

* Corresponding Author

A New Architecture for Intrusion-Tolerant Web Services Based

on Design Diversity Techniques

Sadegh Bejani
Department of Information and Communication Technology, Imam Hossein University, Tehran, Iran

sbejani@ihu.ac.ir

Mohammad Abdollahi Azgomi*
Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

azgomi@iust.ac.ir

Received: 28/Sep/2014 Revised: 22/Aug/2015 Accepted: 12/Sep/2015

Abstract
Web services are the realization of service-oriented architecture (SOA). Security is an important challenge of Web

services. So far, several security techniques and standards based on traditional security mechanisms (i.e., encryption and

digital signature) have been proposed to enhance the security of Web services. The aim of this work has been to propose

an approach for securing Web services by employing the concepts and techniques of software fault tolerance (such as

design diversity), which is called intrusion tolerance. Intrusion tolerance means the continuous delivery of services in

presence of security attacks, which can be used as a fundamental approach for enhancing the security of Web services. In

this paper, we propose an architecture for intrusion-tolerant Web services (ITWSs) by using both design diversity and

composite Web services techniques. The proposed architecture is called design-diverse intrusion-tolerant Web service

(abbreviated as DDITWS). For Web service composition, BPEL4WS is used. For modeling and verification of the

proposed architecture, coloured Petri nets (CPNs) and the “CPN Tools” are used. We have model-checked the behavioral

properties of the architecture to ensure its correctness using this tool. The reliability and security evaluation of the

architecture is also performed using a stochastic Petri net (SPN) model and the “SHARPE” modeling tool. The results

show that the reliability and mean-time-to-security-failure (MTTSF) in the proposed architecture are improved.

Keywords: Software Security; Intrusion Tolerance; Composite Web Service; Reliability; Petri nets.

1. Introduction

The occurrence of faults in a system is a deviation

from correctness or accuracy in the system computations.

A system failure means a cessation in the execution of the

operation that was expected in a due time [1]. The causes

of errors in software systems can be deliberate or

unintentional (accidental). The occurrence of any faults or

defects in software development process causes error in

the software system. The cause of fault in system is

unintentional and the incidents due to malicious attacks

are rooted out of system. Intrusions are aimed to affect the

system integrity, confidentiality or availability (CIA).

Intrusion effect realizes on different aspects or incorrect

system behaviors. [1]

Architectural evolution of software systems

development indicates the widespread use of distributed

software systems. [2] In process of software development

from 2010 onwards, service-oriented architecture (SOA)

has replaced the existing architectures. Web services are

the main solution for the realization of service-oriented

architecture. [2] Web services have specific features such

as interoperability, self-description and self-containing.

They use UUDI, HTTP, WSDL and SOAP interaction

protocols. [3] Wide range of Web services execution

environment, unknown users of Web services and

challenges of communication security protocols in Web

services interactions make Web services more susceptible

to intrusion and attack than traditional software. [2]

Since several security techniques and standards based

on traditional security mechanisms (i.e., encryption and

digital signature, etc.) have been used to enhance the

security of the Web services. The approach of these

standards is based on “vulnerability avoidance” and

“reducing system vulnerability”, which are effective for

known attacks. In this standards authentication

mechanisms, access control, encryption, firewalls,

reconfiguration management and data redundancy

technique are used.

A second category of mechanisms is the usage of

intrusion tolerance techniques. These techniques are

effective for increasing system’s tolerance against

unknown attacks. In these circumstances, intrusion

tolerance means the continuous delivery of services in

presence of security attacks, which is a fundamental

approach for increasing the security of Web services.

A software system is an intrusion-tolerant system

(ITS), if after penetration, its basic services continue their

performance and the system prevents from the creation of

failure in its security features [3].

Web service technology enables the creation of

complex services and provides composition services using

simple services. There are two type of Web services: (1)

based on simple object access protocol (SOAP), and (2)

Journal of Information Systems and Telecommunication, Vol. 3, No. 4, October-December 2015 239

RESTful. In this research, we concentrate on SOAP-based

Web services.

Composite SOAP-based Web services are composed

of several Web services, in order to accomplish common

work. [4] BPLE4WS is a standard software for Web

service composition. Web service composition process in

BPEL4WS makes it possible the realization and

implementation of Web service composition. [4] The

proposed architecture for ITWS is in the form of a

composed Web service that can be implemented in

BPEL4WS.

In this paper, we propose a new architecture for

intrusion-tolerant Web services (ITWSs). The main

approach of the proposed architecture is based on using

intrusion tolerance concepts, design diversity techniques

and composite Web service techniques. Creating efficient

mechanisms for Web service intrusion detection, intrusion

containment, intrusion recovery, providing data integrity,

confidentiality, availability and neutralizing the influence

of intrusions are special architectural considerations in the

proposed architecture, which is called design-diverse

intrusion-tolerant web service (DDITWS).

It is expected that by the realization of the proposed

architecture, the developed Web service can continue its

operation in the presence of intrusions and can provide

the continuity of services without security failures.

The remainder of this paper is organized as follows. In

Section 2, related works are reviewed. Section 3 gives an

overview of the proposed DDITWS architecture. The

security behavior of DDITWS is explained and

investigated using coloured Petri nets (CPN) model of the

architecture by using CPNs Tools is presented in Section

4. The results of the reliability and security evaluation of

the proposed architecture are also given in this section.

For this purpose, a stochastic Petri net (SPN) model and

the SHARPE tool is used. The results show that the

reliability and mean-time-to-security-failure (MTTSF) are

improved. The paper will be concluded in Section 5.

2. Related Work

In the following, we briefly review the existing standards,

techniques and so on for the security of Web services:

- Web service security standards: According to [5],

various specifications discussed about Web service

security. The WWW Consortium has developed

various specifications, such as WS-Security (WSS),

WS-Federation, WS-Authorization, WS-Policy,

WS-Trust, WS-Authentication and WS-Privacy for

Web service security. These standards do not

protect Web services totally. For example, WS-

Security specifies how integrity and confidentiality

can be enforced on messages, allows the

communication of security tokens and provide end-

to-end security.

- Vulnerability detection techniques: There are best

practices of software testing and a lot of tools,

languages and techniques in order to analyze and

detect vulnerabilities in software systems. [5] But,

an evaluation of several commercial versions of

vulnerabilities scanners showed that these tools are

primarily limited to low coverage of existing

vulnerabilities and high percentage of false

positives. Few techniques and tools (such as

Netsparker) exist for vulnerability scanning of

SOAP-based web services.

- Intrusion/prevention techniques: There are

intrusion prevention an intrusion detection

techniques, which are not effective against new or

unknown attacks. [7]

- Dependable computing techniques: The existing

solutions for dependable Web services are divided

into two categories: fault tolerance techniques

(such as active and passive replications), and the

use of design diversity. A dependable architecture

for Web services that uses multi-version techniques

is introduced in [7]. In [3], by using design

diversity technique and Web services business

process execution language (WS-BPEL), the

authors have proposed a useful and flexible

architecture for dependable Web services.

- Software fault-tolerance techniques: There are two

types of software fault-tolerance techniques: single-

version and multi-version that are used for security

improvement. [8] Fault tolerance techniques,

including replication, check-pointing and message

logging, in addition to reliable messaging and

transaction management for which Web services

specifications exist. The authors of [8] have

discussed how those techniques can be applied to

the components of Web services involved in the

business activities to make them dependable.

- Architectures for intrusion-tolerant systems: There

are important architectures such as self-cleansing

intrusion tolerance (SCIT), scalable intrusion-

tolerant architecture (SITAR) for distributed

services and malicious- and accidental-fault

tolerance for Internet applications (MAFTIA) for

intrusion-tolerant systems [9]. The assumption in

the SCIT architecture is that the intrusion detection

mechanism is not able to detect unknown attacks

and Web services cleansing is necessary. The

SITAR architecture is used for the intrusion

tolerance of commercial off-the-shelf (COTS)

systems. Fault tolerance techniques, such as

redundancy and design diversity, are used in the

SITAR architecture.

- Fault tolerance architecture for Web services: In

[10], authors have proposed a new fault-tolerant

architecture for Web services named FTWeb. In

[12], authors have explained a multi-layer

architecture for ITWSs. The specific goal of the

architecture is to use single-version software fault-

tolerance concepts in the case of malicious failures.

Bejani & Abdollahi Azgomi, A New Architecture for Intrusion-Tolerant Web Services Based on Design Diversity Techniques

240

3. The Proposed Architecture

In this section we introduce an architecture for

intrusion-tolerant Web services, which is called design-

diverse intrusion-tolerant web service (DDITWS). The aim

of the proposed architecture is to construct and strengthen

the capabilities of Web services against both known and

unknown security attacks. The proposed architecture is

based on the following concepts and techniques:

I. Theoretical concepts of intrusion tolerance

approach: In these concepts, the main indicator of

intrusion tolerance and their requirements are expressed.

In [12], the main indicators of an intrusion-tolerant

system are defined as follows:

- Maintaining the integrity of the system’s

operational environment,

- Detecting intrusions,

- No failure in the security features of system, such

as confidentiality, integrity and availability, and

- Stability in the system’s operations.

II. Composite Web service technology: In the

composite Web service technology used in the proposed

architecture, the aggregation and composition of the main

Web service with the supplementary Web services that

provide the abilities of intrusion tolerance is performed.

The demand of ITWS is a complex request. Composite

Web service technology provides the possibility to

implement the proposed architecture and the ability to

meet complex demands.

III. Classical fault tolerance techniques: Intrusion

tolerance and fault tolerance are common principles. Both

of them focus on service continuity in abnormal

conditions. Fault-tolerant techniques can provide

appropriate policy to create a conceptual framework, that

theories are developed during intrusion tolerance. To

establish appropriate mechanisms for intrusion tolerance

in Web services, fault tolerance techniques are used [14].

In the proposed architecture, redundancy, design diversity

and replication techniques are used.

3.1 Components of the Architecture

The main motivation of the proposed DDITWS

architecture is based on the facts that software systems

development and maintenance cannot be without

vulnerabilities. Behavior-based intrusion detection

systems are not able to provide intrusion-tolerant system.

To provide the continuity of services, it is necessary that

the impact of attacks be managed. The overall view of

the proposed architecture is shown in (“Fig. 1”).

Fig. 1. Overall view of the DDITWS architecture

Intrusion tolerance capabilities through Web services in

the DDITWS architecture can be constructed in the forms of

features for “intrusion tolerance”, “intrusion containment”,

“reconfiguration”, and “decision maker”. Appropriate

intrusion-tolerant mechanisms causes the continuation of

services and preventing security failure in system. Each

intrusion tolerance feature in the DDITWS architecture is

embodied in the form of a Web service. The composition of

these Web services is achieved in the DDITWS architecture.

The components of the composite Web service in the

DDITWS architecture are explained in the following.

3.2 Intrusion Detection Composite Web Service

The use of resilient mechanisms is necessary for

providing the service availability in systems [9]. Resilient

mechanisms are meant to have a facility in the event of

penetration. Intrusion-tolerant and reconfiguration

mechanisms are resilient mechanisms. Intrusion detection

methods are possible in knowledge-based or behavior-

based. [8]. In the DDITWS architecture, intrusion

detection is done by a component of the composite Web

service that is based on behavior changes. Intrusion-

detection Web service has a main role in providing

intrusion tolerance in the DDITWS architecture. Using

intrusion detection composition Web service is

appropriate for new or unknown attacks.

In the DDITWS architecture, the tasks of the

intrusion-detection Web service are as follows:

- Detecting a variety of attacks on Web services

among either known or unknown.

- Updating the records of attacks and intrusion patterns.

- Provisioning of the analysis and detection of

attacks and system failure causes.

- Acceptance testing on the response of Web service

request.

AC: Access Control Web service CI: Containment Intruded service TC: Timing Control

EI: Environment Integrity Control ICD: Intrusion Cause Detection IC: Inverse Code Check

SS: System Service Control ISD: Intruded Service Detection RC: Reasonableness Check

DOS: Denial of Service detection WSR: Web Service of Reconfiguration

CC: Coding Check CSD: Compromised Service Detection

Journal of Information Systems and Telecommunication, Vol. 3, No. 4, October-December 2015 241

- Identification of the denial-of-service (DoS)

attacks on Web service.

According to (“Fig. 1”), intrusion detection composite

Web service to perform its tasks includes multiple Web

services as follows:

- The Web service of access control to resources (AC):

This Web service controls accesses to resources and

checks whether it is as expected or not.

- The Web service of environment data integrity

control (EI): This Web service by comparing the

data files in the operating environment while

providing services with the information of data

files before providing services, determines whether

or not an attack is occurred.

- The Web service of system services controller

(SS): This Web service checks certain system

services that all of them had already determined,

ordered and fully executed.

- The Web service of detect DoS attack: In

traditional confronting techniques to DoS attacks,

there are two basic steps as: (1) detecting real or

fake IP addresses, and (2) detection of traffic

conditions for DoS attacks [8]. In the DDITWS

architecture, Web service DoS has a task of

detecting of the traffic conditions of DoS attacks.

The DoS attack occurs in each of the following

two modes:

1- (required-time to respond to a previous request) +

(last request-time) > input during Web service

request

2- Threshold number of requests > [(request-time –

arrival time of the first request) / number of

requests]

3.3 Intrusion Containment Composite Web Service

The aim of intrusion containment is the encapsulated

area of intrusion and preventing intrusion. This will result

in reduce the service level of the system. Intrusion graph

is an efficient tool of intrusion containment [15], which is

used in DDITWS. Intrusion graph is a directed graph that

shows intrusion propagation paths from a service to

another service [15]. In intrusion graph, each node

represents an intrusion target and any edge that is used to

show dependencies between intrusion targets. Intrusion

alerts sent by intrusion detection components, are mapped

onto the intrusion graph. Intrusion containment

components use intrusion graph and breaks through a

communication channel section and other sections and

prevent the spread of intrusion.

In DDITWS, containment composed Web service has

two functions as locating and stopping the spread of

intrusion through. To limit the intrusion, it is necessary to

prepare the intrusion-graph data. Intrusion containment

feature and limiting the intrusion is an important attribute

in intrusion-tolerant systems. According to (“Fig. 1”),

intrusion containment composite Web service is

composed of multiple Web services as follows:

1- The Web service of compromised service detection

(CSD): This Web service after getting information

about intrusion to Web service identifies the

compromised service in the attacked Web service.

2- The Web service of containment intruded service

(CI): After the detection of the compromised

service, this Web service gives the information of

the compromised service and breaks their

communications.

3.4 Recovery and Reconfiguration Composite

Web Service

In intrusion-tolerant systems, after intrusion detection

and containment, it is necessary that the compromised

sections be inactive and the compromised components be

reconfigured. In DDITWS, it is the responsibility of the

recovery and reconfiguration composite Web service.

In DDITWS, for recovery from intrusion, several

techniques, such as fragmentation, scattering and data

redundancy can be used. The fragmentation and scattering

techniques makes it possible if there is an unauthorized

access to the data, all the valuable data should not be

available. Using data redundancy technique makes it

possible that after intrusion detection, intrusion masking

is possible and the system returns to an optimal state. In

DDITWS, for reconfigure a compromise component, the

level of active service on the Web service is checked. If

the service level is not satisfactory, the redundant service

will be replaced and the compromised service will be

reconfigured. Until replacing, service will be in the

graceful degradation state. Intrusion recovery Web

service and the compromised component reconfiguration

are among intrusion-tolerant system attributes. Intrusion

containment composite Web service is very important in

DDITWS. It is necessary that reconfiguration and

intrusion recovery be performed automatically. If

reconfiguration is not automatic, the occurrence of

distributed DoS (DDoS) attacks is prohibited. The

recovery and reconfiguration composite Web service is a

main component in DDITWS that is a key component of

intrusion tolerance.

According to (“Fig. 1”), the reconfiguration composite

Web service is composed of multiple Web services as follows:

- The Web service of intrusion cause detection

(ICD): This Web service determines the main

cause of the intrusion to the Web service.

- The Web service of intruded service detection

(ISD): This Web service gets the information

about intrusion and determines the intruded service.

- The Web service of reconfiguration (WSR): This

Web service is responsible for an important task,

that is, after intrusion detection and containment, it

is necessary that the intrusion should be covered

and the compromised service is managed by using

replication technique.

3.5 Acceptance Test Composite Web Service

The acceptance test composite Web service checks the

response of Web service requests. According to (“Fig. 1”),

the acceptance test composite Web service is composed

of multiple Web services as follows:

Bejani & Abdollahi Azgomi, A New Architecture for Intrusion-Tolerant Web Services Based on Design Diversity Techniques

242

- The Web service of timing control (TC): This Web

service checks whether a Web service deadline is

expired or not.

- The Web service of inverse code check (IC): This

Web service checks the correctness of the response to

the Web service’s request. If the answer is incorrect,

then attack to the Web service is announced.

- The Web service of control results (RC): This

Web service checks whether the results of the Web

service is within the acceptance range or not.

- The Web service of coding check (CC): This Web

service checks the validity of data transfer

operations. This Web service uses encoding data

technique.

3.6 Multi-Criteria Decision Maker Web Service

Based on the DDITWS architecture, for each request,

three redundant Web services are provided and in this

case, to determine the final outcome, using a decision

maker Web service is necessary. (“Fig. 2”) shows the

structure of the multi-criteria decision maker composite

Web service.

In multi-criteria decision maker composite Web

service, for organizing redundant voters and acceptance

monitors, N-self checking technique is used. Based on N-

self checking technique, at any time, only one voter is

enabled. There are three voters in decision maker

composite Web service. All voters in decision maker

composite Web service have an equal number of inputs,

output type and input types. In multi-criteria decision

maker composite Web service, in addition to the input

values, also Web service trust value are part of inputs and

the end result is effective.

Fig. 2. The structure of the multi-criteria decision maker

3.7 Structural Features of DDITWS

The structural features of the DDITWS architecture

are as follows:

1- Using redundancy technique in system causes the

enhancement of the system reliability. In the

proposed architecture to respond to any requests,

three redundant Web services are used.

2- In order to reduce the probability of similar

vulnerabilities in redundant Web services (i.e.,

ITWS1, ITWS2 and ITWS3) and increasing the

tolerance against similar attacks, the design

diversity technology is used.

3- Any of the main Web services (i.e., ITWS1, ITWS2

and ITWS3) along with several other Web services

that provide the intrusion tolerance, are constructed

as composite Web services.

4- Using replicated Web service technique, recovery

from critical Web services is possible.

5- The recovery strategy is used in the proposed

architecture based on using intrusion masking and

replication techniques.

6- In each of the main Web services (i.e., ITWS1,

ITWS2 and ITWS3), intrusion containment and

reconfiguration composite Web service are used.

Their main tasks include intrusion containment and

the influence of recovery and reconfiguration of

compromised component.

7- Using redundant Web services in the proposed

architecture, shows the necessity of using the

decision maker Web service within it.

3.7.1 Relationship between Intrusion Tolerance and

Design Diversity Technique in DDITWS

Intrusion tolerance means that service continues in the

presence of attacks. Intrusion tolerance is a non-

functional requirement in systems. Having an intrusion

tolerant Web service is a complicated demand. The

intrusion tolerance capability of the DDITWS architecture,

as several subsidiary Web services is combined with a

main Web service. To achieve complete intrusion

tolerance, it should be combined the intrusion avoidance

and intrusion tolerance capabilities. The DDITWS

architecture of intrusion prevention capabilities uses

redundancy and design diversity techniques. The use of

design diversity technique in the development of a variety

of components reduces the same vulnerabilities in the

components. Reducing the same vulnerability of the

redundant components, similar attacks are successfully

reduced DDITWS. Similarly, using design diversity

technique in decision-maker Web service reduces the

vulnerability of voters. The fundamental role of using

design diversity technique is to increase the intrusion

tolerance in the DDITWS-based Web services.

3.7.2 Structure of the DDITWS in BPEL

The structure of composite Web service involves all

internal Web services, the order of the execution of the

internal Web services and data transferring between them

[16]. For each composite Web service, defining specific

rules on the application level means the determination of

composite Web service structure [16]. The BPEL4WS by

defining specific rules on the application level specifies

Web services participating in composite Web service, the

order of the execution of them and data transferring

between internal Web services.

There are different tools in design area of BPEL that

they may make the use of the composition and execution of

Web services in composite Web services of the DDITWS

Journal of Information Systems and Telecommunication, Vol. 3, No. 4, October-December 2015 243

architecture. Designing of ITWS can be done in the BPEL

environment. (“Fig. 3”) shows the structure of ITWS based

on the DDITWS architecture in the BPEL form.

As in the DDITWS architecture, each composite Web

service involves several internal Web services as shown

in (“Fig. 4”). Internal Web services are organized by the

structures such as “sequence”, “flow”, “scope” and so on

of BPEL.

4. Modeling and Evaluation

4.1 The Security Behavior of DDITWS

For modeling the security behavior of the DDITWS

architecture, modeling the behavior of the “attacker” and

“system response to attack” are necessary. ITWS’s

security behavior can be modeled by using the definition

of security states, the interaction of them and the state-

transition diagram (STD). (“Fig.5”) shows the STD of

Web service’s behavior in the DDITWS architecture.

Successful exploitation of security holes by attacker is a

main factor causing active attacks occurs.

In the DDITWS architecture, several strategies are

intended to create different level of security. According to

(“Fig. 5”), in the security behavior model of the Web

service in DDITWS architecture, at the beginning, the

Web service is in “good” state. Create new conditions

such as change of Web service information, change user

permissions, prolonged duration of services, change in

accounting rules and not properly performed system

services, causes Web service state change into

“vulnerable” state.

Fig. 3. The structure of the ITWS in BPEL

Fig. 4. Instance of internal Web services in DDITWS

Fig. 5. The state-transition diagram of DDITWS

The vulnerability can be identified as a security hole.

Make any sense of vulnerability in the Web service means

a violation of Web service’s security policy. In fact, after

vulnerability identification, it may be exploited be attackers.

The realization of the possibility of exploiting security

holes; it will put Web service in “active attack” state.

With each entry into active attack mode, the Web services

become influential. In vulnerable mode, using tools such

as firewall, may lead to identifying and eliminating the

vulnerabilities and Web services can still be in “good”

mode. If the error has not been covered in Web service

and the compromised component fails, the Web service

will be in “uncompromised” mode.

In the DDITWS architecture, intrusion recovery

strategy uses intrusion masking and replication techniques.

Based on the reinforced intrusion recovery strategy, the

data used intrusion masking technique involves data

fragmentation, data scattering and redundancy against

intrusion. Critical services’ recovery is mostly done

through replication technique. Using data redundancy

technique causes Web service to be in “good” mode and

the service delivery of the Web service will be continued.

Bejani & Abdollahi Azgomi, A New Architecture for Intrusion-Tolerant Web Services Based on Design Diversity Techniques

244

According to (“Fig. 5”), if the intrusion is detected in the

use mode, Web service goes to “triage” mode. In this

context, the following two conditions are most likely:

1- A compromization has taken place and the

intrusion detection mechanism cannot detect that,

so it is in “uncompromised” state.

2- The intrusion detection component successfully

detects intrusion, so Web service is in “intrusion

detection” mode.

After intrusion detection, appropriate message will be

sent to intrusion recovery and compromised component

reconfiguration, messages received through intrusion

detection component, Web service to deliver “intrusion

containment” mode for limiting the restricted area and

prevent intrusion expansion.

Another security state is the “reconfiguration” state. In

the reconfiguration state, reconfiguration process is based

on the defined policies. Also, by using data redundancy

and replication techniques, Web services are in “masked-

error” state. The reconfiguration mode may lead to new

security mode that is named “graceful degradation”. In

this case, only essential services will continue and other

services will be stopped.

Essential services are the services that continue and

will not stop in system, even in intrusion mode. If all

strategies are predicted to fail, Web service mode will be

the “failed” mode. This condition should not occur in

ITWS. The Web service that returns to normal mode after

a successful attack is shown in Web service security

behavior model as dashed-line.

4.2 The DDITWS Architecture Modeling and

Formal Analysis Using CPN Tools

For the analysis of the functionality of the proposed

architecture, we have modeled it using coloured Petri nets

(CPNs or CP-nets) and then, the behavioral characteristics

are analyzed. For this purpose, we have used CPN Tools.

4.3 Modeling and Analysis of the Architecture

The main model (i.e., the home page in CPN Tools

terminology) of the DDITWS architecture is shown in

(“Fig. 6). Because coloured Petri nets are graphical

models, this feature provides the opportunity to review

the changes and it can help to investigate how each of the

sections in the system works. [17]

The home page of the model consists the units named

intrusion detection, intrusion containment, intrusion recovery,

reconfiguration, and decision maker that each of these units

are modeled by substitution transitions in the model.

Places in the model are ports for inputs and outputs. In

home page, the start place is a driver for input Web

service request. There is a token inside it, causes a

Get_WS_Access_Archive transition be enabled.

The incoming Web service request is transmitted to

the place named WS_Access_Archive. By placing a token

in the WS_Access_Archive place, the dispatcher transition

sets WS1, WS2 and WS3 places simultaneously.

Fig. 6. The home page of the DDITWS CPN model

By submitting to three redundant of Web services at

the same time, each of the IDS1, IDS2 and IDS3

transitions has the responsibility for the result of the

corresponding Web service. The IDS1, IDS2 and IDS3

transitions have the duty to compare the behavior of the

system in service with the expected behavior. Each of the

IDS1, IDS2 and IDS3 transitions have equivalent

intrusion detection units in the DDITWS model. In case

of intrusion detection, the corresponding intrusion

containment units (i.e., CONFINE1, CONFINE2 and

CONFINE3) are active.

Each of the intrusion containment units by limiting the

infected area, prevents the spread of influence and sends

the intrusion messages to correspond reconfiguration

transition (i.e., CONFIG1, CONFIG2 or CONFIG3).

Based on the determined tasks for the reconfiguration

unit, intrusion recovery and compromised component

reconfiguration are done. At the end, the results of Web

services, in order to determine the final result, will be sent

to the decision maker unit. The decision maker unit is an

intrusion-tolerant composite Web service that determines

the final result of the redundant Web services.

4.4 Properties of the Architecture

In the CPN Tools environment, it is possible that

measuring the behavioral characteristics of the specified

model. [19] The results of formal analysis of the behavioral

characteristics in DDITWS are shown in (“Fig. 7), which

are as follows:

- “None” value for the Dead Marking attribute

shows that each transition in the proposed model

request

request

request

request

request

request

request

request

request

request

request

request

request

request

request

request

request

request

request request

request

res

res

res

res

GetWSAccessesLog()

e

WS-IDS3
IDS3

CONFINE3

CONTAIN3

RECONFIG2

RECONFIG2

CONFINE2

CONTAIN2

WS-IDS2

IDS2

RECONFIG1

RECONFIG1

CONTAIN1

CONTAIN1

Dispatcher

Dispatcher

Decision_Maker

Decision_Maker

GetWS_Access_Archive

action
let
 val InputFile = TextIO.openIn(".\\WS_Access_Log.txt");
 val message = WS_Accesses_LOG.input_ms(InputFile);
in
WSAccessesLog := message;
TextIO.closeIn(InputFile);
()
end handle _=>();

Res32 RequestRec

Res31

RequestRec

Req22
RequestRec

Res21

RequestRec
Res12

RequestRec

Res11

RequestRec

WS1

RequestRec

Response

RequestRec

Res33

RequestRec
RequestRec

Res13

RequestRec

WS2
RequestRec

WS3
RequestRec

WSAccessArchive

WS_Accesses_LOG

start1`e

E

Decision_Maker

Dispatcher

CONTAIN1

RECONFIG1

IDS2

CONTAIN2

RECONFIG2

CONTAIN3

IDS3

WS-IDS1

IDSIDS

Res23

RECONFIG3

RECONFIG3RECONFIG3

Journal of Information Systems and Telecommunication, Vol. 3, No. 4, October-December 2015 245

are live and the system of the DDITWS

architecture is deadlock-free.

- “None” value for the Dead Transition Instances

attribute shows that the system based on DDITWS

is non-terminating in all states.

- The value “136” for the Live Transition Instances

attribute shows that the modeled system is live.

- The value “No infinite occurrence sequences” for

the Fairness Properties shows that all transitions

are executed fairly.

- The value “No infinite occurrence sequences” for

the Fairness attribute in system model shows that

the system will execute in all possible states.

The behavioral characteristics of the model ensure the

correctness of the functionality of the architecture.

 Liveness Properties

 Dead Markings

 None

 Dead Transition Instances

 None

 Live Transition Instances

 136

 Fairness Properties

 No infinite occurrence sequences.

State Space

 Nodes: 3672

 Arcs: 15840

 Secs: 9

 Status: Full

SCC Graph

 Nodes: 3672

 Arcs: 15840

 Secs: 0

Fig. 7 The results of the analysis of the characteristics of DDITWS

4.5 Evaluation of the Measures

Two measures, i.e., “reliability” and “mean-time-to-

security-failure”, are important in the Web services based

on the DDITWS architecture. We examine these

measures in this section.

4.5.1 Evaluation of the Reliability Measure

The reliability of a Web service based on the DDITWS

architecture may be evaluated without their implementation

details using a stochastic Petri net (SPN) model and the

SHARPE modeling tool. For the evaluation of DDITWS’s

reliability block diagram is shown in (“Fig. 8”), which

includes the following:

- The proposed architecture consists of three

redundant Web services.

- In construction of redundant Web services in

DDITWS architecture, design diversity technique is

used, so the reliability of the replications is different.

Using design diversity technique reduces the same

vulnerabilities in the replicated Web services.

- To determine the final result of the redundant

Web services in the DDITWS architecture, a

decision maker unit is used. The decision maker

unit uses three redundant voters on an N-self

checking structure. In the construction of

redundant voters, design diversity technique is

also used, so the reliability of these redundant

voters will also be different.

By Eq. (1), the reliability of the DDITWS architecture

can be calculated as follows:

RWeb services = Rws1 * Rws2 * Rws3 – (Rws1.Rws2) –

(Rws1.Rws3) – (Rws2.Rws3) + Rws1 + Rws2 + Rws3

Rvoters = Rvoter1 * Rvoter2 * Rvoter3 – (Rvoter1. Rvoter2) –

(Rvoter1 .Rvoter3) – (Rvoter2. Rvoter3) +Rvoter1 +Rvoter2 +Rvoter3

Rsystem = RWeb services * Rvoters

(1)

For evaluating the reliability of DDITWS,

experimental values of the reliability of each component

is given in Table 1.

Fig. 8. Block diagram of the DDITWS architecture

Table 1. Experimental values of the reliability of each components

Reliability Bock-name

0.81 Web service1

0.78 Web service2

0.82 Web service3

0.91 Voter1

0.93 Voter2

0.95 Voter3

As shown in (“Fig. 9), the reliability of each Web

service is less than the reliability of ITWS. The reason is

due to using the design diversity technique in the

DDITWS architecture. By repeating the experiment with

new values for Web service’s reliability, the overall result

will not change. The overall result is the reliability of

ITWS greater than the reliability of each Web service. As

expected, this reliability evaluation has assured that the

security of the DDITWS architecture is increased.

Fig. 9. The diagram comparing the reliability of three Web services with

the ITWS

4.5.2 Evaluation of the MTTSF Measure

Mean-time-to-security-failure (MTTSF) is an

important measure in the survivability evaluation of

intrusion-tolerant systems. The SPN model of the

Bejani & Abdollahi Azgomi, A New Architecture for Intrusion-Tolerant Web Services Based on Design Diversity Techniques

246

DDITWS is shown in (“Fig. 10”). The corresponding

Markov model is also shown in (“Fig. 11”).

The evaluation of the system performance is often

related to their behavior after long time, until a system

steady state is achieved. In system steady state, the impact

of initial conditions and system behavior into a state

regulated system of compensation. In (“Fig. 11), the transfer

rate from the BPEL state to the execute state of each of the

Web services (i.e., WS1, WS2 and WS3) are equal.

(“Table 2”), shows the results of the solution of the

model using SHARPE tool. This table shows the selected

transition rates used in the model, too.

In (“Fig. 12”), the MTTSF of a traditional Web

service is compared with DDITWS.

In explaining the attributes of the DDITWS

architecture, it was said that using design diversity

technique in developing redundant components causes

reducing the Web service common vulnerabilities and

increasing the Web service intrusion tolerance. The

higher level of design diversity used, the lower the failure

rate of the redundant Web services. This case causes

increasing the Web service MTTSF. Increasing the

MTTSF in Web services based on the proposed

architecture is a factor to increase the availability and

intrusion tolerance of the Web services based on the

architecture.

Fig. 10. The SPN model of the ITWS

Fig. 11. The Markov chain model corresponding to the SPN model of

Fig. 10.

Table 2. Transition rates and calculated MTTSF measure

MTTSF in

DDITWS

MTTSF in

DDITWS
IN2 IN1

29.0 39.1 0.9 0.1

14.0 20.1 0.8 0.2

9.0 13.7 0.7 0.3

6.5 10.5 0.6 0.4

5.0 8.6 0.5 0.5

4.0 7.4 0.4 0.6

3.3 6.5 0.3 0.7

2.8 5.8 0.2 0.8

2.3 5.2 0.1 0.9

Fig. 12. The MTTSF values of the DDITWS compared with a traditional

Web service

5. Conclusions

In this article, we presented a new architecture for

intrusion-tolerant Web services (ITWSs). The proposed

architecture, abbreviated by DDITWS, uses classical

fault-tolerance techniques, such as design diversity,

redundancy, N-self checking and acceptance testing. Also,

the approach uses the theoretical concepts of intrusion-

tolerant systems, which are used in the proposed

architecture. In the proposed architecture, composite Web

service technique is used, with several Web services.

Composite Web service structure consists all internal

Web services, their execution order and how to the data is

transferred between them in the application level.

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

M
TT

SF

Attack Rate

Single Web Service DDITWS

Journal of Information Systems and Telecommunication, Vol. 3, No. 4, October-December 2015 247

In order to understand the security behavior of Web

services in the DDITWS architecture, the interaction is

evaluated against the attempts of attackers.

To study the components functionality, Web services

in the DDITWS architecture are modeled using coloured

Petri nets. Behavioral characteristics of the proposed

architecture are also analyzed. The results show that the

functionality of all components is correct.

The mean-time-to-security-failure (MTTSF) and the

reliability measure for the proposed architecture are

evaluated using stochastic Petri nets and the SHARPE

tool. Evaluation results show that the reliability and

MTTSF of the proposed architecture has also increased.

The proposed architecture is a complex one and is

dedicated to SOAP-based Web services. There are

multiple components, i.e., subsidiary Web service, in the

proposed architecture. These multiple Web services

should be designed based on design diversity rules and

techniques. In practice, achieving diverse versions for the

same software is quite difficult. Therefore, this is the

main disadvantage of the proposed architecture.

The proposed architecture may be used for other types

of Web services, such as RESTful Web services. It can

also be used to devise intrusion-tolerant architecture for

other types of software systems.

In future, we intend to implement a prototype of a real

Web service, such as an electronic commerce application.

This prototype implementation can be used to evaluate

other aspects of the proposed architecture.

References
[1] E. Dunrova, Fault Tolerant Design: An Introduction,

Department of Microelectronics and Information

Technology, Royal Institute of Technology, Stockholm,

Sweden, 2008.

[2] E. Cerami, Web Services Essentials, First Edition ed.,

United States of America: O'Reilly, 2002.

[3] D. Gorton, Extending Intrusion Detection with Alert

Correlation and Intrusion Tolerance, M.S.Thesis, Chalers

Universityof Technology, Sweden, 2003.

[4] D. Gorton, "Using WS-BPEL to Implement Software Fault

Tolerance for Web services," in Proceedings of the 32nd

EUROMICRO Conference on Software Engineering and

Advanced Applications, 2006, pp. 126-133.

[5] E. Martin and M. Salas, "Security Testing Methedology for

Vulnerabilities of XSS in Web Services and WS-Security,"

Electronic Notes in Theoritical Computer Science, Vol.

302, 2014, pp. 133-154.

[6] J. Reynolds, "The Design and Implementation of an

Intrusion Tolerant System," in Proceedings of the

International Conference on Dependable Systems and

Networks, 2002, pp. 285-290.

[7] M. Abdollahi Azgomi and E. Nourani, "A Dependable Web

Service Architecture Based on Design Diversity Techniques

and WS-BPEL," Iranian Journal of Electrical and Computer

Engineering (IJECE), Vol. 11, No. 1, 2013, pp. 1-4.

[8] P. Veríssimo, N. Neves and M. Pupo Correia, "Intrusion-

Tolerant Architectures: Concepts and Design," Lecture

Notes in Computer Science, Vol. 2677, 2003, pp. 3-36.

[9] L. Quyen, S. Nguyen and S. Aurn, "Comparative Analysis

of Intrusion-Tolerant System Architectures," IEEE

Security and Privacy, Vol. 9, No. 4, 2011, pp. 24-31.

[10] T. Giuliana Santos, L. Cheuk Lung and C. Monetez,

"FTWeb: A Fault Tolerant Infrastructure for Web Services,"

in Proceedings of the Ninth IEEE International EDOC

Enterprise Computing Conference, 2005, pp. 95-105.

[11] Z. Aghajani and M. Abdollahi Azgomi, "A Multi-Layer

Architecture for Intrusion-Tolerant Web Services,"

International Journal of u- and e-Service, Science and

Technology, Vol. 1, No. 1, 2008, pp. 73-80. .

[12] A. Sood, "Securing Web Servers Using Intrusion

Tolerance (SCIT)," in Proceedings of the Second

International Conference in Dependability, 2009, pp. 60-65.

[13] W. Barry Johnson, Design and Analysis of Fault-Tolerant

Digital Systems, University of Virginia: Charlottesville:

Addison-Wesley Publishing Company, 1989.

[14] W. Yu-Sung, F. Bingrui, Y.-C. Mao, B. Saurabh and S.

Eugene," Automated Adaptive Intrusion Containment in

Systems of Interactive Systems," Computer Networks, Vol.

51, 2007, pp. 1334-1360.

[15] L. Chen, "A Method for Analyzing and Predicting

Reliability of BPEL Process," Journal of Software, Vol. 4,

No. 1, 2009, pp. 11-18.

[16] D. Mukherjec, P. Jalote and M. Gowri Nada, "Determing

QoS of WS-BPEL compositions," Lecture Notes In

Computer Science, Vol. 5364, 2008, pp. 378-393.

[17] "CPN Tools," CPN Group, University of Aarhus, [Online].

Available: http://wiki.daimi.ac.dk/cpntools.

[18] K. Jensen and L. M. Kristensen, Coloured Petri Nets,

Modeling Validation of Concurrent Systems, Springer, 2009.

Sadegh Bejani received B.Sc. in Computer Engineering
(Hardware) (1985) from Tehran University and M.Sc. and Ph.D.
degrees in Computer Engineering (Software) (1996 and 2015,
respectively) from Imam Hossein (a.s.) University. His research
interests include software security, intrusion-tolerant systems,
analytical modeling and computer simulation. He is an Assistant
Professor at School of Information and Communication
Technology, Imam Hossein (a.s.) University, Tehran, Iran.

Mohammad Abdollahi Azgomi received B.Sc., M.Sc. and Ph.D.
degrees in Computer Engineering (Software) (1991, 1996 and
2005, respectively) from Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran. His research
interests include modelling and evaluation of security, privacy and
trust, and dependable and secure software development. He is an
Associate Professor at School of Computer Engineering, Iran
University of Science and Technology, Tehran, Iran.

