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Abstract 
In this paper we propose two simultaneous image registration (IR) and super-resolution (SR) methods using a novel 

approach in calculating the Jacobian matrix. SR is the process of fusing several low resolution (LR) images to reconstruct 

a high resolution (HR) image; however, as an inverse problem, it consists of three principal operations of warping, 

blurring and down-sampling that should be applied sequentially to the desired HR image to produce the existing LR 

images. Unlike the previous methods, we neither calculate the Jacobian matrix numerically nor derive it by treating the 

three principal operations separately. We develop a new approach to derive the Jacobian matrix analytically from the 

combination of the three principal operations. In this approach, a Gaussian kernel (as it is more realistic in a wide range of 

applications) is considered for blurring, which can be adaptively resized for each LR image. The main intended method is 

established by applying the aforementioned ideas to the joint methods, a class of simultaneous iterative methods in which 

the incremental values for both registration parameters and HR image are obtained by solving one linear system of 

equations per iteration. Our second proposed method is formed by applying these ideas to the alternating minimization 

(AM) methods, a class of simultaneous iterative methods in which the incremental values of registration parameters are 

obtained after calculating the HR image at each iteration. The results show that our proposed joint and AM methods are 

superior to the recently proposed methods such as Tian's joint and Hardie's AM methods respectively. 
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1. Introduction 

Super-resolution (SR) refers to a series of techniques 

that integrate the information of a low resolution (LR) 

image sequence captured from a scene to produce a high 

resolution (HR) image with higher quality. Each LR 

image frame is required to have partial unique 

information or it will not have any positive effect on the 

final HR image. This partial unique information can be 

obtained in a number of ways such as camera/scene 

movement or zooming. There are various SR techniques 

which have been developed and reviewed in the 

literature including [1]-[4]. Generally SR techniques 

include three phases either implicitly or explicitly:  

1) image registration (IR), 2) image interpolation, and  

3) image deblurring and denoising [1]. In a small 

category of the techniques such as interpolation-based 

methods, these phases are performed separately [5]-[9]. 

To overcome the intensive presence of error propagation 

in these methods, a majority of other SR techniques 

attempt to perform the last two phases in an integrative 

phase called image reconstruction. However, an 

important source of error is the inaccuracy of 

registration parameters. Therefore, to further prevent the 

error propagation, a large group of SR techniques have 

been developed recently that deal with the inaccuracy of 

registration parameters. Some of these techniques utilize 

median estimator to reduce the artifacts caused by errors 

and outliers of registration parameters [10], [11]. Some 

others use Bayesian methods in which the unknowns 

(including registration parameters) are treated as 

stochastic variables [12]-[14]. In Tipping's method [12], 

marginalization is applied to HR image but in Pickup's 

method [13], it is applied to registration and blurring 

parameters. Nevertheless, the latter provides a wide 

range of various priors (regularizations) to select, but in 

both of them, IR and image reconstruction are 

implemented in relatively separate steps without 

persistent interaction. It seems that such values are not 

reliable enough. Babacan [14] extends the Pickup's 

method to consider hyperparameters (such as the 

regularization parameter) as stochastic variables, and as 

an alternating minimization (AM) method, establishes 

persistent interaction between the estimate of the 

reconstructed HR image, registration parameters and 

hyperparameters. AM methods are a class of iterative 

SR techniques in which the HR image and registration 

parameters are improved in two consecutive steps at 

each iteration [15]. A group of AM methods use 

expectation-maximization (EM) to estimate the HR 

image (in the expectation phase) and registration 

parameters (in the maximization phase) iteratively 
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[16],[17]. The AM methods, nevertheless, may lead to 

suboptimal solutions [18]. 

There is another category of SR techniques which are 

also iterative similar to AM methods, but in this category, 

HR image and registration parameters are not calculated 

separately at each iteration [19]-[22]. A nonlinear cost 

function was used by Chung et al. [19] to estimate HR 

image and registration parameters. Using Euler–Lagrange 

necessary conditions for the cost function, they derived a 

nonlinear system of equations, proposing three methods 

for its solution. Their first method (called decoupled) 

resembled an AM method, but their second method (called 

partially coupled) was a kind of variable projection (VP) 

method [18]. A similar method was also proposed by 

Robinson et al. [20] where they used a similar nonlinear 

cost function to derive the maximum likelihood 

(ML)/maximum a posteriori (MAP) solution for the HR 

image. After substituting this solution of HR image into 

the cost function, the reduced cost function [19] was 

minimized with respect to the reminder of unknowns, i.e. 

registration parameters. Finally, these registration 

parameters were used to obtain the final HR image. Chung 

et al. [19] attempted to solve the nonlinear system of 

equations through Gauss-Newton algorithm in their third 

method. This led to the development of a new class of 

methods called fully coupled. In these techniques, which 

are referred to as joint methods in this paper, the 

incremental values of the HR image and registration 

parameters are jointly calculated in only one system of 

equations. He et al. [21] used a similar cost function by 

linearizing it at existing current values for HR image and 

registration parameters using Taylor series approximation. 

In this linearization, they obtained the Jacobian matrix 

analytically (in contrast to some methods like [12], [13] 

where it is calculated numerically). Finally, this linear 

system of equations (in terms of incremental values of HR 

image and registration parameters) has been solved 

through a conjugate gradient (CG) optimization algorithm. 

They have used Euclidean motion model and it has been 

extended to the similarity motion model by Tian et al. [22]. 

In all of these joint methods [19]-[22], the blurring is 

assumed to be the same for all LR images, which is 

impractical in many applications. In reality, when the 

motion model is more complex than Euclidean motion 

model, the size of blurring function is no longer the same 

for all LR images [23]. This has not been considered in 

the [19] and [22] methods, which have not restricted their 

motion model to the Euclidean motion model. However, 

in the methods proposed in [21] and [22], the 

convergence to the global solution is more probable 

(especially when the initial values are close enough to 

optimal values) but the derivation of Jacobian matrix is 

based on bilinear interpolation of warped pixels [19], [21], 

[22]. This may introduce the restriction in which only 

four neighboring pixels are effective in determining the 

values of warped pixels [21]. 

As an inverse problem, SR dictates three principal 

operations that should be applied sequentially to the 

original HR image to produce the corresponding LR 

images. These operations are image warping, image 

blurring and image down-sampling (for brevity they are 

referred to as principal operations). In many approaches, 

the principal operations are treated separately and in 

others they are combined into a unit operation [2], [12], 

[13], [23]. The advantages of this combination include the 

possibility of incorporating the pixels in any arbitrary 

neighboring radius to derive the warped pixels without 

changing the framework of the problem and employing a 

new interpolation method. Another advantage of 

combining the principal operations is error propagation 

reduction because all three operations are performed in 

one stage. Moreover, it allows having an adaptive kernel 

for blurring (blurring is treated as a function of zooming, 

which can be different for each LR image). 

This paper focuses on the joint methods [21], [22] and 

treats the three principal operations in the inverse problem 

in a combinational form as [12] and [13]. Then, a new 

joint method based on this combinational form is 

proposed. In contrast to [12] and [13], the Jacobian matrix 

is not calculated numerically and unlike common joint 

methods [21], [22], the Jacobian matrix is not derived by 

treating the three principal operations separately. In the 

proposed method, the bilinear interpolation has not been 

used in the warping operation and its derivative. 

Moreover, the same blurring for all LR images [19]-[22] 

has not been considered. We developed a new approach 

to derive the Jacobian matrix analytically based on the 

combinational form of the three principal operations. In 

this regard, a Gaussian kernel blur (as is more realistic) 

was adopted the radius of which is adaptive to each LR 

image. We also used a bilateral total variation (BTV) 

regularization [11], which incorporates the eight 

directions of each pixel in the cost function. Although the 

main goal of this paper is to develop a new joint method 

of IR and SR using the combinational coefficient matrix 

and analytical combinational Jacobian matrix, the 

application of these concepts to the framework of AM 

methods gives rise to new method which will be 

discussed later. In this paper, the similarity motion model 

is used (which consists of translation, rotation and 

zooming) similar to [22]. 

The rest of this paper is organized as follows. In 

Section 2, the problem formulation including notation of 

SR problem, Gaussian kernel blur and combinational 

coefficient matrix are introduced. The proposed iterative 

joint and AM methods are developed in Section 3. In 

Section 4, experimental results on simulated and real 

images are presented. Conclusion and future works are 

discussed in Section 5.  

2. Problem Formulation 

2.1 Super Resolution Notations 

Let us consider a series of K  discrete LR images    of 

size       where      . The lexicographically 
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ordered LR images are denoted by column vectors    and 

all these vectors are stacked in one column vector, i.e. 

     
      

   . The purpose of the SR technique is to 

reconstruct the original HR image f of the size       

using existing LR images as well as some prior 

information about the original HR image. The 

lexicographically ordered original HR image is presented 

by column vector f. Here, it is assumed that the 

decimation factor is the same in both vertical and 

horizontal directions                . Each LR 

image    is obtained by applying the three principal 

operations to the original HR image f as follows 

(generative model): 
 

                   (1) 
 

Where    is the column vector of additive white 

Gaussian noise, D is the down-sampling operator (which 

is realized as a           matrix),    is the blurring 

operator (which is realized as a           matrix) and 

      is the warping operator (which is realized as a 

          matrix) [14], [21], [22].    is the vector of 

unknown registration parameters used for warping the grid 

of original HR image f (called reference grid) onto the up-

scaled grid of k th LR image. Practically one of the existing 

LR images (the first LR image in this paper) is selected as 

the reference image and the up-scaled grid of the reference 

image is considered as the reference grid. Generally, in all 

simultaneous IR and SR methods like AM and joint 

methods, it is assumed that initial and imprecision values of 

registration parameters can be provided by some IR 

techniques. In this paper, enhanced correlation coefficient 

(ECC) method [24] is used for the IR. 

The combination of the three principal operations can 

be considered as a unit combinational operation, which is 

realized by a matrix        of the size           as 

follows: 
 

                 (2) 
 

This paper adopts the similarity motion model with 

four degrees of freedom (zooming, rotation, vertical and 

horizontal translation). Hence,                where 

          are the variable elements of the kth 3x3 

homogenous matrix [25] with the current motion model, 

as follows: 
 















 



100

)( 412

321

kkk

kkk

kk hhh

hhh

αMM    (3) 

 

It is worth noting that the above homogenous matrix can 

be decomposed into pure translation, rotation and zooming 

matrices respectively as           
      

      [25] 

in which             
           

     

               and        
     

     . 

Equation (2) shows a series of relations between the 

original HR image and each LR image. These relations 

can be written as one equation as follows: 
 

           (4) 
 

where          
          

     is called 

combinational coefficient matrix and      
      

   . 

2.2 Blur Considerations 

Consistent with the literature, in this paper Gaussian 

kernel, which is more realistic, has been used to model 

the blur caused by the atmosphere turbulence and camera 

lens, and the motion blur has been excluded. Usually, the 

blur is assumed to be isotropic in the imaging plane [23]. 

When the motion model is similarity, the kernel of back-

projected blur into the scene plane will be isotropic too. 

However, the greater the distance of a scene plane from 

the image plane (or less zoom is applied) the more 

extensive is the area encompassed in the scene to 

contribute to the blurring. Therefore, when the LR images 

are registered to the reference image, they have isotropic 

Gaussian blur, but possibly with different radiuses in the 

reference image [23]. 

2.3 Combinational Coefficient Matrix 

Three methods of computing the combinational 

coefficient matrix has been addressed by Capel [23]. The 

simplest one is the directly computing the warping, 

blurring and down-sampling matrices separately and then 

calculating their multiplication (separately applying the 

principal operations) as (2) has been derived from (1). 

However this method involves large amount of memory 

usage. Additionally, since the operations are implemented 

separately the error propagation can occur. Although in 

the Capel's second and third methods the principal 

operations are not implemented separately, they have 

complex implementations. Another method has been 

proposed in [12] which is theoretically very similar to the 

Capel's third method but it has simpler implementation. 

This method which has also been used in some other 

papers (e.g. [13]) will be described in the reminder of this 

section and applied in this paper. 

The elements of ith row of the        are the 

coefficients of linear combination of f required to 

generate the gray scale value of ith pixel of   . Thus, the 

sum of these coefficients should be equal to one. As such, 

the elements of        are calculated as: 
 

  


ff NM

1j kkji

kijk

kijk

W

W
W

)(
~

)(
~

)(
α

α
α    (5) 

 

where the elements  ̃        are obtained as [12]: 
 

 ̃           { 
 

   |  |
          

            }   (6) 
 

Here               
  is the position of jth pixel of the 

original HR image in the reference grid,               
  is 

the position of ith pixel of kth LR image and        

                   
  is its transformation through the motion 

model, which is characterized by    with respect to the 

reference grid: 
 

321)( kyikxikixk huhuhs u    (7) 
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kyikxikiyk huhuhus 412)(     (8) 
 

Actually,        is the center of isotropic Gaussian 

kernel after projection to the reference grid.   is the 

standard deviation of isotropic Gaussian kernel of the blur 

and   is the determinant operator. 

It is worth noting that in the combinational generative 

models used by Capel [23] and Tipping et.al [12], 

Gaussian interpolation method [26] has been used 

implicitly instead of bilinear interpolation method, which 

is explicitly common in several SR techniques, e.g. [14], 

[19], [21] and [22]. This is shown in Fig.1 in which both 

bilinear and Gaussian interpolation methods have been 

displayed from a new aspect. As shown in this schematic 

view, the reverse mapping is adopted in the image 

warping implementation. Hence, instead of warping the 

HR pixels, the LR pixels are warped in the reference grid. 

Then, the neighboring HR pixels/samples around a 

warped LR pixel (the center of kernel in Fig.1) are 

assigned some weights equal to the height of the point in 

which the kernel and the neighboring sample intersect. As 

shown in Fig.1 (a), in the bilinear interpolation, at most 

four samples can be included in the domain of the square 

pyramid kernel, but there is not such limitation in the 

Gaussian interpolation (Fig.1 (b)). 

 

 

 

Fig. 1. Two kernels for interpolation; thick vertical lines show the samples located in the domain of the kernel. (a) Square pyramid kernel used in the 

bilinear interpolation, (b) Gaussian kernel used in the Gaussian interpolation. 

 

3. Development of New Iterative Simultaneous 

Methods 

3.1 Cost Function of the New Joint Method 

As super resolution is an ill-posed problem, there are 

infinite or instable solutions which can satisfy Equation 

(4). Therefore, to make the solution unique and stable, 

prior information is necessary. In the joint methods, both 

original HR image and registration parameters are 

unknown. TV of the HR image is an important 

regularization which is often used in SR techniques as the 

prior information. For the registration parameters, a 

simple Tikhonov regularization, i.e. the minimum energy, 

has been used. Given the generative model of LR images 

expressed in (4) and considering the mentioned 

regularizations, the framework of the cost function for the 

joint method is [19], [21], [22] 
 

)()(),(
2

aRfTWfgafE V    (9) 
 

where      
      

   ,   and   are regularization 

parameters,       is TV of the HR image. Similar to 

Farsiu's [11] and Tian's [22] methods, BTV is used in our 

cost function, but here it encompasses all eight 

neighboring pixels to reduce edge penalization in any 

directions 
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Because       is a nonlinear function of f using half-

quadratic scheme [27] and fixed-point techniques [28], it 

can be written as: 
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Where      is calculated in the previous iteration as 

follows: 
 

  222

, )),(),(){(( jifnjmifnmnm
  (12) 

 

and   is the small positive value to ensure      is 

nonzero.       can be expressed in a matrix-vector form 

as [22]: 
 

2TTT)( LfTffLfLffTV    (13) 
 

     ‖   ̅‖  is the Tikhonov regularization for 

registration parameters and  ̅  is a vector containing the 

average values of registration parameters during all previous 

iterations. This method of  ̅  selection can help reduce 
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resonance around the final values of registration parameters. 

Hence, the cost function (9) can be expressed as: 
 

2

aaLffara)E(f TTTT ])(β)(λ),([,   (14) 

 

where             is called residual vector. 

To estimate the unknown HR image and registration 

parameters, the cost function should be minimized. 

Although this optimization problem is convex with respect 

to f, it is nonconvex in terms of   because the term        

is nonlinear with respect to  . To alleviate this problem, 

linear approximation has been used for       . Linear 

approximation requires initial values for unknowns. As 

mentioned earlier, initial values for registration parameters 

may be obtained using registration techniques such as ECC 

algorithm [24]. Given these initial values for registration 

parameters, the initial value for HR image can be obtained 

using the simple interpolation-based method [5], the 

approach used by [21] or a simple up-scaling of the 

reference image. If    and    are incremental values for f 

and   then              can be approximately 

linearized with respect to    and    as follows: 
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The two derivative terms in the above equation are 

calculated in the two following relations: 
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Substituting (16) and (17) in (15) yields 
 

fWaaJarfaar  -f),(-f),()Δf,Δ(  (18) 
 

Where        is the Jacobian matrix, the calculation 

of which presents a challenging issue, as will be discussed 

in the next section (3.2.). 

Substituting (18) in (14) and rewriting the content of 

the norm as a linear combination of incremental values of 

unknowns leads to 
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Now, instead of minimizing the nonlinear cost 

function in (14) with respect to the main unknowns, i.e.   

and  , the linear cost function in (19) is minimized with 

respect to their incremental values, i.e.    and    

respectively [19],[21]. The incremental values are used to 

update the main unknowns. Obtaining the optimal 

solution for the cost function in (14) is not guaranteed, but 

starting from initial values close to optimal values and 

continuing the optimization of the linear cost function in 

(19) may yield the optimal solution [21]. 

3.2 The proposed Method for Derivation of 

Jacobian Matrix         

Jacobian matrix in the existing joint methods is 

derived from the three principal operations separately [19], 

[21], [22]. In this paper, however, we propose the 

derivation of Jacobian matrix using the combinational 

operation (5), and in contrast to [13], it is calculated 

analytically rather than numerically. As mentioned in (16) 

it can be written as follows: 
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       is a          block diagonal matrix [21] 

of matrices        where 
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Naturally         is a        matrix and the nth 

column of which can be obtained as follows: 
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where      . Using equations (5) and (6), each 

entry of matrix              is calculated as follows: 
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where the operator    is derivative with respect to     

and  
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Where   |  |
   and          can be calculated 

simply using Equations (3), (7) and (8). 

The proposed method can be implemented in the 

framework of an algorithm as described in the next 

subsection: 

3.3 Algorithmic Steps of the Proposed Joint 

Method 

Step 1: Calculating initial values for registration 

parameters   ̂  using ECC algorithm. 

Step 2: Calculating the initial value of HR image 

using Delaunay triangulation-based interpolation method 

of SR, given the LR images and the estimated  ̂. 
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Step 3: (At the iteration i) Calculating the 

combinational coefficient matrix     , Jacobian Matrix 

      , residual vector        and BTV matrix T as 

discussed earlier. 

Step 4: Solving the linear system of equations (26) 

using a CG algorithm: 
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This linear system of equations is the result of 

minimizing the cost function expressed in (19), which is 

calculated by taking derivative of the cost function with 

respect to    and    and then equating the result to zero. 

Step 5: Updating the unknown variables using the 

estimated incremental values: 
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Where the superscript shows the iteration number. 

Step 6: Updating  ̅ according to the following relation: 
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Step 7: If the following condition of HR image, (29), 

is satisfied for a specified threshold (Thr), which is 

assumed 10-6 here, or a maximum number of iteration is 

reached, Then stop Else go to step 3. 
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3.4 Cost Function of the New AM Method 

In the AM methods, the cost function is minimized in 

two separate phases. In the first phase, it is minimized 

with respect to f. Fortunately, the cost function (14) is 

quadratic with respect to f and its MAP estimation is 

obtained as follows [15]: 
 

  gWTWWaf T1T)(


      (30) 
 

In the second phase, the cost function, which is not 

quadratic with respect to  , is minimized as a function of 

  . For this reason, the cost function is linearized only 

with respect to incremental values of registration 

parameters    using (19) 
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Where        is obtained as discussed in Section 3.2, 

using proposed method. Finally, the vector    is 

calculated by solving the following linear equation: 
 

  )(- aarJaIJJ  βΔβ TT    (32) 
 

Other details, the same as the proposed iterative joint 

method in section 3.3, have not been included here. 

This proposed AM method, like other AM methods, is 

more sensitive to the initial values compared to the joint 

method. 

3.5 Algorithmic Steps of the Proposed AM 

Method 

Step 1: Calculating initial values for registration 

parameters   ̂  using ECC algorithm and then calculating 

the combinational coefficient matrix     . 

Step 2: Calculating the initial value of HR image 

using Delaunay triangulation-based interpolation method 

of SR based on the LR images and the estimated  ̂. 

Step 3: (At the iteration i) Calculating the Jacobian 

Matrix        and the residual vector       . 

Step 4: Solving the linear system of equations (32) 

using a CG algorithm. 

Step 5: Updating the registration parameters using the 

estimated incremental values: 
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    (33) 

 

Step 6: Updating  ̅ using Equation (27). 

Step 7: Calculating the combinational coefficient 

matrix      and BTV matrix T. 

Step 8: Solving the linear system of equations (30) to 

obtain a new update of the HR image f. 

Step 9: If the condition (29) is satisfied or a maximum 

number of iteration is reached, then stop Else go to step 3. 

3.6 Implementation Details 

To realize the proposed methods and compare them 

with other methods, MATLAB R2012b is used. The ECC 

library provided by Evangelidis [29] is used to obtain 

initial values for registration parameters. The 

preconditioned conjugate gradient (PCG) routine “pcg” is 

used where a linear system of equations should be solved. 

We partially used (just subroutine “makeW.c”) the codes 

provided by Pickup [30], making some modifications to 

produce the desired combinational coefficient matrix. The 

Gaussian kernel used in this subroutine is truncated after 

three standard deviations in terms of LR pixels. This has a 

significant impact on reducing the computational cost of 

Equations (5) and (23), as will be discussed in the next 

subsection 3.7. The above-mentioned truncation is also 

considered in the blur mask produced by the routine 

“fspecial”, which is used to perform the blurring 

operation in Tian's and Hardie's methods. Other 

parameters like λ and β are taken as [22]. 

The original Hardie's method proposed for translational 

motion model and direct search in neighboring pixels was 

used in the optimization of registration parameters. To 

draw a fair comparison, we extended this method to 

include similarity motion model, and the nonlinear least 

square optimization method used in the proposed AM 

method was also applied to the Hardie's method because a 

motion model more complex than translational was not 

applicable to original Hardie's method.  
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In the methods that perform the warping and blurring 

operations separately [21], [22], after warping the HR 

image, some blank areas like corners usually appear. 

These blank regions may be filled by black pixels or 

nearest pixels [21]. When the motion is considerable, 

selecting each of these tricks may negatively affect the 

final results because the blur mask can significantly 

change the gray level of the pixels located in the borders 

of these blank regions. To overcome this problem, we 

used another trick. When using the reverse mapping 

model, the pixels that leave the frame are marked during 

the warping operation. This process does not require 

considerable additional computation since it is a part of 

warping operation. Then, the columns of blurring matrix 

   associated to these pixels are set to zero and the rows 

of the matrix are renormalized. These operations are all 

conducted through matrix calculations. This trick has 

been used in our implementations in the next section to 

increase the performance of Tian's and Hardie's methods. 

3.7 Computational Complexity 

In this subsection, the computational complexity of 

the proposed methods is calculated and compared with 

two other simultaneous methods (Tian's [22] and Hardie's 

[15] methods). The overall computational cost of the 

proposed methods (as well as Tian's and Hardie's methods) 

is affected by several factors including the dimensions of 

LR images, the number LR images, the increasing factor, 

the size of blur mask and the termination criteria of 

algorithm (the number of iterations allowed in the 

algorithm and the pcg routine). Similar to [31] and [22] it 

is assumed that the addition and multiplication operations 

are the same. In all methods, the sparsity of matrices is 

considered in the computational complexity. There are 

three processes that their complexity dominates others: 

the calculation of combinational coefficient matrix     , 

the calculation of Jacobian Matrix        and solving the 

linear system of equations (26) or (30). Since the 

frameworks of the methods are the same, the complexity 

is calculated only for one iteratio n. In Tian's and Hardie's 

methods      is calculated in accordance with (1) [22] 

by separately calculating its component matrices, i.e. D, 

   and b(   . Because the motion model is similarity and 

the bilinear interpolation is used, the computational cost 

of          {             }  is          . The 

blur matrix          {       } has      non-zero 

elements in each row and the multiplication of HB can be 

considered as the convolution of      blur mask (since 

the blur mask is truncated) with a 2×2 interpolation mask. 

Hence, the computational cost of this multiplication is 

O(4(                  . Finally since 

                                the 

computational cost of      is  (          )  

              . In these two methods        

       {                   }  is derived by separate 

calculation of its component matrices, i.e.         
                       where C is a       

  matrix that requires no considerable calculation and 

   is a            matrix that consists of two 

adjacent diagonal matrices (see [21] or [22] for further 

details). The computational cost of    is          and 

its multiplication with C yields the computational cost of 

        . Since C is not sparse, the new matrix     

will not be sparse too, hence the computational cost of 

      will be             . Finally, the 

computational cost of        will be               . 

For Hardie's AM method, the HR image is obtained in 

each iteration by solving the linear system of equation (30) 

using the iterative PCG algorithm. The computational 

cost of the PCG for one iteration is equal to the number 

non-zero elements of the coefficient matrix of the linear 

system of equations [32]. Although the dimensions and 

the number of non-zero elements of the sparse matrix 

     are dependent on the number of LR images and the 

increasing factor, this is not the case for the coefficient 

matrix of the linear system of equations (30), i.e.     
  . The number of non-zero elements of this sparse 

matrix is approximately equal to              
  

                
     . Hence, if the iteration 

number allowed for PCG is L, the computational cost of 

PCG algorithm will be               . For the Tian's 

joint method, the larger linear system of equation (26) 

should be solved. As mentioned earlier, since         is 

not sparse,     will not be sparse too. Hence, the 

computational cost of PCG algorithm for solving linear 

system of equations (26) is                    . 

In the proposed methods, the combinational coefficient 

matrix      is calculated in accordance with relations 

(5)-(8). Each row of this matrix, has            
   elements (as before) and requires            
     multiplications and              

exponentiations. Since, at most three standard deviations 

of a Gaussian is preserved, its argument will have a 

maximum absolute value of 3
^2

/2=4.5. Experimentally, it 

was verified that such an exponent has a computational 

cost which is at most 15 times greater than the 

computational cost of a multiplication. Hence, the 

computational cost of      is  ((           

                   )     )  

            . To calculate the computational 

complexity of the combinational Jacobian matrix        

in the proposed methods, we found that the computational 

cost of         was 4 times greater than          

because the motion model is similarity. According to (22) 

         is the multiplication of matrix               

with vector f. Each row of              has the same 

number of non-zero elements as       , i.e.     
        , hence this matrix-vector product will require 

                 multiplications. According to 

(23)-(25), each element of              requires 

               multiplications. Finally, the 

computational cost of        is  (          

                                

(              )    )       
   

      . 
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Now, the summery of computational complexity of the 

four methods are as follows: 

A. Extended Hardie's AM method: 

                   ,                 

                      
 

B. The proposed AM method: 

          
   

      ,                 

                          
 

C. Tian's joint method: 

                   , 

                     

                              
 

D. The proposed joint method: 

          
   

      , 

                     

         
   

                    . 
 

Generally, it can be concluded that joint methods have 

higher computational cost than AM methods. Practically, 

when a higher increasing factor is selected, the larger blur 

mask is desirable so that      is approximately 

proportional to    and then  (   
   

     )  

              . Hence, the proposed AM and joint 

methods will have the same computational cost as 

Hardie's AM and Tian's joint methods respectively. It 

should be noted that the computational complexity 

derived here is more detailed than the one used in [22]. 

4. Experimental Results 

In this section, the performance of the proposed Joint 

and AM methods are discussed and compared with a 

recently joint method (Tian's method [22]) and the 

famous AM method (Hardie's method [15]). We have 

provided five experiments including three synthetic image 

sequences and two real-life images sequences. The 

synthetic sequences, produced by warping some test 

images, are used to evaluate the performance of methods 

according to the following metrics: normalized mean 

square error (NMSE) for the estimated registration 

parameters vector and the peak signal to noise ratio 

(PSNR) for the reconstructed HR image, which are 

defined as follows [21],[22]: 
 

2
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where “~” denotes the currently estimated values of 

the unknowns. Lower values of NMSE and higher values 

of PSNR are preferred in a method. Apart from the two 

objective measures, the final HR images are used to 

compare the performance of the methods subjectively. 

 

 

 

Fig. 2. Three test images, 'Castle', 'Khayam' and 'Chart' which are considered as the ground truth in the reconstruction. 
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Fig. 3. Four LR images of the sequence were created from the first test image. 

 

Fig. 4. PSNR of the reconstructed HR image and NMSE of the estimated registration parameters using the four methods for the 'Castle' image. 

 

4.1 Experimental Results of Degraded Test 

Images 

Three test images are used for the experiments in this 

subsection. The first one (188x186 pixels) is 'Caslte' 

image [33], which has been placed at the center of a 

frame surrounded by a thick strip of 30 black pixels (zero 

gray value). By doing so, the main part of the image is not 

even pushed out of the frame partially after warping. The 

second and third test images, namely 'Khayam' and 'Chart' 

images [33], are relatively large (580x640 and 512x640 

pixels respectively). After warping these test images, the 

central part of images (320x280 pixels), which are still in 

the frame, are selected as warped HR images. Therefore, 

the original HR images (the ground truth) be 

reconstructed are shown in Fig. 2. In the first experiment, 

a sequence of six images were created by warping one of 

test images through the use of different homogenous 

matrices      each of which containing a zooming factor 

    , a rotation angle      and a translation in both 

vertical and horizontal directions (       ) , randomly 

chosen from the ranges                      and        
respectively. Then, they were blurred by an isotropic 

Gaussian kernel with a variance of 0.333 LR pixel. These 

images, degraded by Additive White Gaussian Noise 

(AWGN) to have 30 dB SNR, were down-sampled by a 

decimation factor of 2. Four degraded LR images for the 

first test image are shown in Fig.3. Using four methods, 

i.e. Tian's method, Hardie's method and our two proposed 

methods, the HR image was reconstructed. To obtain 

initial values for registration parameters, no explicit IR 

techniques were used in the experiments of this 

subsection; instead, the inverse of each original 

homogeneous matrix    was multiplied by a 

homogeneous error matrix. This homogenous error matrix, 

similar to   , contains a zooming factor, a rotation angle 

and a translation in both vertical and horizontal direction 

randomly chosen from the ranges              , 

             and            respectively. The PSNR of 

the reconstructed HR images and NMSE of estimated 

registration parameters using these four methods for the 

'Castle' image are shown in Fig.4. Also, the HR images 

reconstructed by these methods for the test image are 

shown in Fig.5. As can be seen, the proposed methods 

have improved NMSE and PSNR more than Tian's and 

Hardie's methods. Additionally, the superior performance 

of the proposed methods is evident in the reconstructed 

HR images highlighted in Fig.5 (e-h). As can be seen, the 

PSNR is reduced in the AM methods at the first iteration, 

while the reconstructed HR image deviates from the 

desired solution, though it returns to the desired solution 

in the later iterations. We have also examined other initial 
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values of HR image such as up-scaled version of 

reference image and MAP estimation of the HR image 

using the initial values of registration parameters [21]. 

However, it had no significant impact on the performance 

of joint methods, but it could affect the performance of 

the AM methods. This experiment was repeated with a 

homogeneous error matrix that contained twice the values 

of zooming factor, rotation angle and translation in both 

vertical and horizontal directions. Nevertheless, it was 

observed that the joint methods converged during 20 

iterations, with most of the attempts to perform the AM 

methods leading to divergence. In the second experiment, 

in which the second and third test images were used, we 

focused on the zooming part of the motion model. A 

sequence of six images with zooming factors      
    for               and vertical translations     

                    and horizontal translations 

                        were created. Vertical 

and horizontal translations were selected in such a way 

that the center of the test image remained unchanged after 

warping. Other steps were the same as the first 

experiment. Four degraded LR images for the 'Chart' 

image are shown in Fig.6. The PSNR of the reconstructed 

HR images and the NMSE of the estimated registration 

parameters for the test image are shown in Fig.7 and HR 

images reconstructed by the four methods are illustrated 

in Fig.8. The results show that our proposed methods can 

reconstruct the edge regions with greater precision, 

especially when the relative zooming is considerable. 

 

 

Fig. 5. the reconstructed HR images using Tian's Joint method (a), proposed Joint method (b), Hardie's AM method (c) and proposed AM method (d). A 

zoomed part of these images have also been shown in (e-h) respectively. 

 

Fig. 6. A sequence of four degraded LR images was created from the third test image by emphasizing the zooming. 

 

Fig. 7. PSNR of the reconstructed HR images and the NMSE of the estimated registration parameters using all four methods for the 'Chart' image. 
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4.2 Experimental Results of Real-life Images 

In this subsection, two sequences were extracted from 

two videos of 'text' and 'car', which are accessible in [34]. 

Four frames of each video are shown in Fig. 9. In the first 

experiment, a sequence of 10 frames with a size of 57x49 

pixels was extracted from the 'text' video. Also,   was set 

at 0.55 LR pixel and the increasing factor was set at 4. 

Initial values for registration parameters were obtained by 

setting the homogeneous matrix    equal to the identity 

matrix for all frames, because the relative motion between 

successive frames was small in this experiment. This can 

be considered as a special application of these SR 

methods. The HR images reconstructed by the four 

methods are displayed in Fig.10. The results of this 

experiment also confirm the superior performance of our 

proposed methods in the edges. Also, it is observed that 

letters in reconstructed images are clearly distinguishable 

in the proposed method. Selecting a larger standard 

deviation increases the shadows around the letters, 

especially in Tian's and Hardie's methods. In the second 

experiment, a sequence of 16 frames with a size of 

121x72 pixels was extracted from 'car' video.   was set at 

0.45 LR pixel and the increasing factor was set at 3. 

Initial values for registration parameters were obtained by 

adopting the ECC IR technique [24]. The HR images 

reconstructed by the four methods are shown in Fig. 11. 

 

 

 

Fig. 8. Reconstructed HR images using Tian's joint method (a), our proposed joint method (b), Hardie's AM method (c) and our proposed AM method (d). 

 

Fig. 9. Four LR images of the sequences were extracted from videos 'text' and 'car' 

 

Our proposed joint method produced better results in 

this experiment. Although both license plates, namely 

'3PLK273' and the name of vehicle manufacturer 

'SUBARU', are recognizable, the letters of license plate 

are more distinctive in the proposed method. Our 

proposed AM method detected the license plate letters 

precisely, though some shadows in edge regions could be 

observed in other parts of image. 

We used a DELL/Vostro notebook with 4 GB RAM 

and a 2.5 GHz dual core processor in our experiments. 

The maximum iteration number for both pcg routine and 

the four discussed simultaneous methods was set at 20. At 

each iteration, however, the proposed AM and joint 

methods had the same computational complexity as 

Hardie's and Tian's methods respectively, the run time of 

the proposed joint and AM methods were less than Tian's 

and Hardie's methods respectively. For example, the run 

times of the first experiment for 6 LR images with a size 

of 94x93 pixels were 64s, 40.5s, 52.5s and 24s for Tian's 

method, the proposed joint, Hardie's method and the 

proposed AM methods respectively. This is due to three 

reasons. First of all, the proposed methods require fewer 

iterations for the convergence the two others, as shown in 

Fig.4. Also, the three principal operations are merged into 

one operation and hence fewer loops are employed in 

implementations. Although the use of loops instead of 

matrix calculation has no significant impact on 

complexity, it affects the run time. Finally, additional 
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operations are required in Tian's and Hardie's methods to 

avoid the blank regions discussed in subsection 3.6. 

 

 

Fig. 10. Reconstructed HR images using Tian's Joint method (a), proposed Joint method (b), Hardie's AM method (c) and proposed AM method (d). 

 

Fig. 11. Reconstructed HR images using Tian's Joint method (a), proposed Joint method (b), Hardie's AM method (c) and proposed AM method (d). 

 

5. Conclusion and Future Works 

In this paper we proposed a new joint method that 

combined the three principal operations in one operation. 

The application of this combinational operation in the 

calculation of Jacobian matrix is one of the most 

important contributions of this paper. The proposed joint 

method reduced error propagation, was less likely to be 

trapped into suboptimal solutions, especially when the 

relative zooming between frames was considerable, and 

finally increased the quality of the reconstructed HR 

images. Applying this combinational operation to the 

framework of AM methods presented a new AM method. 

The proposed AM method was not as stable as the 

proposed joint method, but it was more reliable than 

existing AM methods such as Hardie's method. Similar to 

other AM methods, the convergence of the proposed AM 

method was highly dependent on initial values of HR 

image and the registration parameters but if the initial 

values were close to optimal values, this method provided 

fast convergence. In future works, we will extend the 

motion model to the affine and finally to the homography, 

and the size of blur kernel in the image plane will be 

refined during the iterations. 
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