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Abstract 
In this paper, a novel filter is provided that estimates the states of any nonlinear system, both in the presence and 

absence of uncertainty with high accuracy. It is well understood that a robust filter design is a compromise between the 

robustness and the estimation accuracy. In fact, a robust filter is designed to obtain an accurate and suitable performance 

in presence of modelling errors. So in the absence of any unknown or time-varying uncertainties, the robust filter does not 

provide the desired performance. The new method provided in this paper, which is named hybrid robust cubature Kalman 

filter (CKF), is constructed by combining a traditional CKF and a novel robust CKF. The novel robust CKF is designed 

by merging a traditional CKF with an uncertainty estimator so that it can provide the desired performance in the presence 

of uncertainty. Since the presence of uncertainty results in a large innovation value, the hybrid robust CKF adapts itself 

according to the value of the normalized innovation. The CKF and robust CKF filters are run in parallel and at any time, a 

suitable decision is taken to choose the estimated state of either the CKF or the robust CKF as the final state estimation. 

To validate the performance of the proposed filters, two examples are given that demonstrate their promising performance. 

 

Keywords: Uncertainty; State Estimation; Cubature Kalman Filter (CKF); Robust CKF; Hybrid Robust CKF. 
 

 

1. Introduction 

One of the essential problems in control theory and 

signal processing is the problem of dynamic state 

estimation. Mostly, the extended Kalman filter (EKF) is 

used to estimate the states of nonlinear systems [1,2]. In 

EKF, it is necessary to calculate Hessian and Jacobian 

matrices at each iteration. Therefore, this filter has 

linearization error and is not suitable for highly nonlinear 

functions. Cubature Kalman filter (CKF) has been 

presented to dominate the limitations of EKF [3-5]. 

Moreover, the CKF has a higher approximation accuracy 

compared to the EKF and has an easier algorithm to 

implement, because it avoids weighty calculation of the 

Jacobian and Hessian matrices. Because of these 

advantages, CKF has been used in many applications [6-8]. 

When the process and measurement models of a system are 

known, we will have the best performance for each 

estimator (EKF or CKF). Nevertheless, in many physical 

systems, the obtained model is an approximate with 

parametric uncertainty and unknown external input. 

Furthermore, the process and measurement noises may be 

colored and biased instead of being zero mean and white. 

Recently, uncertainties in the plant model are considered 

and several robust filtering methods have been provided, 

including robust Kalman filter [9,10], robust minimum 

variance filters [11,12], smooth variable structure filter [13], 

risk-sensitive filter [14] and so on. These filters are 

different in terms of the uncertainty present in the plant. 

Unfortunately, finding an effective and accurate model for 

the plant in the presence of uncertainty is often difficult. 

The present work solves this problem and acts in such 

a way that does not require any specific information about 

the plant uncertainty. The proposed modification in CKF 

is capable of preserving filter performance in the presence 

of uncertainty and unknown disturbance in the plant 

description. In other words, a new robust nonlinear filter 

will be proposed. In addition, these uncertainties do not 

have an upper limit (like a bounded norm). 

It is well understood that a robust filter design is a 

compromise between estimation accuracy and robustness. 

A robust filter is designed to obtain an accurate and 

suitable performance considering the errors of modelling 

[15-17]. Thus, in the absence of any unknown or time-

varying uncertainties, the robust filter does not provide 

the desired performance. This issue has caused that in this 

paper, a hybrid robust CKF is proposed so that detects 

and adjusts itself with respect to the uncertainty of the 

system. The hybrid robust CKF consists of both filters: a 

CKF and a robust CKF that run in parallel. At each time 

step, choosing one of these two types of filters to estimate 

the final state is related to the uncertainty and based on 

the amount of the normalized innovation corresponding to 

the two filters (CKF and robust CKF). Therefore, it is 

expected that the hybrid robust CKF has a desirable 

performance even in the absence of uncertainty. 

This paper is configured as follows. In Section 2, the 

problem formulation is briefly described. The estimation 
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of uncertainty using a low pass filter is investigated in 

Section 3. Section 4 and Section 5 include the proposed 

robust CKF and hybrid robust CKF, respectively. In 

Section 6, simulation results and comparison of the 

proposed algorithms with CKF algorithm are given. 

Finally, in Section 7, conclusion is presented. 

2. Problem Formulation 

Consider the discrete-time nonlinear stochastic control 

system. 
 

111 ),(   kkkk wuxfx    (1) 
 

kkk vxhz   )( 1     (2) 
 

Where       is the stochastic state vector,       

is a known control input and       is the measurement 

vector,      and    are zero mean-white Gaussian noises 

with covariance matrices      and   , respectively. The 

process noise      denotes any kind of uncertainty which 

disturbs the system. Moreover,      and    are assumed 

to be uncorrelated. The problem is to estimate the system 

states using the measurements   . 

3. Estimation of Uncertainty Using a Low 

Pass Filter 

As said before, the process noise      represents any 

kind of uncertainty which disturbs the nominal system 

               . In the state transition equation (1), a 

quantity equal to the uncertainty      is expressed as 
 

),( 111,   kkkkeq uxfxw    (3) 

 

Then, an estimate of this uncertainty at the existing 

step is written as follows 
 

),ˆ(ˆ)ˆ(ˆˆ
111,   kkkkkeqk uxfxxww   (4) 

 

To estimate the uncertainty, a low pass filter is used as 

[18].  
 

   )),ˆ(ˆ()ˆ(ˆˆ
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where   is a diagonal matrix with low pass filter 

entries. While a lot of candidates are possible in the 

selection of the   matrix; here, the following first-order 

discrete filters have been applied. 
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Therefore, the matrix   will take the form 
 

),...,,()( 21  nkkkdiagz    (7) 

 

By expanding (7), the state-space realization of (5) is 

written as follows 

)),ˆ(ˆ(ˆˆ
111   kkkkk uxfxBwAw   (8) 

 

where,                 and                . 
The discrete LPFs in (6) should have a unity DC gain, 

that is                 . Thus,         and 

naturally      . 

4. Robust Cubature Kalman Filter 

In this section, the cubature Kalman filter is 

introduced briefly and then it is extended to develop a 

new robust cubature Kalman filter. 

4.1 Cubature Kalman Filter 

All of known filters have problems such as divergence 

in high-dimensions. Dimension problem is related to state 

space and is observed in higher dimension state space 

models. In recent years, the cubature Kalman filter was 

proposed in order to solve divergence and dimension 

problems [3]. This filter is a nonlinear method to estimate 

the system states with an upper dimension limit based on 

the spherical-radial cubature rule [4]. There is no need to 

make a derivative in the cubature rule. Thus, it is not 

necessary to compute the Jacobian and Hessian matrices. 

CKF algorithm is demonstrated in [3,4] completely. 

4.2 Robust Cubature Kalman Filter 

The robust CKF is a combination of the traditional 

CKF with a new uncertainty estimator. This filter is 

designed to estimate the states of any nonlinear system in 

presence of various types of uncertainties including, the 

parameter uncertainty or the unknown input. This filtering 

algorithm is similar to the traditional CKF, except that the 

estimated uncertainty  ̂    and an uncertainty estimation 

error covariance        are included in the algorithm. The 

robust CKF consists of the following steps. 

1. Initialize ( ̂
   |    

 and  
   |    

) 

2. Initial density at time     can be decomposed as 

follows 
 

T

kkkkkk SSP 1|11|11|1      (9) 

 

3. Obtain the cubature points  
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4. In this step, the cubature points pass through the 

nonlinear function     . 
 

111|1,1|,
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5. The predicted mean is computed at the time update 
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6. The predicted covariance is computed at the time 

update 
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7. The covariance matrix achieved from the previous 

step is decomposed again as 
 

T

kkkkkk SSP 1|1|1|       (14) 

 

8. Obtain the new cubature points 
 

1|1|1|,
ˆ

  kkikkkki xSX     (15) 

 

9. The cubature points pass through the nonlinear 

function     . 
 

),( 11|,1|,   kkkikki uXhY    (16) 

 

10. The predicted observation is computed at the 

measurement update 
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11. The predicted innovation covariance is calculated 

at the measurement update 
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12. The predicted cross covariance is 
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13. The CKF gain is  
 

1

1|,1|,



 kkyykkxyk PPK     (20) 

 

14. Compute the updated state and covariance  
 

)ˆ(ˆˆ
1|1||   kkkkkkkk yyKxx    (21) 

 

T

kkkyykkkkk KPKPP 1|,1||      (22) 

 

15. Update the uncertainty estimation 
 

)),ˆ(ˆ(ˆˆ
111   kkkkk uxfxBwAw   (23) 

 

16. Update the uncertainty estimation error covariance 

(derived in lemma 1)  
 

11,, )()(   k

T

kkkwkw QBKRBKPP   (24) 

 

Block diagram of the proposed robust CKF is shown 

in Figure 1. 

Initialize

Compute the cubature points

Propagation the cubature point from process model 

and then compute predicted mean and covariance

Recalculation the cubature points using the mean 

and covariance achieved from the previous step 

Propagation the cubature point from observation 

model and compute predicted observation

Compute the CKF gain

Update the state estimation using the CKF gain    

and new measurement 

       Compute the predicted innovation covariance 

and cross covariance

Update the error covariance matrix

Update the uncertainty estimation

Time update

Measurement update

Update the uncertainty estimation error covariance

 

Fig. 1. Block diagram of the proposed robust CKF. 

Lemma 1. The uncertainty estimation error covariance 

can be written as follows 
 

11,, )()(   k

T

kkkwkw QBKRBKPP   (25) 

 

Proof: We have  
 

111|11|
ˆ),ˆ(ˆ

  kkkkkk wuxfx    (26) 

 

Using this equation, the estimated uncertainty in (8) 

can be obtained as follows 
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(27) 

 

Since      . 
 

From equation (21) we have 
 

)ˆ(ˆˆ
1|1||   kkkkkkkk yyKxx    (28) 

 

Now, using (27) and (28) we obtain 
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Also, we can write  
 

kkkkkk wwwwww   111   (30) 
 

where,     is the difference in uncertainty between 

the    th and kth instant and is assumed to be white 

Gaussian with zero mean and covariance     . 

Subtracting (29) from (30), gives 
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where,      ̂
 |    

  can be approximated by the 

measurement noise   . Noises  ̃ ,    and     are 

uncorrelated and the uncertainty error covariance is as 

follows. 
 

kw

T

kk PwwE ,]~~[      (33) 

 

Finally, using equations (32) and (33), the uncertainty 

estimation error covariance,      can be derived as  
 

11,, )()(   k

T

kkkwkw QBKRBKPP   (34) 

5. Hybrid Robust Cubature Kalman Filter 

A robust filter will be designed in this section to keep 

a balance between uncertainty and estimation error; 

therefore, it has a desired performance in the presence or 

absence of any unknown input or uncertainty In fact, the 

CKF and robust CKF run in parallel in the proposed 

method. At any instant, a proper decision is taken to 

choose either the estimated state of the CKF or the robust 

CKF as the final state estimation. 

The presence of uncertainty shows itself as a big 

innovation. A simple assessment method for this problem 

is based on the normalized innovation which is given as 
 

kk

T

kk        (35) 
 

where,    is the innovation and    is the innovation 

covariance. At each time step,    is computed by both of 

the filters. Finally, the filter is selected as the final state 

estimator that has less innovation. Instead of a statistical 

decision making, a moving average of the normalized 

innovations is considered as follows  


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where s is the moving window's width. Suppose at 

time k, the CKF state estimation is       |   and 

covariance matrix is       |  , the robust CKF state 

estimation is        |   and covariance matrix is 

       |   and the corresponding amounts for the hybrid 

robust CKF are          |   and          |  , 

respectively. The output of robust CKF is one of the two 

types of the CKF or the robust CKF. However, as stated 

above, the output of this filter is the output of the filter 

(CKF or robust CKF) that has less innovation. The 

innovation of the CKF and the robust CKF are 

demonstrated by       
  and        

 , respectively. In this 

type of filter, decision-making is performed as follows 
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where,   is a scalable parameter that depends on the 

permissible amount of uncertainty in the system. 

Block diagram of the proposed hybrid robust CKF is 

shown in Figure 2. 
 

Initializes Filters

Robust CKF prediction CKF prediction

Calculate the moving average           

of the normalized innovations

Calculate the moving average           

of the normalized innovations

      If       If 

   New estimation of the hybrid robust CKF 

,
s
k Rckf ,c

s
k kf

ˆ
Rckfx ˆ

ckfx

,c ,
s s
k kf k Rckf  ,c ,

s s
k kf k Rckf 

ˆ( )HyRckfx

 

Fig. 2. Block diagram of the proposed hybrid robust CKF. 
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6. Simulation Results 

In this section, two examples are given to show the 

performance of the proposed filters, in comparison with 

the traditional CKF. The first example is related to a 

ballistic target motion model with unknown ballistic 

coefficient and aerodynamic forces adopted from [19]. 

The second example is related to the Euler-discretized 

van der Pol oscillator that is adopted from [20]. 

Example 1) The ballistic target motion model with 

unknown ballistic coefficient is given by [19].  
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where    is the target state vector given as follows 
 

 kkkkkk yyxxs     (38)  
 

   and    are target positions,  ̇  target velocity along x 

axis, and  ̇  target velocity along y axis and    is the unknown 

ballistic coefficient that evolves through time as follows. 
 

 kkk w 1     (39) 
 

where   
 

 is a sequence of independent, identically 

distributed (IID) Gaussian variables with zero mean and 

variance  ̃. Furthermore, g is the gravity acceleration and 

the matrices   and G are as follows 
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where   is the time interval between two consecutive radar 

measurements.    is a sequence of IID Gaussian random 

vectors, with zero mean and a covariance matrix as follows. 
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where q is a positive real number and  ̃ is the variance 

of   
 

 in (39). Finally,       is the nonlinear function in 

(37) that denotes the ballistic coefficient    and is given by 
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where      is the air density, which is defined as 

follows. 
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The two dimensional observation vector is as 

   [    ] , where    is the measured range and    is 

the elevation angle. Measurement equation is expressed 

as follows 
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   is a Gaussian random sequence with zero mean and 

covariance matrix 
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To simulate the trajectory, the parameter values are 

chosen as      ,     ,    ̃   ,         

        and          . All three filters are 

initialized as follows 
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To evaluate the performance of the proposed filters, 

two cases are considered: 

A) It is assumed that the ballistic coefficient and 

aerodynamics forces are completely unknown, so instead 

of      in (37) zero is replaced.  

B) It is assumed that the ballistic coefficient and 

aerodynamics forces are completely known.  

For the robust CKF, the parameters are selected as 

         ,           initial mean of uncertainty is 

 ̂  [         ]  and initial uncertainty 

covariance is assumed to be       . In addition, the 

scaling parameter and the moving window width are 

      and     respectively. The root mean square 

error (RMSE) index is used to compare the performance 

of the three filters. This index is defined as 
 



 

Journal of Information Systems and Telecommunication, Vol. 4, No. 2, April-June 2016 103 





N

i

ii xx
N

xRMSE
1

2)ˆ(
1

)(    (46) 

 

For all of the three filters, the corresponding root 

mean square error (RMSE) curves for the estimated target 

position are shown in Figs (3-6). These figures have been 

achieved through the implementation of 100 Monte Carlo 

runs. It can be seen in these figures that when the ballistic 

coefficient and aerodynamics forces are unknown (figs 3-

4), the robust CKF and hybrid robust CKF give better 

results than the CKF. But when the ballistic coefficient 

and aerodynamics forces are known (figs 5-6), the hybrid 

CKF follows the traditional CKF and the performance of 

these two filters is better than the robust CKF. So, both in 

presence and in the absence of any uncertainty, the hybrid 

CKF has a promising performance.   
 

 

Fig. 3. RMS error along x-axis when the ballistic coefficient and 

aerodynamics forces are unknown. 

 

Fig. 4. RMS error along y-axis when the ballistic coefficient and 

aerodynamics forces are unknown. 

 

Fig. 5. RMS error along x-axis when the ballistic coefficient and 

aerodynamics forces are known. 

 

Fig. 6. RMS error along y-axis when the ballistic coefficient and 

aerodynamics forces are known. 

Example 2) The Euler-discretized van der Pol oscillator 

is given as follows [20].  
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where,    [        ]  is the state vector,      is 

the external input assumed to be unknown,      is a 

white Gaussian noise with zero mean and covariance 

           and T is the sampling interval. 

Measurement equation is given as follows 
 

  kkk vxz  11      (48) 

The measurement noise    is a zero mean white Gaussian 

with covariance       . The input      is given by. 
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where      . In this simulation, we set  

   [  ]   ̂ |  [      ]  and   |         . 

To evaluate the performance of the proposed filters, 

two cases are considered: 

A) It is assumed that the input      is unknown, so 

zero is replaced with      in (47). 

B) It is assumed that the input      is known.  
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The parameters in the robust CKF algorithm are selected 

as           and          . The initial mean of 

uncertainty is assumed to be  ̂  [  ]  and initial 

uncertainty covariance is       . The scaling parameter 

and the moving window width are selected as       and 

    respectively, for the hybrid robust CKF. Performance 

of the three filters has been compared according to the 

RMSE of      for 60 Monte Carlo simulation runs. 

Simulation results show that when the input is unknown, the 

robust CKF and hybrid robust CKF give better results in 

comparison with the CKF (fig 7). Furthermore, when the 

input is known, the CKF and hybrid robust CKF give better 

results in comparison with the robust CKF (fig 8). So, as it 

can be seen in the figures, in both cases, the hybrid robust 

CKF provides the best performance among all of the filters.  
 

 

Fig. 7. RMS estimation error of    with unknown input. 

 

Fig. 8. RMS estimation error of    with known input. 

7. Conclusion 

In the presented work, two novel methods of state 

estimation in nonlinear systems were proposed named 

robust CKF and hybrid robust CKF. The robust CKF was 

designed by including the uncertainty estimator in the 

traditional CKF which produces reliable estimates in 

presence of large modelling errors. The hybrid robust UKF 

was proposed to maintain a balance between uncertainty 

and estimation error. The hybrid robust CKF detects the 

uncertainty and adapts the system accordingly. Two 

examples have been considered to compare the 

performances of the proposed filters and it was found that 

the hybrid robust CKF provides the best results for any 

nonlinear system in the presence or absence of uncertainty.  
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