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Abstract 
The least mean square (LMS) adaptive algorithm is widely used in acoustic noise cancellation (ANC) scenario. In a 

noise cancellation scenario, speech signals usually have high amplitude and sudden variations that are modeled by 

impulsive noises. When the additive noise process is nonGaussian or impulsive, LMS algorithm has a very poor 

performance. On the other hand, it is well-known that the acoustic channels usually have sparse impulse responses. When 

the impulse response of system changes from a non-sparse to a highly sparse one, conventional algorithms like the LMS 

based adaptive filters can not make use of the priori knowledge of system sparsity and thus, fail to improve their 

performance both in terms of transient and steady state. Impulsive noise and sparsity are two important features in the 

ANC scenario that have paid special attention, recently. Due to the poor performance of the LMS algorithm in the 

presence of impulsive noise and sparse systems, this paper presents a novel adaptive algorithm that can overcomes these 

two features. In order to eliminate impulsive disturbances from speech signal, the information theoretic criterion, that is 

named correntropy, is used in the proposed cost function and the zero norm is also employed to deal with the sparsity 

feature of the acoustic channel impulse response. Simulation results indicate the superiority of the proposed algorithm in 

presence of impulsive noise along with sparse acoustic channel. 
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1. Introduction 

Adaptive Filters are used in large applications to 

endow a system with learning and tracking abilities, 

especially when the signal statistics are unknown and are 

expected to vary with time. Over the last several years, a 

wide range of adaptive algorithms has been developed for 

diverse demands such as channel equalization, spectral 

estimation, target localization, system identification and 

noise cancellation. One group of the basic adaptive 

algorithms is gradient-based algorithms such as the LMS 

algorithm. The well-known LMS algorithm is perhaps 

one of the most familiar and widely used algorithms 

because of its good performance in many circumstances 

and its simplicity of implementation [1],[2]. 

In many scenarios such as speech echo cancellation, 

parameters of the acoustic channel impulse response can 

be assumed to be sparse [3]-[5]. When the system 

changes from a non-sparse to a highly sparse one, 

conventional algorithms like the LMS based adaptive 

filters can not make use of the priori knowledge of system 

sparsity and thus, fail to improve their performance both 

in terms of transient and steady state. Using such prior 

information about the sparsity of acoustic channel can be 

helpful to improve LMS  

Algorithm performance. In the past years, several 

algorithms have been proposed for sparse adaptive 

filtering using LMS, which was motivated by recent 

progress in compressive sensing [6]. The basic idea of 

these techniques is to introduce a penalty into the cost 

function of the standard LMS to exploit the sparsity of the 

system impulse response and achieve a better 

performance [7].  

Many approaches for signal processing problems have 

been studied when the additive noise process is modeled 

with Gaussian distribution. However, for many real-life 

situations, the additive noise of the system is found to be 

dominantly nonGaussian and impulsive. One example of 

nonGaussian environments is the acoustic noise in speech 

processing applications [8]-[10]. When the additive noise 

process is nonGaussian or impulsive, LMS algorithm has 

a very poor performance [11]. In [12],[13] it was shown 

that for some environments with nonGaussian noise, 

maximum correntropy criterion (MCC) algorithm 

outperforms LMS algorithm. 

In order to modify LMS algorithm performance in 

sparse conditions and nonGaussian noises, Wentao Ma, 

proposed a hybrid algorithm in [14] based on MCC and 

correntropy induced metric (CIM), for robust channel 

estimation problem. Specifically, MCC is utilized to 

mitigate the impulsive noise while CIM is adopted to 

exploit the channel sparsity.  

Based on ANC recent works, it is clear that in this 

field of research, we need to deal with two important 

features, sparse acoustic channels [3]-[5] and 

nonGaussian acoustic noises [8]-[10]. Thus, in order to 

address this problem, we propose a novel adaptive 

algorithm in this paper which is mathematically different 
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with [14] in order to exploit sparsity. The proposed 

algorithm is obtained by combination of maximum 

correntropy criterion and zero norm regularization. The 

zero norm is utilized in the cost function to deal with 

sparsity feature of acoustic channel and the correntropy 

criterion is used to eliminate nonGaussian noises from 

speech signal. Computer simulation results show that the 

proposed adaptive algorithm achieves better performance 

compared to the conventional adaptive LMS algorithm. 

This paper is organized as follows. After the 

introduction, adaptive noise cancellation configuration is 

expressed in section II. In order to cancelling 

nonGaussian noise from speech signal, a novel adaptive 

sparse MCC algorithm is developed in section III. Finally, 

simulation and comparison results are given in section IV, 

followed by conclusions in section V. 

2. Adaptive Noise Cancellation 

An important application of adaptive filters is in 

acoustic noise cancellation [15]. Fig. 1 shows the 

configuration of a noise cancellation system. Assume that 

signal      is the acoustic noise which passes through an 

acoustic channel, with impulse response: 
 

     ∑            
       (1) 

 

By sorting the channel coefficients    into a column 

vector, the acoustic channel impulse response can be 

expressed as follows, 
 

   [            ]
     (2) 

 

that      represents the transpose operator. An 

observation of the desired signal which is sensed by the 

first microphone is denoted by, 
 

                     (3) 
 

where      is the speech signal (speaker, music or etc) 

and      [                      ] denotes 

a vector of delayed input signal which is sensed by the 

second microphone. Given a desired signal      and 

acoustic noise     , adaptive filter tries to replicate 

colored noise by exactly modeling the sparse acoustic 

channel between the noise source and the desired signal. 

The difference between the desired signal      and the 

output of adaptive filter      is in fact the noise-free 

signal (cleaned speech).  

The objective of an adaptive algorithm is to identify 

the sparse channel    using the signals      and     . 

Let    [            ]
 be the estimated vector of 

the adaptive filter at iteration  . In the standard LMS, the 

cost function         is defined as 
 

                  (4) 
 

 

Fig. 1. The block diagram of a noise cancellation system. 

 

where      is the instantaneous error determined as 
 

                  (5) 
 

in which      is the output of adaptive filter and it is 

equal to          . The filter coefficients vector is then 

updated by stochastic gradient descent equation [1]: 
  

                        (6) 
 

in which   represents gradient and can be calculated by, 
  

      [
     

   
 
     

   
   

     

     
]   (7) 

 

According to the equations (4), (6) and (7), the LMS 

algorithm is obtained, 
 

                      

                    (8) 
 

where   is the step size and controls the convergence 

rate and steady state error.  

More recently, there have been concerns about the 

effects of nonGaussian noise on adaptive algorithms [11]–

[14]. This has led a number of authors to investigate 

adaptive algorithms which reduce the bad effects of 

nonGaussian noise. On the other hand, the sparse nature 

of such an impulse response causes standard adaptive 

algorithms like LMS to perform poorly [5]. 

In this work, we design a novel adaptive algorithm 

based on maximum correntropy criterion and zero norm 

regularization, in order to improve LMS weak 

performance in ANC application, in which the acoustic 

channel is sparse and the system noise is nonGaussian and 

impulsive. The next section developes the proposed 

algorithm that aim to give improved performance when 

these two important features exist in speech data. 

3. Adaptive l0 MCC Algorithm 

The Mean Square Error (MSE) criterion may perform 

poorly in nonlinear and nonGaussian situations, especially 

when the data are disturbed by impulsive noises. To 

improve the performance in these situations, the 

maximum correntropy criterion (MCC), which is a robust 

criterion for non-Gaussian signal processing, has recently 

been successfully applied in adaptive filtering [12],[13]. 

The correntropy is a nonlinear measure of similarity 
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between two random variables. Given two random 

variables   and  , the correntropy is: 
 

        [       ]    (9) 
 

where         is a positive definite kernel with the 

kernel width  . The MCC has recently been applied to 

adaptive filtering algorithm to improve the tracking 

performance in impulsive interference [12], while MSE-

based algorithms perform poorly [11]. The most widely 

used kernel in correntropy is the Gaussian kernel:  
 

        
 

 √  
 
 

      

       (10) 
 

By using a Taylor series expansion of the exponential 

function in the Gaussian kernel, 
 

        *
 

 √  
 
 

      

   +      

 
 

 √  
 ∑

     

        
 
    [       ]   (11) 

 

it can be seen that the correntropy criterion involves 

all the higher even order statistical moments of the error 

random variable       .On the other hand, mean square 

error (MSE) criterion just contain the second order 

statistical moment. Thus the MCC included more 

information of the error random variable      and it 

should be very useful for cases when the measurement 

noise is nonzero mean, non-Gaussian, with large outliers.  

Under the MCC criterion, the optimal weight vector of 

the adaptive filter can be obtained by maximizing: 
 

        
 

 √  
 
 

     

       (12) 
 

A stochastic gradient ascent based adaptive algorithm, 

namely the MCC algorithm can be easily derived [12], 
  

                      

        *
 

 √  
 
 

     

   + 

 

           
 

     

              (13) 
 

in which      is equal to 
 

  √  
. By choosing the 

kernel width so large, the MCC algorithm will simplify to 

the LMS algorithm: 
 

          
 

     

      

                 
 

     

             

                           (14) 
 

Comparing the MCC (13) with the LMS (8) weight 

update rule, we see that the weight update equation at 

each iteration in (13) just contains an extra scaling factor 

which is an exponential function of the instantaneous 

error     . This factor rejects the impulsive and 

nonGuassian noise. As   , the exponential function 

goes to zero and therefore, processing of nonGaussian 

signal will be neglected. According to the above 

discussion, adaptation of weights using MCC filter is 

more stable when the desired signal has strong outliers or 

impulsive characteristics. By contrast, whenever a high 

amplitude outlier is encountered in the desired signal or in 

the error,               , the LMS weight update 

rule (8) is forced to make a large increment, which takes 

the weights away from the optimal values. 

By minimizing the zero norm of the filter coefficients 

vector in cost function of LMS algorithm, the sparsity of 

parameters has been exploited [6],[7]. In order to apply 

the zero norm in the MCC algorithm, the negative sign of 

zero norm should be inserted in the maximum correntropy 

cost function (12). By combining the correntropy criterion 

with the zero norm regularization, a new cost function is 

proposed in this paper, 
 

        
 

 √  
 
 

     

     ‖    ‖   (15) 
 

where   is a regularization parameter, which 

represents a trade off between estimation error and 

sparsity of the parameters. Operator ‖    ‖  denotes 

zero norm, which counts the number of nonzero 

coefficients of vector      . Because solving 

differentiation of zero norm is not possible, the zero norm 

is generally approximated by a continuous function [7]: 
 

‖    ‖  ∑ (     |     |)   
      (16) 

 

when some elements of vector      are near zero, we 

have: 
 

|     |         (     |     |)     (17) 
 

On the other hand, when some elements of vector 

     are not zero, and also   is chosen as a large number, 

then we have: 
 

|     |               (     |     |)    (18) 
 

According to (17), (18) it can be seen that equation 

(16) is a general approximation of the zero norm function 

and the number of nonzero coefficients of vector      is 

counted. By this general approximation, the gradient of 

zero norm can be calculated, 
 

  ‖    ‖  *
  ‖    ‖ 

      
 
  ‖    ‖ 
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+ 

= [   (     ) 
  |     |      (       ) 

  |       |] 
 

= [
   |     |   

   
     |       |

]    (    ) 

 

       [   |     |      |       |]   (    ) (19) 
 

in which     [ ]  represents a diagonal matrix. By 

inserting the proposed cost function (15) in a gradient 

ascent updating, the proposed filter update is obtained as: 
 

                      
 

        (
 

 √  
 
 

     

     ‖    ‖ ) 

        (
 

 √  
 
 

     

   )     ‖    ‖  

 

      
 

  √  
 
 

     

               ‖    ‖  (20) 
 



 

Journal of Information Systems and Telecommunication, Vol. 3, No. 3, July-September 2015 153 

By exerting sparse penalty to the MCC cost function, 

the solution will be sparse and the gradient ascent recursion 

will improve the performance of near-zero coefficients in 

the sparse acoustic channel. By inserting (19) in (20), the 

proposed algorithm can be rewritten as follows: 
 

            
 

  √  
 
 

     

            

         [   |     |      |       |]   (    )  (21) 
 

In the next section, the proposed algorithm is 

simulated for sparse acoustic channel along with 

impulsive and shot noise, like in ANC application. The 

robustness of the proposed method against channel 

sparsity and impulsive noise is verified by detailed 

simulation studies. 

4. Simulations 

In this section, we have tried to simulate a real life 

conditions as closely as possible. The speech signal      

that has been used is shown in Fig. 2(a). The nonGaussian 

noise is generated from mixture of multiple Gaussian 

distributions. After adding the noise to the speech signal, 

its non stationary characteristics can be seen in Fig. 2(b).  

The sparse acoustic channel is that of a typical closed 

room environment [5], shown in Fig. 3. We use 21 taps to 

model the sparse acoustic channel path as follows, 
 

   [                                             ]  (22) 

The sparsity ratio of    is equal to 3/21 which means 

vector    containing only 3 large coefficients and others 

are near zero. The impulsive and nonGaussian 

observation noise is often modeled by a two component 

Gaussian mixture [11] with the following probability 

density function (pdf), 
 

                              (23) 
 

in which         denotes a Gaussian distribution 

with mean 0 and variance 10. Clearly, in this pdf, the 

second Gaussian distribution with variance 10 creates 

strong outliers as shown in Fig. 4. The kernel width   for 

the MCC cost function is set to 2 in this case. According 

to various experiments and similar to references, other 

parameters such as step size  , regularization parameter   

and sparsity parameter   were chosen to be 0.01, 0.001 

and 8, respectively. 

For comparing the error performance of the 

algorithms described in the previous section, the Mean 

Square Deviation (MSD) is defined as, 
 

        [‖       ‖ ]   (24) 
 

Fig. 5, shows the MSD performances of the presented 

algorithms in the presence of impulsive noise (23) along 

with sparse acoustic channel (22). The sudden and high 

amplitude bursts of samples which occur in speech 

signals can easily disturb the LMS weight updating. 

However, MCC algorithm (13) places exponentially 

decreasing weights on samples that are distant and 

impulsive. In order to handle the case of channel sparsity, 

the MCC algorithm was modified further to a novel 

proposed algorithm (21). In this algorithm, each 

coefficient is updated with an independent step size that is 

made proportional to the magnitude of the particular filter 

coefficient, resulting in better performance for sparse 

systems. As seen in Fig. 5, the proposed l0-MCC 

algorithm has a superior performance in a noise 

cancellation scenario of highly impulsive speech signal. 

 

Fig. 2. (a) Original speech signal, (b) corrupted speech signal by 

implusive noise, (c) cleaned speech signal using proposed algorithm 

 

Fig. 3. A typical sparse acoustic channel (22) 

 

Fig. 4. Impulsive noise pdf (23), containing a two Gaussian components 
with identical zero means and different variances. 
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Fig. 5. MSD performance comparison in presence of impulsive noise (23) 
along with sparse acoustic channel (22) with a real speech signal s(n). 

 

Fig. 6. MSD performance comparison in presence of impulsive noise (23) 
along with sparse acoustic channel (22) with a white normal signal s(n). 

The performance of the described algorithms is also 

evaluated with a white normal input and is shown in Fig. 

6. As seen, the proposed algorithm has superior 

performance in comparison with LMS (8) and MCC (13) 

algorithms. 

The robustness of the proposed algorithm for diverse 

conditions of channel sparsity and nonGaussian noises is 

demonstrated by various simulation studies. Another 

experiment is utilized to show the superiority of the 

proposed algorithm in a different noise cancellation 

scenario. In this experiment, the acoustic channel    is 

assumed to be  
 

[                                                             ]      (25) 
 

Here, we use an acoustic channel with sparsity ratio of 

2/30 as shown in Fig. 7. The nonGaussian noise is 

modeled by a three component Gaussian mixture with the 

following pdf, 
 

                                           (26) 
 

as shown in Fig. 8. For comparison purposes, the 

MSD performances of this experiment are plotted in Fig. 

9, by averaging over 20 independent runs. From various 

simulation studies, it is evident that the proposed filter 

achieves a 25 dB decrement of steady-state error, when 

the channel is sparse and the noise is nonGaussian or 

impulsive. 

 

Fig. 7. Another sparse acoustic channel for second experiment (25). 

 

Fig. 8. Gaussian mixture noise pdf (26), containing three Gaussian 

components with different means and same variances 

 

Fig. 9. MSD performance comparison for noise pdf (26) along with 

sparse acoustic channel (25) and a white normal signal s(n). 

In the last experiment, the acoustic channel    is 

assumed to be  
 

[                                                                   ] (27) 
 

with sparsity ratio of 4/30 as shown in Fig. 10. The 

nonGaussian noise is modeled by two component 

Gaussian mixture with the following pdf, 
 

                                (28) 
 

as shown in Fig. 11. The MSD performances of the 

last experiment are plotted in Fig. 12. From various 

simulation studies, it is evident that the proposed filter 

achieves better performance, when the channel is sparse 

and the noise is nonGaussian type. 
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Fig. 10. Typical sparse acoustic channel for third experiment (27). 

 

Fig. 11. Gaussian mixture noise pdf (28), containing two Gaussian 

components with different means and same variances. 

 

Fig. 12. MSD performance comparison for noise pdf (28) along with 
sparse acoustic channel (27) and a white normal signal s(n). 

5. Conclusions 

In a noise cancellation scenario, speech signals usually 

have high amplitude and sudden variations that are 

modeled by impulsive disturbances. In this paper, a novel 

adaptive algorithm has been proposed to improve LMS 

algorithm performance in impulsive disturbances and 

sparse acoustic channels. In order to provide robustness 

against impulsive noise, the cost function is derived by 

maximizing the correntropy. Additionally, an accurate 

approximation of zero norm is also utilized to further 

improve the performance in sparse acoustic channels. 

Simulation results show that the proposed algorithm 

achieves a better performance in terms of steady-state 

error as compared with the LMS and MCC algorithms. 
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