tends to be bright in the 

centre and diminish at the side, hence preprocessing is 

essential for minimizing this effect and to have a more 

uniform image. We introduce a simple technique to minimize 

the drift in image intensity and lack of image contrast, and 

generate a uniform image by using a median filter. 

The principal function of median filters is to force 

points with distinct intensity to be more similar to their 

neighbors. Median filters are quite popular because they 

provide excellent noise-reduction (impulse noise) 

capabilities, with less blurring than linear smoothing filter 

of similar size. Median filters replace the value of a pixel 

by the median of the grey levels in the neighborhood of 

that pixel. Therefore, a median filter can be used to 

achieve the estimation of the background image and 

location of optic disc. The optic disc is a round area in the 

fundus images where retinal nerve fibers collect to form 

the optic nerve. To achieve this goal, the median filter 

must be large enough in size to remove blood vessels as a 

noise. The experimental results demonstrate that in 

576×720 fundus images, employing a 25×25 median filter 

will remove blood vessels from the grey-level image and 

the background and optic disc will appear. 
 

 

Fig. 1. A flow chart of the proposed method 

If   (   )  is defined as a luminance distribution of 

original RGB input image and  (   ) is defined as a grey-

level image of  (   ), then the background, b(x, y), of a 

grey-level image is obtained by median filter with size of 

window 25×25. Fig. 2 (a) depicts an input original RGB 

image from a DRIVE database as (   ), and Fig. 2 (b and 

c) illustrates the grey level of  (   ) and the output of 

median filter (i.e.   (   ) ), respectively. This clearly 

shows that the presented filter with the appropriate size is 

a good approximation of the background in retinal fundus 

images. Once the background is computed, a uniform 

Original retinal RGB image 

Grey-level image 

3.1. Preprocessing by a median 

filter for generating the 

background estimation image 

3.2. Enhancement by using line 

perception computational model 

of HVS 

3.3. Adaptive thresholding  

3.4. Post-processing by a 

morphological operator 

Binary image of vessels  
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image is acquired by subtracting the background image 

from the grey-level image: 
 

 (   )   (   )   (   )   (1) 
 

This equation generates a uniform image. Fig. 2(d) 

shows the  (   ).  

In order to enhance the blood vessel intensity, we need 

an image with vessel pixels containing brighter intensity 

than background pixels. This can be generated by using 

negative transformation: 
 

 (   )       (   )    (2) 
 

Finally, to avoid processing the black border and corners, 

a binary mask is applied to  (   ). These two last steps are 

shown in Fig. 2 (e and f). Through the proposed 

preprocessing approach, a uniform and normalized image of 

the retina with vessel pixels brighter than non-vessel pixels is 

generated. In the next section, a novel vessel enhancement 

technique to increase vessel’s intensity is presented. 
 

 
a   b 

 
c   d 

 
e   f 

Fig. 2 Preprocessing steps (a) original RGB retinal image (b) grey-level 

image (c) result of the median filtering (d) result of subtracting 

background image from grey-level image (e) negative image (f) result of 

the preprocessing step. 

3.2 Vessels Enhancement by Computational 

Model of a Simple Cell 

Due to the poor local contrast of blood vessels, 

intensity of vessel pixels must be enhanced. The proposed 

method was motivated by neurons which respond to line 

and edge in the primary visual cortex. It is not feasible to 

build a computational model of HVS for image 

processing applications directly from the physiology of 

the HVS, due to its tremendous complexity. However, 

Computational models with different aspects of HVS 

were developed, aiming at observations from 

psychovisual experiments or sequential processing of the 

visual information in different layers of the HVS [22-27]. 

Hubel and Wiesel [28] identified two main classes of 

neuron which they called simple and complex cells. They 

proved that the majority of neurons in primary visual 

cortex reveal orientation selectivity [24-26]. Typically, 

such a neuron would react to a line or an edge of a given 

orientation in a given area of the visual field, called its 

receptive field (RF). Generally, simple cells are neurons 

which respond to an edge or growing/declining line, while 

neurons which do not react are called complex cells. 

The computational models were extended based on 

simulation of the cell operation [23]. Simple cells are 

typically modeled by linear spatial summation followed 

by half-wave rectification. A family of two-dimensional 

Gabor functions was proposed as a model of the receptive 

field of simple cells [23,29]. A Gabor filter is a linear and 

local filter, and its kernel is multiplication of Gaussian 

and cosine functions. For an input image with luminance 

distribution of  (   ), a simple cell’s response compute 

by convolution [27]: 
 

         (   )           (   )   (   )  (3) 
 

         (   )     (
  

 
 ̃   )  

 
 ̃     ̃ 

     (4) 
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Where    is the preferred orientation of a simple cell’s 

response,   ⁄  is spatial frequency, and    is the number 

of total preferred orientations. Ellipticity of the receptive 

field and its symmetry with respect to the origin are 

controlled by constant parameter  and angle 

parameter    (     , respectively. The width of the 

receptive field of the simple cell is defined by a 

 parameter. The ratio  
 ⁄  determines the special 

frequency bandwidth, therefore it defines the number of 

parallel excitatory and inhibitory regions of the receptive 

field. In this research, we fix the ratio    
    ⁄  to have 

half-response bandwidth of one octave [27]. We also fix 

the parameter     to generate a symmetric 

         (   ) .In order to enhance vessel intensity, we 

employed the computational model of the simple cell (4) 

as a filter kernel to convolve with the preprocessed image. 

A block diagram of the proposed approach for improving 

blood vessels intensities based on the HVS line detection 

model is shown in Fig. 3. 

The vessel enhancement process causes a side effect 

on non-vessel pixels which are similar to blood vessels. 

Non-vessel pixels are enhanced as much as blood vessels. 

These false vessel-like objects are related to some 

illnesses or various conditions in image acquisition. In 

order to suppress this side effect, a pruning function is 

proposed. This function is also motivated by operation of 

simple cells in the HVS. Simple cells in the HVS react to 
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an input signal when the output is greater than a particular 

threshold. Therefore, in each preferred orientation, we 

consider an adaptive threshold value on the cell responses, 

         (   ). The pruning function is referred to as an 

activation function. We define the adaptive activation 

function   (   ) as follows:  
 

  (   )  {
                         (   )        (         )

                        (   )        (         )
   (6) 

 

Constant parameter of   (     )  controls the 

activation function. As a rule, there is a trade-off between 

salience of the thin vessels and signal to noise ratio. 

Although thin vessels are enhanced by setting high value 

for  , the false vessel-like objects are also highlighted. 

The activation function   (   ) must be applied to the 

cell response          (   ). As a result, the enhancement 

regions of  (   ) is computed by         (   ) as follows: 
 

       (   )    (   )           (   )          
    ⁄      (7) 

 

Experimental results demonstrated a significant role of 

the proposed adaptive activation function on Gabor filter 

responses. It improved the accuracy of the proposed method. 

Finally, vessel enhancement is completed by 

combining the cell responses at various directions into a 

single output. After the kernel is rotated in    directions, 

the maximum response is selected for each pixel. The 

output image is considered as a salient image. 
 

     (   )     (       (   )) 
 

                                    (8) 
 

 

Fig. 3. A procedure of the proposed method for the blood vessels 

enhancement 

3.3 Blood Vessels Segmentation 

The output of our method must be a binary image with 

high value ‘1’ for vessel pixels and low value ‘0’ for non-

vessel pixels. Due to the vessel enhancement step, the 

intensity of vessel pixels is considerably higher than non-

vessel pixels, and they would be segmented by a simple 

threshold. Therefore, we generate the segmentation map 

by using a simple threshold. In other words, the adaptive 

threshold acts as a classifier and classifies each pixel as 

vessel or non-vessel to obtain the vessel binary image. 

The classifier is modified by intensity average as follows: 
 

       (   )  

{
                         (   )         (     )

                      (   )         (     )
 (9) 

 

Where        (   ) is the binary map of the blood 

vessels and   is a constant parameter which controls a 

ratio of vessel pixels and non-vessel pixels. We fixed   to 

3/2 for the images. 

3.4 Post-Processing 

The last phase in our method is a local morphological 

process on the binary map to overcome the problems 

arising from over segmentation. Over-segmentation 

occurs because of lesions or noise in the original image. 

We can improve the output binary map by removing the 

lesion and noise areas. This can be done by a local 

morphological process. Generally, over-segmentation 

areas are smaller than the thinnest vessel. Hence, all 

connected objects which are smaller than the thinnest 

vessel should be removed. Practical experience 

demonstrated that the thinnest vessel has about 200 pixels 

in DRIVE [30] and STARE [31] databases. Consequently, 

in the binary maps, the objects whose areas are less than 

200 pixels should be removed. 

4. Experimental Results and Evaluation Metrics 

4.1 Databases 

We utilized the images included in the well-known 

DRIVE and STARE databases to assess the performance 

of the proposed method. The DRIVE database comprises 

40 eye-fundus colour images. The image set is divided 

into a test and training sets and each one contains 20 

retinal images. The test set is employed for measurement 

of performance of the vessel segmentation algorithms. 

The DRIVE database also provides two manual 

segmentations on each image of the test set which made 

by two different human observers. The manually 

segmented images by the 1st human observer are used as 

a gold-standard image (ground truth). In the STARE 

database, there is just one image set. It contains 20 images; 

ten of these contain pathology. It includes two manual 

segmentations by Hoover and Kouznetsova. The 

performance is computed with the segmentations of the 

1st observer as a gold-standard image. 
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4.2 Metrics 

Our algorithm is evaluated in terms of sensitivity (Se), 

specificity (Sp), positive predictive value (Ppv), negative 

predictive value (Npv), and accuracy (Acc). Se and Sp 

metrics are the ratio of well-classified vessel and non-

vessel pixels, respectively. Ppv and Npv are the ratio of 

pixels classified as vessel pixels and the ratio of pixels 

classified as background pixels which are both correctly 

classified. Finally, Acc is a global measurement, and 

provides the ratio of total well-classified pixels. These 

metrics are defined as: 
 

   
  

     
      (10) 

 

   
  

     
      (11) 

 

    
  

     
      (12) 

 

    
  

     
      (13) 

 

    
     

           
     (14) 

 

Where TP is the number of pixels correctly classified 

as vessel pixels; TN is the number of pixels correctly 

classified as non-vessel pixels; FN is the pixels belonging 

to a vessel, but is recognized as background pixels. FP is 

the pixels incorrectly classified as vessel pixels.  

The proposal method was implemented on a 

Windows-7 operating system running on an Intel Pentium 

2.7 GHz processor with 4 G RAM. In the implementation 

of the proposal method,     is set at 8, or the angle 

resolution is 22.5◦ which is able to be aligned with vessels 

in different directions. The constant value of    is fixed at 

0.16 for DRIVE database and 0.14 for STARE database. 

The width of the receptive field of simple cells (   

parameter) is set at 0.6 and the ellipticity of the receptive 

field (  parameter) is set at 0.4. They found by iteration to 

match the filter properly with vessels. As all parameters 

in Gabor filter are constant, there is no need for ROC 

curve. The required mask images for the preprocessing 

step are available in the DRIVE database. For the STARE 

database, we have generated the mask images as the 

STARE database did not provide them.  

4.3 Results 

The performance results of the DRIVE and STARE 

databases are shown in Table 1 and Table 2. The last rows 

of the tables show average Se, Sp, Ppv, Npv, and Acc 

values in each database. The maximum and minimum 

values are in bold. It can be perceived that the average 

sensitivity value on DRIVE images is higher than STARE 

images from the tables. The minimum values of Se are 

also 0.6650 and 0.4858 on the DRIVE and STARE 

databases respectively, i.e. our method is more 

appropriate for the DRIVE than the STARE regarding the 

ratio of well-classified vessel pixels. 

In terms of accuracy, the average values are 0.9403 and 

0.9445 for the DRIVE and STARE databases, respectively. 

The accuracy of the proposed method on both databases is 

almost the same. Although the minimum accuracy of the 

STARE database (0.9150) is a weakness of our method, 

the average accuracy values are comparable with other 

results in the literature for both databases. 

Two examples of the proposed segmentations from 

both databases along with gold standard segmentations 

are given in Fig. 4 and 5. In terms of quality, the proposed 

method is comparable with the related gold standards. 

Table 1. Performance results on DRIVE database images 

image Se Sp Ppv Npv Acc 

1 0.8090 0.9533 0.6889 0.9750 0.9369 

2 0.7734 0.9718 0.7967 0.9677 0.9470 

3 0.7319 0.9671 0.7579 0.9624 0.9380 

4 0.7408 0.9672 0.7456 0.9664 0.9412 

5 0.6993 0.9768 0.8015 0.9604 0.9440 

6 0.6723 0.9757 0.7942 0.9552 0.9385 

7 0.6929 0.9697 0.7471 0.9607 0.9380 

8 0.7512 0.9444 0.6223 0.9689 0.9234 

9 0.6486 0.9802 0.7919 0.9600 0.9456 

10 0.7108 0.9706 0.7419 0.9658 0.9430 

11 0.6921 0.9674 0.7357 0.9599 0.9355 

12 0.7412 0.9661 0.7263 0.9685 0.9417 

13 0.6650 0.9734 0.7785 0.9538 0.9354 

14 0.7879 0.9566 0.6741 0.9754 0.9394 

15 0.8141 0.9470 0.6077 0.9806 0.9349 

16 0.7250 0.9730 0.7719 0.9657 0.9453 

17 0.7137 0.9678 0.7220 0.9665 0.9412 

18 0.7579 0.9688 0.7270 0.9733 0.9480 

19 0.8185 0.9559 0.6856 0.9782 0.9414 

20 0.8219 0.9610 0.6823 0.9814 0.9481 

Average 0.7384 0.9657 0.7300 0.9673 0.9403 

Table 2. Performance results on STARE database images 

image Se Sp Ppv Npv Acc 

1 0.7309 0.9391 0.5587 0.9707 0.9192 

2 0.6792 0.9448 0.5216 0.9708 0.9232 

3 0.7574 0.9542 0.5649 0.9804 0.9399 

4 0.5176 0.9795 0.7039 0.9556 0.9396 

5 0.681 0.9704 0.7314 0.9626 0.9398 

6 0.8404 0.9493 0.6030 0.9848 0.9401 

7 0.8485 0.9641 0.7185 0.9833 0.9528 

8 0.8620 0.9625 0.6971 0.9858 0.9533 

9 0.8059 0.9685 0.7335 0.9789 0.9528 

10 0.7907 0.9286 0.5479 0.9759 0.9150 

11 0.7827 0.9747 0.7605 0.9776 0.9568 

12 0.8312 0.9779 0.7976 0.9823 0.9640 

13 0.7841 0.9660 0.7340 0.9739 0.9465 

14 0.7945 0.9627 0.7201 0.9749 0.9446 

15 0.7280 0.9720 0.7522 0.9683 0.9465 

16 0.7714 0.9426 0.6413 0.9687 0.9224 

17 0.7935 0.9619 0.7219 0.9739 0.9433 

18 0.4858 0.9964 0.8985 0.9674 0.9652 

19 0.5595 0.9907 0.7712 0.9758 0.9679 

20 0.6319 0.9846 0.7756 0.9696 0.9573 

Average 0.7338 0.9645 0.6977 0.9741 0.9445 
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Fig. 4. Sample result of the proposed algorithm (a) the image number 20 

from DRIVE database (b) the gold standard (c) result of the binary 

image of the proposed method  

 

Fig. 5. Sample result of the proposed algorithm (a) the image number 12 

from STARE database (b) the gold standard (c) result of the binary 

image of the proposed method. 

4.4 Evaluation 

In order to evaluate the performance of the proposed 

method, we compare our simulation results with the state-

of- the-art results and hand-labeled ground truth 

segmentations in Table 3. The performance of the 

proposed method is evaluated based on two criteria: the 

value of accuracy (Acc) to measure the ability of hard-

classification, and the ‘sensitivity’ (Se) to measure the 

ratio of well-classified vessel pixels. The results of Zana 

[11] and Jiang [32] were taken from the DRIVE database 

website [30]. A comparative analysis shows that the 

proposed method achieved better performance metrics 

than most of the unsupervised methods.  

In general, supervised methods outperform 

unsupervised methods. However, even though our method 

is unsupervised, sensitivity values of the proposed method 

for STARE and DRIVE databases are almost higher than 

the supervised methods. Although Fraz et al [6], Al-Diri 

et al. [16] and You [33] seem to present better results than 

our approach, they suffer from high computational 

complexity and execution time when finding the vessels.  

The performance of our method in terms of accuracy is 

almost superior when compared to unsupervised approaches. 

Clearly, sensitivity values of unsupervised methods are 

inferior or not accessible; however, a few methods provide 

higher accuracy than the proposed approach. In Lam et al. 

method [15], which presented the highest accuracy among all 

other methods, the sensitivities were not reported and more 

importantly it takes 13 minutes to generate the binary image. 

Table 4 shows the elapsed time comparison among our 

method with some state-of-the-art algorithms. A comparative 

analysis shows that Amin et al. [10] method has presented the 

fastest algorithm among the state-of-the-art algorithms with 

0.9081 and 0.9191 accuracy values on STARE and DRIVE 

databases, respectively. The proposed method is implemented 

on 2.7GHz machine, which is ((2.7-2.66)/2.66) ×100 = 1.5% 

increase in machine speed compared to the machine (2.66 

GHz) that Amin et al. used. As a result, their method which 

took 10 seconds on 2.66 GHz machine, will take 

  (       )      ⁄   seconds on a 2.7 GHz machine. 

Therefore, the proposed method improves the execution time 

by about 50% and also presents more accuracy. Consequently, 

in terms of algorithm speed, the proposed method 

outperforms all other blood vessel segmentation methods. 

5. Conclusion 

Automatic segmentation of the retinal blood vessel is the 

first step in developing a computer-assisted diagnostic 

system. Extracting blood vessel in the fundus image is a 

challenging problem. We presented an effective and fast 

retinal vessel segmentation technique based on the simple cell 

operation of a primary visual cortex by using a Gabor filter. 

The proposed method is a fast and simple unsupervised 

method which does not require any training. The performance 

of this method was shown by sensitivity, specificity, positive 

predictive value, negative predictive value and accuracy 

measurements on DRIVE and STARE databases. Our 

method consists of four steps: preprocessing, blood vessel 

enhancement, adaptive thresholding, and post-processing.  

Preprocessing is a mandatory step for almost all 

medical images because of the signal noise, drift in image 

intensity, and lack of the image contrast. First, we utilized 

a median filter for preprocessing to generate a uniform 

image from fundus images. Although, we are not pioneers 

in using a median filter, we utilized the median filter for 

fundus images to generate a uniform image. Then, blood 

vessel enhancement was accomplished based on the 

simple cell operation in the primary visual cortex. We 

utilized a directional Gabor filter at eight directions to 

increase blood vessel intensity. All parameters for the 

Gabor filter were fixed and did not require to be changed 

for each image. Next, adaptive thresholding was used to 

generate a binary image. Adaptive thresholding was 

utilized as a simple classifier to classify each pixel as a 

vessel pixel or non-vessel pixel. Finally, a local 

morphological process was used on the binary image to 

overcome the problems arising from lesions or noise.  

a b 

c 

a b 
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There are solely two variable parameters, α and β, in 

our method to compromise the accuracy and the 

sensitivity. Although α and β were fixed in our 

implementation, they can be changed according to the 

requirements of its application. 

The proposed method outperforms almost all other 

unsupervised state-of-the-art methods in terms of 

accuracy, sensitivity and speed. The proposed method is 

able to acquire the blood vessels in retinal images at about 

five seconds with an average accuracy of 0.9445 and 

0.9403 for the STARE and DRIVE databases, 

respectively. However, due to a trade-off between the 

detection of narrow vessels and noise in our approach, 

several spots are falsely segmented as vessels. 

We aim to improve the proposed method by applying 

a multi-scale Gabor filter instead of a single-scale filter in 

the future work. The proposed method may be also 

modified by applying some standard classifiers like the 

K-Nearest Neighbors algorithm instead of adaptive 

thresholding to increase the accuracy. 

Table 3. Performance results compared to other methods on the STARE 

and DRIVE databases 

Segmentation 

Methods 
Year 

STARE 

database 

DRIVE 

database 
Method 

type 
se Acc Se Acc 

2nd human 

observer 
 0.8951 0.9348 0.7796 0.9470 

Hand 

labeled 

Niemeijer [19] 2004 N.A N.A N.A 0.9416 

S
u

p
er

v
is

ed
 

M
e
th

o
d

s 

Soares [21] 2006 0.7207 0.9480 0.7332 0.9466 

Staal [20] 2004 N.A 0.9516 N.A 0.9441 

Marin [22] 2011 0.6944 0.9526 0.7067 0.9452 

Fraz [6] 2012 0.7548 0.9534 0.7406 0.9480 

Hoover [7] 2000 0.6747 0.9264 N.A N.A 

U
n

su
p

er
v
is

ed
 M

et
h

o
d

s 

Zana [11] 2001 N.A N.A 0.6971 0.9377 

Jiang [32] 2003 N.A 0.9009 N.A 0.9212 

Mendonca [13] 2006 0.6996 0.9440 0.7344 0.9452 

Segmentation 

Methods 
Year 

STARE 

database 

DRIVE 

database 
Method 

type 
se Acc Se Acc 

Lam [14] 2008 N.A 0.9474 N.A N.A 

Al-Diri [16] 2009 0.7521 N.A 0.7282 N.A 

Cinsdikici [9] 2009 N.A N.A N.A 0.9293 

Lam [15] 2010 N.A 0.9567 N.A 0.9472 

Fraz [12] 2011 0.7311 0.9442 0.7152 0.9430 

You [33] 2011 0.7260 0.9497 0.7410 0.9434 

Amin [10] 2011 0.7261 0.9081 0.6608 0.9191 

Proposed 

Method 
2014 0.7338 0.9445 0.7384 0.9403 

N.A: Not Available 

Table 4. Comparison of the execution times based on STARE and 

DRIVE databases 

Vessel detection 

method 

Computer 

configuration 

STARE DRIVE Execution 

time Acc Acc 

Manual 

segmentation 
Second observer 0.9348 0.9470 120 min 

Lam [14] 

MATLAB, Intel 

Pentium 2.66 GHz, 

512 MB RAM 

0.9474 N.A 25 min 

Lam [15] 
MATLAB, Duo CPU 

1.83 GHz, 2 GB RAM 
0.9567 0.9472 13 min 

Soares [21] 
MATLAB, AMD Athlon 

2.2 GHz, 1 G RAM 
0.9480 0.9466 3 min 10 s 

Staal [20] 
N.A, Intel Pentium 1 

GHz, 1 G RAM 
0.9516 0.9441 15 min 

Al-Diri [16] 
MATLAB, 1.2 GHz 

Pentium system 
N.A N.A 11 min 

Amin [10] 

MATLAB, Intel 

Pentium 2.66 GHz, 

512 MB RAM 

0.9081 0.9191 10 s 

Cinsdikici [9] N.A  0.9293 35 s 

The Proposed 

Method 

Intel Pentium 2.7 

GHz, 4 G RAM 
0.9445 0.9403 5 s 

N.A: Not Available 
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