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Abstract 
The source of randomness in stochastic systems is an input with stochastic behavior as treated in the existing literature. 

Special types of stochastic processes such as the Wiener process or the Brownian motion have served as an adequate 

model of such an input for years. The body of stochastic systems theory is elegantly shaped around such input models. An 

example is the Itô’s formula. With development of new applications, we are faced with various phenomena that are more 

demanding from a stochastic modeling approach. 

To cope with this problem we restate the stochastic Lyapunov theorem such that it can be applied to a wider class of 

stochastic systems. In this paper stochastic systems are considered without imposing assumptions on the nature of the 

stochastic input and the way it affects the sample trajectories. Lyapunov stability theorem is represented for this type of 

systems in terms of a stability notion that generalizes the notion of stability in moments. As a result, the new theorem 

finds a larger domain of applications while it can be reduced to some known versions of the stochastic Lyapunov theorem.  

As an application, an existing deterministic result for nonlinear networked control systems is extended to a more practical 

probabilistic setting which extends the available analysis tools for checking the stability of continuous-time nonlinear 

networked control systems in the stochastic setting. The results are applied to a two-channel magnetic levitation system 

which is controlled over a local communication network to obtain a bound on the rate of transmission failures due to the 

presence of noise in the industrial environment. 
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1. Introduction 

In many applications, stability of a control system 

should be studied in presence of some random behavior. 

The theory of stochastic differential equations (SDEs) is 

used for this purpose [1,2,3,4]. An SDE can be regarded as a 

differential equation which depends on a stochastic process. 

The theory of SDEs is mainly developed for Itô SDE [4] 

and its applications to stochastic control problem are usually 

based on extensions of Lyapunov theorem [5,6,7]. There are 

problems that cannot be modeled using the Itô SDE like the 

random switched system in [8]. Another problem is the 

networked control system (NCS) analysis problem 

considered in this work. The difficulty is to model the 

stochastic phenomena as a Brownian motion to act as an 

input of the Itô SDE which is not always possible. 

Several approaches have been used for handling NCS 

problems [9,10]. Two important issues are handling the 

stochastic effects such as communication delay and loss 

in the NCS [11]. LQG problem for linear NCSs with 

stochastic delays and packet losses is studies for example 

in [12,13]. An in-depth investigation of an NCS problem 

may lead to more detailed modeling and analysis, such as 

the relationship between stability and noise characteristics 

in [14], or network scheduling and topology related issues 

in [15,16]. Some basic works regarding nonlinear NCS 

are [17,18,19] where the network induced error is defined 

and modeled as a perturbation.  

In this work, the Lyapunov stability method is 

presented in an abstract setting with respect to the Itô 

SDE stability analysis. In the Itô SDE, the usual source of 

randomness is an stochastic input. This input has certain 

properties that result in the Itô formula which is the basis 

of the related Lyapunov based stochastic stability analysis 

methods. However, our results are not based on the Itô 

formula which enables us to apply our results to an NCS 

problem (and possibly other new applications). For this 

purpose, a stability notion which is more suitable is used. 

Additional efforts may be required for applying the 

results to a problem. But, in return the results may be used 

for a wider class of applications. The main motivation of 

this work is its application in extending the NCS analysis 

performed in [17] in which the effect of shared 

communication on a nonlinear NCS is studied in a 

deterministic setting. The results of this paper are applied 

to obtain a practical probabilistic NCS analysis. Due to 

possibility of significant delays in an NCS, the Lyapunov 

results are presented for delayed systems to facilitate 

extension of the NCS analysis to delayed case in future. 

This paper is an enhanced version of [20] where the 
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formulation of NCS analysis is improved and a new 

section is added to present an application of the results to 

a practical NCS problem. 

In section two, the considered SDE is described. Also, 

the stability notions will be presented and their relations 

will be clarified. Section three contains the Lyapunov 

stability results. Extension of the NCS problem in [17] is 

studied in section four followed by an example. A 

practical case-study is studied in section five and 

conclusions are made at the end.  

2. Preliminaries 

Notation: Throughout the paper, the set of real 

numbers (-∞,∞) is indicated by ℝ and the set of 

non-negative real numbers [0,∞) is indicated by ℝ¯+ 

where ∞ is the positive infinity. Euclidian norm of a 

vector x is denoted by ||x||. For an arbitrary set A, the set 

of mappings from A to ℝn is denoted by C
n
(A) and the set 

of stochastic processes with sample paths in C
n
(A) is 

denoted by ℬn
(A). For  C

n
(A), ∞-norm is defined as 

|||| = supA ||()||. For  C
n
(ℝ) and tℝ, history of 

 at t denoted by tC
n
(ℝ̄+

) is defined as t() = (t) 

for any ℝ̄+
. This convention is used to indicate an 

argument of a functional [21,22]. Accordingly, if 

 ℬ
n
(ℝ) and tℝ then the history t ℬ

n
(ℝ̄+

) can be 

defined as t() = (t-). Probability of an event A is 

denoted by P(A). 

2.1 The class of systems to be considered 

The mathematical description of the class of systems 

considered in this paper is given by the stochastic 

functional differential equation (1) where tℝ is a time 

instant, x(t)ℝn
 is the state vector,  ℬ

m
(ℝ) and f : 

C
n
(ℝ̄+

)ℝℝm
  ℝn

 is a functional. 
 

 ̇( )   (      ( ))      (1) 
 

Because of the randomness caused by , the state x is 

also a stochastic process. The initial time is denoted by t0 

up to which the state information is available. 

The functional f is assumed to satisfy (2) for every 

C
n
, tℝ,  ℝ

m
 which indicates that x=0 (or the origin) 

is an equilibrium solution of (1). 
 

‖ ‖            (     )      (2) 
 

Remark 2.1: The theory of stochastic differential 

equations (SDEs) is mainly concerned with the Itô SDE [4]. 

In an Itô SDE, (t) is basically a white noise process and f 

is affine with respect to . There are existence and 

uniqueness results for solution of Itô SDEs with delays [21]. 

Assumption 1: In this paper it will be assumed that (1) 

has a unique solution xℬn
(ℝ) for every initial conditions. 

We are interested in determining the stability of (1) 

where the concept of stability is presented in the next part.  

2.2 Definition of stability 

Three important stability notions in the literature are 

stability in probability, stability in p-th moment and almost 

sure stability. In this paper we will work with a generalized 

version of stability in p-th moment, which is also related to 

stability in probability (definition 2.2 in the following). 

Definition 2.1: A continuous function u: ℝ̄+
 ℝ̄+

, 

u(0)=0, is said to belong to class Kd if it is non-decreasing 

and u()>0 for  >0. For u1, u2 Kd it is said that u1 

covers u2 if there exist c > 0 such that u1()  c u2() for 

every  ℝ̄+
. 

Definition 2.2: For a class Kd function h, the 

equilibrium x=0 of system (1) is h-mean stable if for any 

 >0 there exist (, t0) > 0 such that for any t  t0 (3-1) 

holds. Moreover, x=0 is asymptotically h-mean stable if 

it is h-mean stable and there exists  (t0) > 0 such that 

(3-2) holds. 

||xt0
|| <    E{h(||x(t )||)} <    (3-1) 
 

||xt0
|| <    limt→∞ E{h(||x(t )||)} = 0   (3-2) 
 

Remark 2.2: If we select h as h() =  
p
 for some p>0, 

definition of stability in p-th moment in [3] is retrieved. 

Stability in second moment or mean square stability, is a 

very practical stability concept specially for linear systems. 

Definition of stability in probability from [3] with a 

few modifications to express it for (1) is as below. 

Definition 2.3: The equilibrium x=0 of system (1) is 

stable in probability if for every pair 1, 2 > 0, there 

exists (1,2,t0) > 0 such that (4-1) holds for any t  t0. 

Also, x=0 is asymptotically stable in probability if it is 

stable in probability and for every  > 0, there exists 

 (  t0) > 0 such that (4-2) holds. 
 

‖   ‖           *‖ ( )‖    +      (4-1) 
 

‖   ‖   ̃               *‖ ( )‖   ̃+    (4-2) 
 

Relationship between h-mean stability and stability in 

probability is stated as proposition 2.1 (proof is omitted). 

Proposition 2.1: The system (1) is stable in 

probability if and only if there exists a Kd function h such 

that (1) is h-mean stable. Moreover, (1) is asymptotically 

stable in probability if there exists a Kd function h such 

that (1) is asymptotically h-mean stable. 

Remark 2.3: Any of the above stability properties is 

said to be global when the value of related functions  or  

can be made arbitrarily large by adjusting their first 

argument. Moreover, a stability property is said to be 

uniform if the related functions  or 
t0 (similar to the delay-free deterministic case in [23]). 

Remark 2.4: The stability property of a stochastic 

system can have different qualities. A system may be 

stable in first moment but not mean square stable. Due to 

proposition 2.1, quality of stability for a system that is 

stable in probability can be studied by finding h. For 

example, a faster growth of h can imply a better 

convergence. Therefore, the h-mean stability is a strong 

and exact stability notion. 
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3. Stability Theorem 

In this section the main results of the paper is 

presented. First a Lyapunov theorem is proposed for the 

delayed system (1). Then, the theorem is rewritten for the 

special case of a delay free system. 

3.1 Delayed systems 

The Lyapunov stability theorem for (1) is as below. 

Theorem 3.1: The system (1), is w1-mean stable if 

there is a differentiable functional V: C
n
(ℝ̄+

)ℝ ℝ̄+
 

satisfying (5) for some w1,w2Kd and there exist rℝ̄+
 

such that E{
d
/dtV(xt,t)} is well-defined and non-positive 

for every ||xt0
||∞< r, t  t0. Also, (1) is asymptotically 

h-mean stable for hKd if there exist uKd such that 

||xt0
||∞< r implies E{

d
/dtV(xt,t)}  -E{u(||x(t)||)} for every 

t  t0 and h is covered by both u and w1. 
 

  (‖ ( )‖)   (    )    (‖ ‖ )  (5) 
 

Proof: According to Equation (1), every sample path 

of x is differentiable with respect to t. Hence, due to 

differentiability of V, the time derivative of V exists and it 

can be easily shown that the time derivation operator d/dt 

commutes with the expectation operator E as below.  
 

 {
 

  
 (    )}   {   

   

 (    )   (    )

   
}                     

   
   

 * (    )+   * (    )+

   
 
 

  
 * (    )+               

 

 

  
 * (    )+   {

 

  
 (    )}    (6) 

 

Also, according to continuity of w2, for every  > 0 we 

can select 0 <  < r such that (7) is satisfied. 
 

w2() <       (7) 
 

Theorem 3.1 has two parts, proved in the following. 

Part 1: According to the selected  < r and conditions 

of the theorem, if we select ||xt0
||∞<   then E{

d
/dtV}  0 

and consequently 
d
/dtE{V}  0 due to (6). This implies 

non-increasing behavior of E{V} with time. Using this 

fact, (5) and (7) one can write (8) which proves the first 

part according to definition 2.2. 
 

E{w1(||x(t)||)}  E{V(xt,t)}  V(xt0,t0)  w2() <   (8) 
 

Part 2: For  and  in (7) and ||xt0
||∞<  we have (9) 

which implies decreasing behavior of E{V} and (8) as in 

previous part of proof. 
 

E{
d
/dtV(xt,t)} < E{u(||x(t)||)} < 0   (9) 
 

Since 0E{V} < , its decreasing behavior implies that 

m = limt∞ E{V} is a constant between 0 and . Now we 

define V̂(xt,t) = m + t


 E{u(||x(s)||)}ds. According to (9), it 

follows that m  V̂ (xt,t)  E{V(xt,t)} and consequently 

limt∞ E{V̂}= m (using the squeeze lemma). By definition 

of V̂ we have 
d
/dt V̂ = E{u(||x(t)||)} and we can apply the 

Barbalat’s lemma to conclude (10) as below. Because 
d
/dt 

V̂ is continuous with respect to time according to 

continuity of u and differentiability of x with respect to t 

in (1).  
 

limt∞ E{u(||x(t)||)} = 0    (10) 
 

Since u covers h, there exist a constant c1ℝ̄
+
 such 

that 0<c1h(||x||)<u(||x||). Taking expectation from this 

inequality and tending t to infinity we obtain 

limt∞ Et{h(||x(t)||)} = 0 according to (10). This fact 

together with Lemma 3.1 in the following proves the 

second part.  □ 

Lemma 3.1: if (1) is w-mean stable for some wKd then 

it is h-mean stable for every hKd that is covered by w. 

Proof: The w-mean stability of (1) can be written as 

(11) according to definition 2.2. 
 

̄  > 0,  > 0 | ||xt0
|| <   Et{w(||x(t)||)}< ̄   (11) 

 

There exist c1ℝ̄
+
 such that w(||x||) > c1h(||x||). 

Combining this inequality with consequent part of (11) 

and setting ̄  to c1 for an arbitrary  > 0, one can write 

the following and obtain (12) which is equivalent to 

h-mean stability of (1) according to definition 2.2. 
 

 > 0,  > 0 | ||xt0
|| <    

                   c1 Et{h(||x(t)||)} < Et{w(||x(t)||)} < ̄  = c1 

 > 0,  > 0 | ||xt0
|| <      Et{h(||x(t)||)}<  (12) 

 

The h-mean stability notion has a natural relationship 

with theorem 3.1, which results in shortening the proof of 

theorem. This fact and remark 2.4, are main reasons of 

using h-mean stability notion in this work. 

Remark 3.1: For every set U = {uiKd : 1in} of Kd 

functions, there always exist functions that are covered by 

all elements of U. An example is h1() = infi {bi ui()} 

where bi (1in) are arbitrary positive real numbers (since 

ui  bi
-1

 h1). This ensures that in second part of theorem 

3.1 there always exists a function h that is covered by u 

and w1. 

Remark 3.2: The stochastic control theory ([5,7]) is 

mainly concerned with systems modeled by Itô SDEs 

(remark 2.1). As a result, second derivatives of V appear 

in calculation of Et{
d
/dtV}. In this work, no assumption is 

made about  and Et{
d
/dtV} is not calculated. As a result, 

theorem 3.1 is applicable to problems that are different 

from the problems commonly modeled by the Itô SDE. 

An application is the case of next section. Other 

applications may include randomly switched systems [8]. 

3.2 Delay free systems 

State vector x(t) is a part of history xt. Hence, the delay 

free system (13) is a special case of delayed system (1). 
 

 ̇( )   ( ( )    ( ))    (13) 
 

Stability definitions 2.2 and 2.3 are written for (13) by 

replacing ||xt0
|| in antecedents of (3) and (4) with ||x(t0)||. 
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Accordingly, theorem 3.1 in previous part is simplified to 

theorem 3.2 for the delay free system (13). 

Theorem 3.2: System (13), is w1-mean stable if there 

exist a function V: ℝn
ℝ ℝ̄

+
+ and w1,w2Kd such that 

(14) is satisfied and there exist rℝ̄
+ 

such that ||x(t0)|| < r 

implies E{
d
/dtV(x(t),t)}  0 for every t  t0. Additionally, 

for hKd (1) is asymptotically h-mean stable if there exist 

uKd such that ||x(t0)|| < r implies 

E{
d
/dtV(x(t),t)}  -E{u(||x(t)||)} for every t  t0 and h is 

covered by both u and w1. 
 

  (‖ ‖)   (   )    (‖ ‖)   (14) 

4. Application to NCS Problem 

In this section, a nonlinear NCS problem will be 

studied which has been originally proposed in [17]. The 

configuration of this NCS is depicted in Fig.1. In [17] it is 

assumed that there is no communication delay and the 

goal is to obtain a bound on maximum allowed time 

interval between data transmissions that can guarantee the 

stability of NCS. This bound is known as MATI 

(maximum allowable transfer interval). 

Using Theorem 3.1, the problem can be extended from 

two different aspects. First, instead of finding a bound, we 

will be able to check stability when some probabilistic data 

about the transfer intervals is available as a PDF. Second, it 

will be possible to handle an NCS with communication 

delays. However, due to complexities of the extension to 

delayed case and the limited space, we will only focus on 

the extension to the probabilistic case in this work. 
 

 

Fig 1. The networked control system (NCS). 

The plant and controller can be modeled as (15) and 

(16) respectively in which xp is the state of plant, xc is the 

controller state, up is the plant input, y is the plant output 

and  ̂   ( ̂)  is the latest sample of y available at 

controller which is obtained at sampling instant  ̂ ([17]). 
 

 ̇    (       )        (    )    (15) 
 

 ̇    (    ̂  )           (    ̂  )  (16) 
 

The above equations can be combined during time 

interval that ŷ is constant (no updated data is received). 

The result is (17) in which x
T
=[xp

T
  xc

T
],  ̂   ( ̂) and the 

network induced error is defined as e = x  x̂. 
 

 ̇   (   ̂  )     (17) 

For simplicity, we will consider the situation where all 

feedback data is transmitted at once. This is the case for 

example when the plant is single-input single-output. 

However, the results can be extended to the case of 

multiple transmitters. It is assumed that a continuously 

differentiable and positive definite Lyapunov function 

V(x, t) exists that satisfies (18) to (20) globally with 

positive real numbers c1, c2, c3, c4. 
 

  ‖ ‖
   (   )    ‖ ‖

    (18) 
 

 

  
  

 

  
   (     )     ‖ ‖

    (19) 
 

‖
 

  
 ‖     ‖ ‖     (20) 

The functions f and g are also assumed to be globally 

Lipschitz such that one can write (21). 
 

‖ (   ̂  )‖    ‖ ‖    ‖ ̂‖   (21) 
 

‖ (       )   (     )‖    ‖ ‖  (22) 
 

Time derivative of V can be calculated as below using 

(19), (20) and (21-1). 
 

 ̇  
  

  
 
  

  
  ̇  
  

  
 
  

  
  (   ̂  )   

 

  

  
 
  

  
  (     )  

  

  
 , (       )   (     )- 

 

 ̇     ‖ ‖
    ‖ ‖  ‖ ‖ 

 

Using triangle inequality we have 
 

 ̇     ,‖ ̂‖  ‖ ‖-
    (‖ ̂‖  ‖ ‖)  ‖ ‖ 

 

 ̇     ‖ ̂‖
  (        )‖ ̂‖‖ ‖  (       )‖ ‖

   
 

      (23) 

Using (17) and (21), we can write 
 

 

  
‖ ‖  ‖ ̇‖  ‖ (   ̂  )‖    ‖ ‖    ‖ ̂‖  

 

Using the comparison lemma ([23]) we obtain an 

upper bound on ||e|| as below 
 

‖ ‖  
,       -  
  

‖ ̂‖ (24) 

 

      ̂ 
In the same way, we can obtain a differential 

inequality and solve in the reverse direction of time from t 

to t̂  to obtain the following bounding 
 

‖ ̂‖  
[ (     )|  |   ]  

     
‖ ‖ (25) 

 

Relations (23) and (24) give an upper bound on  ̇  
 

 ̇    (  )‖ ̂‖
      (26) 

 

  (  )      (        )
,       -  
  

 |       | [
,       -  
  

]

 

 

(27) 

command 
Controller 

xc 

Network 
ŷ 

Plant 

xp 

Unrelated network traffic 



 

Journal of Information Systems and Telecommunication, Vol. 2, No. 2, April-June 2014 99 

For every i, the ith transfer interval is denoted by Ti. In 

deterministic case, V  0 guarantees stability due to the 

common Lyapunov theorem. According to (26) V  0 is 

resulted from a(t)  0. 

The function, a(s) is increasing with a(0) < 0. 

Therefore, a(s)=0 has a unique positive solution a which 

is a lower bound for MATI because Ti  a implies 

a(t)  0. This is similar to the results in [17]. But how 

would be the NCS stability if Ti can exceed a. To answer 

such a question we can use theorem 3.2 in previous 

section. Taking expectation from (25) we have (28). 
 

 { ̇}   *  (  )+‖ ̂‖
      (28) 

Also we can obtain (29) from (26) by a few 

manipulations and taking expectation. 
 

 *  (  )+‖ ̂‖
   *‖ ‖ +    (29) 

  (  )  [
[ (     )|  |   ]  

     
]

  

 

 

Now we can apply Theorem 3.2 as explained in the 

following. Due to (18), Lyapunov function V satisfies the 

condition (14) of Theorem 3.2 with w1() = c1
2
 and 

w2() = c2
2
. Therefore, the NCS is asymptotically mean 

square stable if E{V̇}  c5E{||x||
2
} for some c5 > 0. But, if 

E{a(t)}<0 then we can combine (28) and (29) to obtain 

a positive constant c5 =  E{a(t)} / E{b(t)}. However, 

for every i, E{a(t)}<0 is satisfied if ETi {a(Ti)} < 0 

because a is increasing and t  Ti. The result can be 

summarized as following corollary. 

Corollary 4.1: NCS (15), (16) is asymptotically mean 

square stable (asymptotically stable in second moment) if  

the transfer intervals Ti from y to ŷ have a common PDF 

denoted by pT and there exists a Lyapunov function V for 

the closed loop system with ŷ = y that satisfies (18), (19), 

(20), and the following condition is satisfied with a 

defined in (26). 
 

 *  (  )+  ∫   ( )
 

 

  ( )     (30) 

 

Remark 4.1: If the random variations of transfer 

intervals Ti are due to data packet losses (packet 

transmission errors) with probability pe and the sampling 

period is equal to h, then we have (31) in which  is the 

Dirac’s delta function. 
 

  ( )  ∑ (    )  
    (    )

 

   
 (31) 

 

Replacing (27) and (31) in the left hand side of (30), 

eliminating the Delta function and integration we obtain  
 

 *  (  )+  (        )
  

  
∑(    )  

   

 

   

,       - 

 |       | [
  
  
]
 

∑ (    )  
   ,       - 

 

   
    

 

The right hand side of the above equation contains 

two geometric series with common ratios pe exp(k1h) and 

pe exp(2k1h) that must be smaller than one to ensure the 

convergence. Since the later one is always greater, it 

suffices to have pe < exp(-2k1h). Simplifying the result, 

the condition (30) can be represented as below 
 

    
      (32-1) 

 *  (  )+   

     
    (    )

        
   
     (    )

         
      

 

(32-2) 

       (        )
  
  
 |       | [

  
  
]
 

 

   (        )
  
  
  |       | [

  
  
]
 

 

   |       | [
  
  
]
 

 

 

which can be calculated to rewrite (30) as below 

provided that pe < exp(-2k1h). 

Example 4.1: The following NCS is considered. 
 

 ̇        
 ̇  (     )         
     
     ̂ 

 

A Lyapunov function for the closed loop with ŷ = y 

can be V=½(x1
2 
+ x2

2
) with c1 = c2 = ½, c3 = 0.38, c4 = 1 

which guarantees deterministic stability globally. 

Equations (17) can be written as below. 
 

 ̇   ̂   ̂        
 ̇  ( ̂   ̂       )    ( ̂    )    ̂  

 

Using the above equations, we can obtain k1=k2=3.34 

and kp=3. This completely determines the function a in 

(26). The obtained a gives a = 0.0215 which guaranties 

the stability for Ti  0.0215.  

Many random communication effects can be studied 

using Corollary 4.1. It is assumed that we have 

transmissions with possibility of error as explained in 

Remark 4.1. In Figure 2 the maximum value of pe that 

satisfies (32) is plotted as a function of h for the obtained 

a. This plot gives a lower bound for the stability margin 

of the packet loss probability pe. 

5. A Practical NCS Application 

In this section we study a practical NCS that consists 

of a dual axis magnetic levitation system controlled over a 

communication link to a computer. In the following, in 

the first part we describe the control system. In the second 

part we describe the communication system and its 

limitations. In the third and last part we use the results of 

this paper to select the communication data rate such that 

the stochastic stability of the control system is preserved.   
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Fig. 2. Transmission period h versus loss probability pL 

5.1 Control system 

The magnetic levitation system is composed of a steel 

ball with mass mb=40 g affected by two magnetic forces 

Fx, Fy generated by two identical solenoids with voltages 

vx, vy and currents ix, iy respectively as shown in Figure 

3 (a). The forces acting on the ball are Fx, Fy and the 

weight of ball mbg (g = 9.8 m/sec.
2
 is the acceleration of 

gravity) as depicted in Figure 3 (b).  

Assuming that the axes of coils (x and y axes) are 

perpendicular, the magnetic forces Fx, Fy can be 

calculated from the following equations in which 

Kf=0.0047 Kg m
3
/C

2
 is magnetic force constant. 

 

 
(a) 

 

 
(b) 

Fig. 3. (a) The magnetic levitation control system. (b) The forces acting 

on the ball. 

     .
  
 ⁄ /
 

           (
  
 ⁄ )
 

   (33) 

 

The resistance and inductance of the coils are R=0.62 

 and L=0.32 H such that we can write 
 

vx = R ix + L ix ,     vy = R iy + L iy         (34) 
 

The equations of motion of the ball are also as below. 
 

   ̈     √       , 

   ̈     √           (35) 

 

The control algorithm is implemented in a computer 

(Figure 1) that receives the measurement feedbacks ix, iy, x, 

y,  ̇  ̇ from the node which is connected to the coils and 

sends back the control commands vx and vy to the coils.  

The control commands to the input voltages vx and vy 

are calculated using the feedback linearization method as 

follows. First we differentiate the equations in (35) and 

summarize the results as in the following two equations 

(detailed representation of functions fa and ga are omitted 

for brievity). 
 

 ⃛    (   ̇   )    (   ̇   )   , 

 ⃛    (   ̇   )    (   ̇   )      (36) 
 

Based on the above equations we design the control 

laws in (37) to achieve the closed loop transfer functions 

in (38) where xd and yd are the desired values for x and y.  
 

   
    ̈     ̇    (    )    (   ̇   )

  (   ̇   )
 

   
    ̈     ̇    (    )    (   ̇   )

  (   ̇   )
 

(37) 
 

 ( )

  ( )
 
 ( )

  ( )
 

 

      
        

 

      (38) 
 

The values of  ̈ and  ̈ in (37) are obtained from equations 

(33) through (35) in terms of the measured variables. 

The controller parameters are selected as 1 = 4.47, 

2 = 8.64, 3 = 6.1 and the control objective is to 

maintain the ball at position xd=yd = 0.65 m.  

5.2 Communication 

The solenoids require electric power which is supplied 

through power cables. To reduce wiring we would like to 

transmit the control data through the power cables. The 

transmission bit-rate is denoted by ftx. The communication 

through the power cables suffers from the noise in an 

industrial environment (we assume that there is no 

bandwidth limitation). We denote the noise at the bit 

detection stage by w(t) and assume that it is Gaussian with 

E{w(t)} = 0, E{w
2
(t)} =   

  = 1 and power spectral density 

Sw(f) in (39) where fb=10
8
Hz is the noise bandwidth.  

 

  ( )  {
  
     | |    
 | |    

    (39) 

 

The signal level at receiver is assumed to be vbit=1 v. In 

general, the reliability of data transmission increases if we 

reduce ftx. For example with a smaller ftx, we can decrease 

the bandwidth of the low-pass filter at the baseband 

processing stage in the receiver to reduce the effect of 

noise on the bit detection. We use a simple low-pass filter 

with transfer function Hf(s) = 1/[1+s/(4ftx)]. Then the 

power spectral density of the filtered noise wf(t) is  
 

   ( )  
 

  (     )
 
  ( ) (40) 
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The variance (power) of wf(t) can be calculated as 
 

   
        

  (      ) (41) 

Assuming that the sampling for bit detection is 

performed at the end of the bit hold time 1/ftx and neglecting 

the effect of filter on the signal amplitude at the sampling 

instant, the probability of a bit transmission error pbit is  
 

       
 

 
   (

    

√     
) (42) 

   ( )  
 

√ 
∫    

 
  

 

 

 

 

Consequently probability of a frame transmission 

error pe is obtained as below where nf is the length of 

frame in bits  
 

     (      )
   (43) 

5.3 Analysis 

In this part we study the interaction of the control 

system and communication described in the previous 

parts of this section to select bit-rate of communication ftx 

such that the control loop remains stable.  

Each control cycle begins with a sampling at sensors 

on the solenoids side, transmission of the measurement 

data through the coils-controller link to the control 

computer, execution of the control algorithm which is 

assumed to take c = 50 s and sending back the voltage 

commands through the controller-coils link to the 

solenoids. The sensor measurements include 6 values and 

control commands include 2 values as described 

previously. Assuming that each value is encoded in 10 

bits and that the framing adds 10 extra bits as header, the 

transmission time of the measured values and command 

values are s=70/ftx and a=30/ftx respectively. We assume 

that the control loop is allowed to use 33 percents of the 

communication capacity (time division). Hence, the 

length of control cycle becomes 
 

h = c + 3[s + a] = 300/ftx + 5010
-6

   (44) 
 

Since the controller in (37) is static (it does not have 

states), we can concatenate the communication delays and 

assume that there is a single delay of length h during a 

control cycle. 

Now, for a given value of transmission bit-rate ftx we 

can obtain pe and h from (43) and (44) and use condition 

(32) in remark 4.1 to calculate  *  (  )+ in Corollary 4.1 

and check the stability. This is performed for a range of 

values for ftx in Figure 4. 

 

Fig. 4. (a) The magnetic levitation control system. 

According to Figure 4, the stability of control loop is 

preserved between ftx=1 MBPS (Mega bit per sec.) and 

ftx=14 MBPS. A good selection is ftx=5 MBPS which is 

sufficiently away from the stability margins and gives a 

sampling frequency of 9.1 KHz. 

6. Conclusions 

In this paper, we observed that the focus of the theory 

of stochastic systems has been centered on a special kind 

of approach to modeling the stochastic phenomena. Even 

if this approach has been sufficient for the past 

applications, with the growing complexity of the new 

systems, it is expectable that we will need to expand the 

capabilities of the existing analysis frameworks. 

Based on this observation, a stochastic Lyapunov 

theorem was presented. This theorem benefits from a 

higher level of generality. This was shown by applying 

the theorem to a practical NCS problem. The result is a 

new stability analysis criterion for a stochastic nonlinear 

NCS that cannot be obtained using the traditional versions 

of the stochastic Lyapunov theorem. However, we had to 

carry out some additional calculations in section four in 

order to be able to apply the theorem from section three to 

the NCS problem. This seems to be the cost that we have 

to pay for the generality that we have obtained. There are 

more potential applications to the various NCS problems 

that will be investigated in future works. 
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