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Abstract 
In this paper, the problem of de-noising of an image contaminated with Additive White Gaussian Noise (AWGN) is 

studied. This subject is an open problem in signal processing for more than 50 years. Local methods suggested in recent 

years, have obtained better results than global methods. However by more intelligent training in such a way that first, 

important data is more effective for training, second, clustering in such way that training blocks lie in low-rank subspaces, 

we can design a dictionary applicable for image de-noising and obtain results near the state of the art local methods. In the 

present paper, we suggest a method based on global clustering of image constructing blocks. As the type of clustering 

plays an important role in clustering-based de-noising methods, we address two questions about the clustering. The first, 

which parts of the data should be considered for clustering? and the second, what data clustering method is suitable for 

de-noising.? Then clustering is exploited to learn an over complete dictionary. By obtaining sparse decomposition of the 

noisy image blocks in terms of the dictionary atoms, the de-noised version is achieved. In addition to our framework, 7 

popular dictionary learning methods are simulated and compared. The results are compared based on two major factors: 

(1) de-noising performance and (2) execution time. Experimental results show that our dictionary learning framework 

outperforms its competitors in terms of both factors. 
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1. Introduction 

We consider the problem of estimating a clean version 

of an image contaminated with Additive White Gaussian 

Noise (AWGN). A general approach to this aim is 

division of the noisy image into some (overlapping) small 

blocks, then de-noising of each block and finally 

obtaining the overall estimation of the clean image by 

averaging the de-noised blocks. The model is as follows: 
 

         (1) 
 

where    is the vector form of the  th block of the 

noisy image,    is the vector form of the  th block of the 

original image, and    is a zero-mean AWGN with 

variance   . Throughout the paper, the blocks are    , 

thus the vector space dimension is   . 

Image de-noising is still an open problem and 

numerous methods have been suggested up to now. The 

methods are based on defining a neighborhood for each 

block and weighted averaging according to suitable 

weights. The weights are computed in each neighborhood, 

as in [1-4] which are some relatively successful 

approaches. All of them are in the spatial domain. The 

method in [5] can be considered as same as [1-4], where 

processing is conducted in frequency domain. This 

method constructs a three-dimensional matrix by 

grouping those blocks that are similar (in some senses, e.g. 

   norm) with a block of the image. Corresponding to 

each block of the image a group of similar blocks should 

be found. In this way, a three-dimensional matrix is 

obtained corresponding to each block. Then, a 3D 

collaborative signal filtering in the frequency domain is 

performed which provide a good estimation of the clean 

version of each block. This method can be considered as 

the state of the art method of image de-noising; however 

it suffers from high computational complexity due to 

local processing. The work in [6] has the same approach 

and applied filtering in the Principal Component Analysis 

(PCA) transform domain. Elad and Aharon [7] have 

suggested a new approach. They have used K-Singular 

Value Decomposition (K-SVD), which is a dictionary 

learning algorithm, to produce a global dictionary using 

the noisy image blocks. This method uses the 

representation in terms of the dictionary to de-noise 

image. The estimate of each de-noised block can be 

estimated by analyzing noisy blocks in this dictionary and 

applying a sparse recovery algorithm. 

Local and global methods have some advantages and 

disadvantages. A global dictionary can recover general 

characteristics of an image, which are repeated in its 

several regions. However, these methods are not able to 

recover special local textures and details in an image. 
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While local methods indicate higher efficiency in 

recovering local details of image, they encounter over-

learning risk leading from noise learning and incorporating 

noise into the final result. Deficiency of learning in some 

regions is another problem of local methods. 

In [8], a clustering-based method was suggested. This 

method produces a local dictionary by clustering feature 

vectors from all noisy image blocks and conducts de-noising 

using decomposition of noisy blocks in terms of 

representatives of the found clusters. Similar to K-SVD, this 

method is based on dictionary but it uses a local dictionary. 

Local patching and similar blocks clustering are 

effective factors in success of methods including [5], [6] 

and [8]. Dictionary learning based de-noising methods 

also perform some type of blocks clustering, for example 

K-SVD is a generalization of K-means clustering 

algorithm. So it is necessary to consider the clustering for 

the de-noising application more closely.  

In this paper, we propose an approach for constructing 

a global dictionary and de-noising based on sparse 

decomposition of noisy blocks over the dictionary. This 

global dictionary is constructed by aid of the optimized 

clustering that will be presented. In the following sections 

clustering of image blocks is studied with more details in 

section 2. An analytical comparison between local and 

global clustering is addressed in section3. Section 4 

studies the effect of equalization of data according to their 

variance in order to have an appropriate clustering. 

Learning the dictionary is explained in section 5 based on 

representatives of the found clusters. Section 6 studies 

applying of de-noising using dictionary. Finally, the local 

and global methods are evaluated in section 7. 

2. Clustering of Image Blocks 

In the case of methods including LPG-PCA, KLLD, 

BM3D ([6], [8] and [5], respectively), grouping of similar 

blocks is their critical factor of success. So, blocks 

grouping may has details which should be considered 

specifically. BM3D and LPG-PCA perform de-noising by 

clustering of the set of image blocks. K-LLD method 

performs clustering on feature vector extracted from 

surrounding blocks (Corresponding to each block). 

Considering the number of pixels and feature vector 

dimension, this clustering is of high computational load. 

In addition to high computational load, unbalanced 

clustering is one of the problems of global clustering of 

blocks. This problem is shown in Figure 1. 

Assume that in Figure 1-bottom, the goal is to find 2 

means. K-means algorithm finds two datacenters 

indicated by violet circles. These points are not good 

representatives of the blocks corresponding to the image 

edges. However, clustering objective function is 

minimized by these centers. Dense (high number data) 

correspond to image smooth parts and scattered (low 

number data) correspond to blocks containing edge or 

special texture. Traditional clustering algorithms behave 

with data corresponding to high energy areas as outlier 

data. So, these blocks have minor effect on the training by 

common clustering methods and the final desirable result 

will not be obtained. To solve the problem, first 

limitations of clustering-based de-noising methods are 

examined. 

The MSE error lower bounds for image de-noising 

have been examined in [9] and [10]. This lower bound for 

one    cluster block is calculated as follow. 
 

 [‖    ̂ ‖
 ]       [(     

  )  ] (2) 

       
   (3) 

 

 

Fig 1. In natural images, number of smooth blocks are more than high 
energy ones. 

where,    is the Fisher information matrix and    is the 

estimated covariance matrix for the group of vectors that 

are similar to  th block. For zero mean Gaussian noise, 

[10] assumed matrix    as follow: 
 

   
  
  
  (4) 

 

where,     is the number of similar vectors of the th 

block. Assuming that similar vectors for each pixel are of 

many members and noise level is not high, the right hand 

of inequality is simplified: 
 

(    ̂ 
  )

  
 
  

  
(  

  

  
 ̂ 
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where    is the  th eigenvalue of covariance matrix of 

estimated data  ̂ : 
 

     ( ̂ )     (  )   
  (8) 

 

Assuming that the number of similar patches of each 

block and the noise level is the same for all blocks; thus 

de-noising bound is related to covariance matrix. High 

detailed clusters (having high covariance matrix 

eigenvalues) are more difficult to de-noise. So for blocks 

corresponding to low complex areas, lower bound will be 

decreased for MSE of the estimated version and the 

original image. However the result is predictable; because 

in smooth areas of an image, a simple averaging can 

obtain good result but if a block consists of more 

complexity, specific texture and high variance, would limit 

de-noising performance. For such blocks, more precise 

similar block grouping is needed. The more the number of 

same blocks causes the more appropriate characteristics of 

grouping. So we suggest that for detailed and textured 

blocks, more training data should be used.  

Let us generalize the concept presented in (2) to 

clusters (rather than groups for each block). Assume 

variable   is allocated for clusters rather than blocks in (2). 

In other words,    is a block from the  th cluster and    is 

the number of members of the  th cluster.    is the 

estimated covariance matrix of the  th cluster. 

First question that this paper is going to answer is 

"which blocks should be considered for clustering?" As 

stated before, using all blocks for clustering not only have 

high computational load but also leads to unbalanced 

clustering. Figures 4 and 5 illustrate the idea of equalized 

clustering. Figure6 is the equalized clustered of Figure 1 

providing good properties for de-noising application. 

Dictionary learning-based methods such as K-SVD 

decrease training data in a random way to reduce 

computational load.  But as have been seen, removing 

valuable blocks from training data has negative effect on 

the de-noising lower bound. In Figure 6, only data 

corresponding to smooth blocks are removed and the 

obtained cluster centers are more appropriate for de-noising. 

In section 3 training data equalization will be studied. 

Second question that the paper is going to answer is 

"how do the clustering?" Now we state the problem of 

clustering. First we rewrite (2) as follow: 
 

 [‖    ̂ ‖
 ]  

  

  
∑

  

   
  

  
 

 (9) 

 

Let us write the right side of this inequality for all 

clusters as a cost function: 
 

 ( )  ∑
  

  
 

∑
  

   
  

  
 

 (10) 

  is the set of indices of training data that shows 

membership of the training data to clusters. The problem 

of the optimum clustering can be stated as follows: 
 

   
 
 ( )  ∑

  

  
 

∑
   

    
  

  
 

 (11) 

 

The above problem is dependent of Eigenvalues of 

each cluster    , so its computational burden is very high. 

Thus, exact solution of the problem is not achievable. 

Eigen values of the clusters corresponding to smooth or 

constant regions of  ̂  are about zero so they can be 

neglected from  ( ). So, only high variance blocks affect 

the cost function. 
 

 ( )  ∑
  

             
        

∑
  

   
  

  
 

 
 

(12) 

 

In other words, smooth training data can be ignored in 

the clustering. At the first glance this simplification just 

makes the clustering fast but it has an effect on the 

accuracy of the clustering. In fact, less exploitation of non-

important blocks causes in more affection of important 

blocks in the clustering problem (compare figure 1 and 

figure 6). Eq. (12) can be interpreted as a hard threshold for 

selection of blocks in clustering. In the next section 

variance of blocks will be introduced as a criterion for 

smoothness and then variance histogram equalization will 

be presented as the soft threshold version of (12) for 

selection of data that participate in clustering. 

Problem (11) can be viewed from another point of 

view. The cost function encourages clusters to have a 

sparse vector of Eigen values. Figure 2 shows how (11) 

encourages Eigen values to be zero. In other words 

problem (11) clusters data into low-rank subspaces and 

guarantees that many of Eigen values will be zero for 

each cluster. 
 

 

Fig 2. Contour of cost function of (11) for a cluster1. 

 

                                                           
1 The figure is contour of ∑

|  |

|  | 
  

  

  , as values of   are positive, figure 2 

is true for contour of (11)  
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High dimensional data that lie in low-rank subspaces 

have high correlation with each other (see Figure 3). An 

alternative for subspace clustering may be correlation 

clustering [11] that has much less computational load. As 

can be seen in Figure 3, the obtained clusters by 

correlation clustering lie in a rank-1 subspace that agrees 

with problem (11) because only one Eigen value of the 

covariance matrix of this cluster is none-zero. In section 6 

simulations has been done by correlation clustering.  
 

 

Fig 3. Comparison of correlation clustering and traditional clustering. 

3. Global Clustering vs. Local Clustering 

A well-known clustering method is the family of K-

means clustering algorithms [12], which have been used 

by K-LLD [8] for image de-noising. K-means clustering 

algorithm solves the following problem  
 

2

2

=1

min

K

j k
D k j

k

y d



  

(13) 

 

where,   [       ]. This problem can be written 

in the following form which is a factorization 
 

 2

0
,

 , , : = 1, 0,1min
j

F i i
D X

Y DX i j x x  
 

(14) 

 

where, Y=[       ] (L is the number of blocks),    is 

the ith column of X, and   
 
 is the jth entry of   . This 

problem implies that all entries of each    must be equal 

to zero except one of them. The non-zero element is 

forced to be 1. This restriction does not exist in the so-

called gain-shaped variant of K-means [12], which solves 

the following problem  
 

2

0
,

   : = 1min F i
D X

Y DX subject to i x 
 

(15) 

 

This problem is a K-rank1 subspace (K-lines) 

clustering. As can be seen in Fig. 4 (b) and (d), the 

obtained clusters by gain-shaped K-means is in agreement 

with problem (11). This is because only one eigenvalue of 

each cluster’s covariance matrix is non-zero. 

Inspired by the simple approach (15), a suboptimal 

solution for (11) can be obtained. We propose to construct 

the proper basis using the obtained cluster centroids and 

dominant principal components (PCs) of each cluster 

(generally, natural images are not perfectly lie on rank-1 

subspace as in Fig. 4, i.e., thus the proposed dictionary 

also contains dominant PCs spanning details of each 

cluster). Those PCs would be added to the dictionary if 

their corresponding eigenvalues are greater than noise 

variance. The noisy image blocks are then de-noised 

inspired by the framework used in [7]. This leads to a fast 

and efficient de-noising algorithm (algorithm1). It will be 

shown in Section 7 that the proposed algorithm 

outperforms traditional K-SVD. 
 

 
 

Another approach for clustering is dictionary learning 

in sparse signal representation, which aims to solve the 

following problem  
 

2

0
,

   : min F i
D X

Y DX subject to i x   
 

(16) 

 

K-SVD is a well-known dictionary learning algorithm. 

Low-rank subspaces found by K-SVD have overlaps. It 

means that corresponding to each subset of the columns 

of D, there is a low-rank subspace that K-SVD learns. 

Data that used the same subset lie on a low-rank subspace 

but K-SVD learns a very large number of low-rank 

subspaces for a set of training data such that many of 

them are empty or low populated (refer to Fig. 5, top). 

Actually, clusters found by K-SVD include the data that 

have used the same dictionary columns. Note that these 

clusters are not guaranteed to be low-rank. In the 

simulation results we will see that our proposed method 

based on gain-shaped K-means outperforms K-SVD. 

The derived problem (11) describes a suitable global 

clustering problem, while the state of the art algorithms 

do not perform global clustering, but instead use local 

patch-grouping. Translating global clustering to local 

grouping converts the problem to,  
 

G 0
G

G =   | G | ,G W , Gmini isubject to i   
 

(17) 
 

where,    is group of blocks corresponding to the ith 

block,    is the eigenvalues of covariance matrix of    
and    is a window around the ith block. The last 

constraint implies that the ith block must be member of   . 
An equivalent form of (17) can be stated as,  

 

G 0
G

G = | G |   ,G W , Gmaxi isubject to i   
 

(18) 
 

BM3D, a high performance image de-noising 

algorithm, implicitly uses (18) in order to perform local 

grouping. The similarity criterion used in BM3D for 
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performing local grouping is novel, in which firstly 

blocks are transformed using an orthonormal 

transformation (e.g., DCT and DFT), then a projection on 

a low-rank subspace is performed using hard-thresholding 

of the coefficients of each block. In the new transformed 

space, a simple Euclidean distance determines similar 

blocks with the ith block. Truncated coefficients of the 

similar blocks with the ith one also lie on a low-rank 

subspaces near to the ith one, thus many of     are about 

zero and the constraint of (18) is satisfied.  
 

 

Fig 4. Comparison of clustering in raw data domain and in the sparse-
domain transformed data (as used in CSR and LSSC) for some 2D data. 

(a) Raw data. (b) K-means clustering on raw data (K=3). (c) K-means 

clustering on sparse-domain transformed data using an over-complete 
dictionary having 3 atoms. (d) Reconstruction of the data from their 

sparse representations in (c), in the case of these data Gain-shaped K-

means directly results in (d).  

The idea behind (18) can be used in another way 

different from what BM3D has used. These de-noising 

algorithms first perform grouping using a rough criterion, 

e.g. Euclidean distance, then in the main de-noising 

algorithm obtain a low-rank representative for each group 

and use it. The algorithm suggested by Dong et al. 

(clustering based sparse representation or CSR) [13] 

which solves the following problem, is an example of 

these types of algorithms 
 

2 2

1 0 2 2
, =1 G

k

min

K

F i j k
X B i k j

Y DX x x b 


    
 

(19) 

where  [  ], and    is the centroid of the kth group. 

Note that (19) does not optimize the dictionary. In fact, 

firstly a global dictionary using K-means and PCA is 

learned which is then used by this problem to 

simultaneously perform local grouping and sparse 

coding, in an iterative procedure. The first and second 

terms in (19) are similar to K-SVD problem, but the last 

term clusters the sparse-domain transformed data. Figure 

5 illustrates the effect of clustering data in the sparse 

domain rather than the raw data. Contrary to K-SVD, in 

which the members of a cluster have used one column of 

D, problem (19) encourages the clustering to put data 

that have the same sparse representation (structure) in 

one cluster. 

 

Fig 5: Top: K-SVD approximates data by a union of rank-2 subspaces. 
No rank-2 cluster can be found. Bottom: Group sparsity constraint on X. 

There are three rank-2 clusters. 

Another local grouping based method is a novel 

approach, called learned simultaneous sparse coding 

(LSSC) [14], that simultaneously performs group sparse 

coding [15] and grouping the similar patches. Group 

sparse coding implies that the blocks within a group have 

similar sparse representations, like CSR. This is achieved 

by jointly decomposing groups of similar signals on 

subsets of the learned dictionary (as previously explained, 

K-SVD fails to achieve this goal. See Fig. 5 for 

comparison). They proposed the following cost function,  
 

, 2

=1 G
k

 . . : min

K
k

k p q i i
X k ik

X s t k y Dx 


   
 

(20) 

 

where,    is the coefficient matrix of the kth cluster 

data,   
  is the jth column of   , and ‖ ‖    ∑ ‖ [ ]‖ 

 
 , 

with  [ ]  the ith row of X. Minimizing ‖ ‖    with p=1 

and q=2 (that is, the    norm of the vector containing the 

   norms of the rows) implies that the number of engaged 

rows of X will be limited. In other words, this cost 

function encourages the data to have the same support of 

sparse representation in a cluster. As the data in the same 

cluster can be decomposed by few bases, the rank of the 

data matrix in the same cluster will be minimized. Thus a 

solution for (20) tries to minimize (17). i.e,  ‖  ‖    

approximates ‖   ‖ . At the simulation results section, 

numerical performances of the explained local and global 

methods are compared, separately. 

4. Block Variance Histogram Equalization 

For the reasons previously stated some points should be 

considered. Firstly clusters with different complexities have 

approximately the same number of members. Secondly, 

members of complicated clusters should not have high 

distance from cluster subspace so that covariance matrix 

eigenvalues would not become high and many of them 

would be zero. Third, members of high complex clusters 

should not be neglected for dictionary learning. 

Blocks variance is considered as a complexity measure. 

In natural images, the number of high complex blocks is 
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lower than low complex blocks. Figure 6 indicates blocks 

variance histogram of an original image and its noisy 

version. As can be seen, in the original image, 

concentration is in lower values of variance and in noisy 

image concentration is in the point corresponding to noise 

variance representing smooth blocks of original image. 

Those blocks that their variances are approximately the 

same as noise variance are not useful for training. Using 

these blocks not only increases computational load but also 

causes unbalance clustering and reduces the effect of 

important clusters. So their number in final clustering 

should be reduced. To equalize blocks variance histogram, 

an equalization transform function must be used. The 

following function is an example: 
 

T( )  {

  

 ( )
 ( )    

         ( )    
 (21) 

 

where,  ( )  is density function of blocks variance 

probability and    is a threshold.  ( ) is the probability 

of entering a block with variance   into training data to be 

used for clustering. Figure 6, indicates an example of the 

transform function and equalized histogram of noisy 

image in Figure 7. In this histogram, the effect of blocks 

with variance 25 is reduced considerably. Figure 8 shows 

equalized clustering of figure 1. 
 

 

Fig 6. two clear and noisy images with      and their blocks variance 
histogram. 

 

Fig 7. Equalizing transform function 

Regarding that the variance of smooth blocks is 

approximately the same as noise variance. It can be said 

that there is not valuable information about original image, 

and their presence for training not only mislead the 

clustering algorithm but also have high computational 

load. Now, subspace clustering should be done on 

remaining training data which agrees with Eq. (11). 
 

 

Fig 8. Equalized clustering of figure 1 

5. Dictionary Learning 

Dictionary learning is performed using the blocks 

selected in the previous stage. The final dictionary 

includes    dominant principal components from each 

cluster (equal to non-zero Eigen values of matrix 

 ̂  explained in Section 2).  

In the next stage, SVD transform is derived from 

covariance of data matrix of each cluster: 
 

    
        

        (22) 
 

where,   is the number of clusters. Singular values on 

the main diagonal    are equal to     which are arranged 

in ascending order by   subscript. 

For each cluster,    is the number of principal 

components that will be included in the final dictionary 

and is obtained by the following equation: 
 

   (        
 

   |     
 )    

  (      )     

(23) 

 

The principal components higher than     have learned 

noise for each cluster in matrix    . Actually,     is the 

dimension of noise-free data on the  th cluster (or    is the 

rank of subspace that  th cluster lies in it). It means that if 

the noise power is zero, autocorrelation matrix of  th 

cluster has only    non-zero eigenvalues. In presence of 

noise, all autocorrelation matrix eigenvalues of each 

cluster of noisy data will be nonzero; from the component 

     to the end are due to noise. By adding the first 

principal component to   , the dictionary is completed 

and we can perform denoising by this designed dictionary. 

6. Denoising Operation 

Usefulness of the union of subspaces model has been 

proved in many applications of signal processing. As 
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illustrated in section 2 and 3, this model is appropriate 

for the analysis of signal de-noising. This model 

assumes that image blocks are linear combination of few 

bases of a dictionary: 
 

         ‖  ‖     (24) 
 

In the previous section a dictionary was defined. De-

noised image should also meet this model whereas noisy 

image    cannot, because in the dictionary learning stage, 

noise is not trained. In other words, to represent noise, 

many bases combination should be involved and no 

sparse representation    in equation (25) can be found. 
 

                 ‖  ‖     (25) 
 

The model must be reformed to model the noise of data: 
 

            ‖  ‖     (26) 
 

Assuming Gaussian noise with zero mean in this 

model, MAP estimation for    is 
 

 ̂     
  
‖      ‖

    ‖  ‖     (27) 
 

Optimum threshold is related to    of a cluster where 

   belongs to it. This can be replaced by the following 

problem: 
 

 ̂     
  
‖  ‖    ‖      ‖

    (28) 
 

where,   is a function of noise variance. Now we can 

estimate de-noised version by this estimation of sparse 

coefficients. We just need to project    into the nearest 

low-rank subspace spanned by the columns of the learned 

dictionary.  

7. Simulation Results 

In this section, de-noising results of proposed method 

and some other recent approaches are presented and 

discussed. First, the global and local methods are 

evaluated, then a comparison between global and local 

approaches is presented and finally these methods are 

compared in term of total execution time.   

K-SVD and our simple gain-shaped K-means 

(proposed method) are presented as global methods. The 

presented local methods include those introduced in [5], 

[8], [13], [14], [17] and [18]. Performance comparison of 

these algorithms can be seen Table 1. We have used the 

Peak Signal to Noise Ratio (PSNR
1
) as the performance 

criterion. The PSNR values were averaged over 5 

experiments, corresponding to 5 different realizations of 

AWGN. The variance was negligible and not reported. 

Our method is simulated similar to the framework of 

[7]. Both algorithms have the same amount of error for the 

training set (depending on the noise variance) but their size 

of dictionary is different. Table 1 shows that the proposed 

method surpasses the K-SVD [7] and its results are 

                                                           
1 PSNR is defined as 10log10(2552/MSE) and measured in dB 

comparable with the time consuming local methods. As 

will be tabulated, the execution time of the proposed 

method is about 70% of K-SVD, 8% of LSSC [14] and 4% 

of CSR [13]. Recently [16] investigated a comprehensive 

comparison of different image de-noising methods. They 

have shown numerically that BM3D, SCR and LSSC 

studied in this paper have the best results. Figure 9 shows 

an example of de-noising results by our proposed method. 

Table 1. Image de-noising performance of the Global and Local methods 

in PSNR (dB) for 4 different image and various       

 

Lena 

SNR
 5/34.16 10/28.14 20/22.11 

Global 
Proposed 38.71 35.60 32.57 

K-SVD [7] 38.60 35.47 32.38 

Local 

K-LLD [8] 38.01 35.20 32.37 

LSSC [14] 38.69 35.83 32.90 

CSR [13] 38.74 35.90 32.96 

BM3D [5] 38.72 35.93 33.05 

LSC [17] 38.56 35.65 32.54 

SSMS [18] 38.62 35.63 32.30 

Barbara 

SNR  5/34.16 10/28.14 20/22.11 

Global 
Proposed 38.22 34.68 30.98 

K-SVD [7] 38.08 34.42 30.83 

Local 

K-LLD [8] 37.26 33.30 28.93 

LSSC [14] 38.48 34.97 31.57 

CSR [13] 38.43 35.10 31.78 

BM3D [5] 38.31 34.98 31.75 

LSC [17] 38.45 34.95 31.29 

SSMS [18] 38.73 35.11 31.25 

House 

SNR
 5/34.16 10/28.14 20/22.11 

Global 
Proposed 39.59 36.54 33.68 

K-SVD [7] 39.37 35.98 33.20 

Local 

K-LLD [8] 37.63 35.09 32.66 

LSSC [14] 39.93 36.96 34.16 

CSR [13] 39.98 36.88 33.86 

BM3D [5] 39.83 36.71 33.77 

LSC [17] 39.72 36.33 33.23 

SSMS [18] 39.51 36.13 32.77 

Boat 

SNR
 5/34.16 10/28.14 20/22.11 

Global 
Proposed 37.25 33.85 30.52 

K-SVD [7] 37.22 33.64 30.36 

Local 

K-LLD [8] 35.96 33.16 30.17 

LSSC [14] 37.35 34.02 30.89 

CSR [13] 37.31 33.88 30.78 

BM3D [5] 37.28 33.92 30.87 

LSC [17] 37.16 33.75 30.42 

SSMS [18] 37.09 33.70 30.40 
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(a) Original image 

 
(b) Noisy image 

 
(c) Recovered image by proposed method 

Fig 9. an example of denoising results by our method 

In natural images, far away block have generally 

different patterns, so, using all blocks may result in 

inappropriate clustering. Moreover, non-overlapped 

clusters obtained by global methods are not as flexible as 

the overlapped groups. On the other hand, local grouping 

assign appropriate groups to each block. Although local 

methods have better performance, global methods are 

able to extract salient features of images and use it easily 

for de-nosing. According to comparison of local and 

global methods in Table 1, the performance of the 

proposed global method is just about 0.2dB lower than 

promising local methods (LSSC and CSR), which is not a 

high difference. However, a common good property of 

both global and local methods is that they exploit the low-

dimensional characteristics of clusters/groups in order to 

design a suitable de-noising algorithm. 

To understand the effect of this method on the 

dictionary, in the table 2 the results are compared only 

with K-SVD method, which is global a method like our 

proposed method. However, in the results of local 

methods in table 1, the suggested method used about 27% 

less blocks for training and the time required for 

dictionary learning is less than K-SVD method. This table 

studies the effect of data equalization on K-SVD. As it 

can be seen equalization improves K-SVD about 0.4dB. 

Table 2. comparing the suggested method and K-SVD method. left: K-

SVD + Equalization of data, middle: KSVD, right: the proposed clustering 

σ/SNR House Peppers 

20/22.11 33.29 33.16 33.68 30.89 30.77 31.09 

25/20.18 32.37 32.19 32.66 29.82 29.69 29.96 

30/18.59 31.40 31.24 31.61 28.95 28.82 29.11 

σ/SNR Lena Cameraman 

20/22.11 32.55 32.38 32.63 30.14 29.96 30.36 

25/20.18 31.42 31.34 31.50 29.10 28.93 29.22 

30/18.59 30.59 30.46 30.72 28.16 28.07 28.36 
 

As mentioned, the proposed method is based on 

dictionary learning and its time efficiency should be 

compared with other dictionary learning based 

approaches e.g. [7], [13] and [14]. Table 4 compares the 

relative execution time of [13], [14], [7] and the 

proposed method in various image sizes. Our 

experiments were averaged on 5 different runs carried 

out on a Personal Computer with a 3.6-GHz AMD 2 

Core CPU and 4 GB RAM. As can be seen, the global 

de-noising methods (KSVD and proposed) are more 

efficient in term of execution time and our proposed 

method surpasses KSVD. In fact, dictionary learning 

running time of proposed method (for identification of 

K-rank1 subspaces) is about 40% of K-SVD for 20,000 

blocks extracted from a 512×512 image, but its overall 

execution time is about 72% of KSVD. 

Table 3. Relative execution time of dictionary learning based methods  
(in minutes) 

Image Size 
144×176 

(QCIF) 

288×352 

(CIF) 

576×704 

(4CIF) 

Local 
LSSC [14] 1.29 5.31 22.09 

CSR [13] 2.67 11.28 52.87 

Global 
KSVD [7] 0.14 0.59 2.66 

Proposed 0.10 0.43 1.92 

8. Conclusions 

Local methods suggested in recent years, have 

obtained better results than global methods. However by 

more intelligent training in such a way that first, 

important data is more effective for training, second, 

clustering in such way that training blocks lie in low-rank 

subspaces, we can design a dictionary applicable for 

image de-noising and obtain results near the state of the 

art local methods. 

As was seen, we have obtained acceptable results by a 

relatively simple method based on construction of an 

appropriate global dictionary. 
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