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Abstract 
In this paper, various identification methods based on least-squares technique to estimate the unknown parameters of 

structural systems with hysteresis are investigated. The Bouc-Wen model is used to describe the behavior of hysteretic 

nonlinear systems. The adaptive versions are based on the fixed and variable forgetting factor and the optimized version is 

based on optimized adaptive coefficient matrix. Simulation results show the efficient performance of the proposed 

technique in identification and tracking of hysteretic structural system parameters compared with other least square based 

algorithms. 
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1. Introduction 

The System identification and fault detection based on 

measured vibration data through condition monitoring 

systems has been noticeable in recent years. Identifying 

the status of a structure and fault detection is the main 

goal of the condition monitoring systems for civil 

structures. Different methods of data analysis are 

reviewed in [1], which includes frequency domain 

analysis and time domain analysis methods. The 

advantages and shortcomings of damage identification 

methods are analyzed in [2]. Identification of structural 

systems can be categorized into two parts: online and 

offline. For online structural parameters changes 

identification, time domain analysis methods such as 

least-squares estimation [3-5] and filter-based methods 

such as Kalman filter [6,7],    filters [8], and wavelet 

technique [9] are used. Today, real-time detection of 

changes in structural parameters due to failures during 

events such as earthquakes is a challenging issue. Civil 

structures faced with intense earthquakes usually show 

hysteresis behavior. Various models have been proposed 

to identify and simulate the hysteresis, and Bouc-Wen 

model is the most appropriate [10]. This model is a quasi-

physical and It can be used to describe the behavior of the 

wide range of considered systems [11,12]. 

Least-squares parameter estimation algorithm cannot 

estimate the time-varying parameters well. Adaptive LSE 

method to estimate time-varying parameters have been 

presented in [3,5]. A frequency domain nonlinear least-

squares estimation algorithm was proposed in [13]. Fuzzy 

least-squares estimator was investigated in [14] by 

proposing a confidence region. A new structured total least-

squares based frequency estimation algorithm for real 

sinusoids corrupted by white noise was adapted in [15]. 

In this paper, least-squares estimation algorithm and 

the adaptive versions based on the fixed and variable 

forgetting factor and optimized version to determine 

coefficients for tracking time-varying parameters are 

presented. Considered methods are applied for online 

identification of parameter changes of the nonlinear 

structural systems with hysteresis. The ability of the 

methods to track instantaneous changes in the parameters 

of a structural system due to failures is evaluated. 

2. Problem Statement 

Motion Equations of a m degrees of freedom can be 

described with Eq. (1). 

( ) [ ( )] [ ( )] ( )
c s

Mx t F x t F x t f t
    (1) 

Where M is the mass matrix, x(t) is the displacement 

vector,     ̇( )  is the dissipative force vector,     ( )  is 

the non dissipative restoring force vector, f(t) is the 

excitation vector, and   is the excitation influence matrix. 

Suppose we have a structure for estimating the unknown 

parameters including damping, stiffness, and hysteresis 

parameters; i.e.,    ( )   ( )     ( )  . The observation 

equation associated with the motion equation of the 

structural system is expressed as 

[ , , ; ] ( ) ( ) ( )x x x t t t y t
    (2) 
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where  ( ) is a vector of n unknown parameters.  ̈   ̇ 

and x are the measured acceleration, velocity and 

displacement response vectors. y(t) and  ( )  are the 

excitation and noise vectors.    is a     data matrix. 

The Eq. (2) can be written at the time instant      as 

k k k k
y

      (3) 

The solution of the recursive LSE,  ̂    to estimate 

     are given by the following equations [16]. 

1 1 1 1
1

1 1 1 1

1

ˆ ˆ ˆ[ ]

[ ]

[ ]

k k k k k k
T T

k k k k k k

k k k k

K y

K P I P

P I K P
    (4) 

where      and   
       are the estimation and 

adaptation gain matrices. 

3. Least-squares Estimation Based Algorithms 

The Least-squares parameter estimation algorithm can 

not estimate the time-varying parameters well. A simple 

method is to use a fixed forgetting factor. In this method, 

   is replaced by   ̅   , where  ̅  (     is a constant 

forgetting factor. The ability to track parameters changes 

and the sensitivity to measurement noises increase in this 

method for a small forgetting factor. To enhance the 

performance a constant factor  ̅ is replaced by  ̅  in the 

variable forgetting factor method. Although in both 

methods when a parameter is changed other parameters 

are estimated with oscillations. To solve these problems 

and improve the real-time changes in parameter 

estimation the adaptive coefficient matrix method is 

proposed where each factor is adaptive to a specific 

changing parameter. The estimation error is corrected by 

a adaptive factor   (   ) for estimating the parameter 

  (   ). Recursive solution for the vector of variable 

parameters is achieved as follows [5]. 

1 1 1 1
1

1 1 1 1 1 1 1 1

1

ˆ ˆ ˆ[ ]

( ) [ ( ) ]

[ ]( ), 1,2,...

k k k k k k
T T T T

k k k k k k k k k k
T

k k k k k k

K y

K P I P

P I K P k
  (5) 

where  

            (   )   (   )     (   )  is a 

diagonal adaptive factor matrix. 

The residual and predicted output error vectors  ̅    

and      are defined as Eq. (6) and Eq. (7). 

1 1 1 1
ˆ

k k k k
y

     (6) 

1 1 1
ˆ

k k k k
y

     (7) 

Predicted output error covariance matrix is denoted by 

               
  , and when  ̂    reaches to     . It 

would be 
2

1 1 1 1 1
[ ] [ ]T T

k k k k k
E E

    (8) 

The adaptive tracking condition has been obtained as 

Eq. (9) follows in [5]. 

2

1 1 1 1 1 1

1 1 1 1

[ ( ) ]

[ ( ) ] 0

T T

k k k k k k k
T T T

k k k k k

V I P

I P
   (9) 

     is measured and         and     
  are estimated. 

Eq. (9) is nonlinear, and it is difficult to find a solution. 

The objective function in Eq. (10) is used to find the 

optimal solution [5]. 

1 1
1

ˆ ˆ( 1) ( )
ˆ[ ( )]

ˆ ( )

n
j j

k k
j j

k k
J

k
   (10) 

Objective function (10) is the adding of the variation 

of parameters from  ̂( ) to  ̂(   ). Finding the optimal 

solution      is a constrained optimization problem with 

the objective function (10) subject to the constraint of the 

Eq. (9) norm, 
2

1 1 1 1 1 1

1 1 1 1

[ ( ) ]

[ ( ) ]

T T

k k k k k k k

T T T

k k k k k

V I P

I P
   (11) 

The function “fmincon” in MATLAB is used to 

find an optimal solution for the adaptive factor matrix 

    . The initial value for      is supposed to be  ̅   
   

 , 

where  ̅     (          
 )       (          

 ) . If 

the calculated  ̅    is smaller than one, it is set to be one. 

In this case all the parameters are constant at     . 

4. Numerical Simulations 

A nonlinear hysteretic structural system with one 

degree of freedom subject to earthquake acceleration 

 ̈ ( ) is considered. 

0
( ) ( , ) ( )mx t r x x mx t

    (12) 

where x is the relative displacement and  ( ̇  )  
  ( ̇)    ( ) is the total restoring force in which   ( ̇)  
  ̇. Bouc-Wen model is used to describe  ( ̇  ) [12]: 

1n n
r cx kx x r r x r

   (13) 

where c is the damping coefficient, k is the equivalent 

stiffness, and  , n and   are hysteresis parameters. Values 

of the parameters used in the simulation are shown in 

Table 1 ([3,5]). The El-Centro earthquake with a 5g peak 

ground acceleration is used. For measured quantities the 

assumed sampling time is 1KHz. 

To identify the parameters, Eq. (12) and Eq. (13) must 

be discrete and be converted to observation Eq. (3). The 

incremental component of restoring force    based on a 

3rd order corrector method could be expressed as Eq. (14). 

1 1 2
( /12)(5 8 )

k k k k k
r r t r r r

   (14) 

The unknown parameter vector is defined as a 4-vector 

             . The me asured vector    can be 

computed from the measured data and is defined as Eq. (15). 

1

1 0, 0, 1

(12 / )( )

( 12 / )( )
k k k

k k k k

y t r r

m t x x x x
   (15) 
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The data matrix                             could be 

obtained as follows: 

,1 1 2

,2 1 2
1

,3 0, 0,
1

1 1 0, 1 1 0, 1
1

2 2 0, 2 2 0, 2

5 8

5 8

5 | || ( ) | ( )

8 | || ( ) | ( )

| || ( ) | ( )

k k k k

k k k k

k k k k k k

k k k k k

k k k k k

x x x

x x x

x m x x m x x

x m x x m x x

x m x x m x x
  

,4 0, 1 1 0, 1

2 2 0, 2

5 | ( ) | 8 | ( ) |

| ( ) |
k k k k k k k

k k k

x m x x x m x x

x m x x
 (16) 

Data matrix includes structural responses  ̈ ,  ̇  and also 

the earthquake acceleration  ̈   . Seismic acceleration  ̈    

and acceleration response  ̈  are measured using 

accelerometers. Velocity response  ̇  can be calculated 

using numerical integration of  ̈ . The hysteretic 

structural system parameters are shown in Table 1. The 

system stiffness k decreases suddenly at the moment of 

t=15s from 24.2kN/m to 20kN/m due to failure. Initial 

values were set to             , 
         ,                     .  

The identification results of a single degree of 

freedom structural system (SDOF) parameters using LSE 

algorithm, fixed and variable forgetting factor and the 

adaptive algorithm based on LSE and optimization are 

shown in Fig. 1 to Fig. 4. The time part t<2 is not used for 

parameter identification, because the earthquake and its 

response are too small in this segment. 

As shown in Fig. 1 the LSE algorithm can be used to 

identify fixed parameters, but this algorithm can not 

correctly identify the time-varying parameters. The 

constant forgetting factor which is used and shown in Fig. 

2 modifies the variable parameter identification to a large 

extent, but other parameters are not well identified. 

LSE with variable forgetting factor algorithm 

improves the results of the algorithm with a constant 

forgetting factor in Fig. 3. However, the identification of 

these two methods works regardless of which parameter 

changes and the oscillations seen in Fig. 2 and Fig. 3. 

Parameter identification in adaptive algorithm based 

on LSE and optimized adaptive factor matrix is 

performed by setting the optimal coefficients and the 

identification error is very little in Fig. 4. Also the exact 

and identified hysteresis cycle with taking the stiffness 

variation in t=15s are shown in Fig. . 

Table 1. Hysteretic system parameters 

Parameter Value 

m, c, k 

      
125.53kg, 0.07kNs/ m, 24.2kN/ m 2, 1, 2 

 

Fig. 1. Parameters         identified using least-squares estimation algorithm. 

 

Fig. 2. Parameters         identified using least-squares estimation 

algorithm with constant forgetting factor. 

 

Fig. 3. Parameters         identified using least-squares estimation 

algorithm with variable forgetting factor. 

 

Fig. 4. Parameters         identified using adaptive least-squares 

estimation algorithm with optimization. 
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Fig. 5. Estimated and exact hysteresis cycles for a system with one 
degree of freedom with a stiffness loss. 

 

 

5. Conclusions 

Different identification algorithms based on least-

squares estimation are used for identification of variable 

parameters of a hysteretic structural system. Efficiency of 

the adaptive coefficient matrix method is shown using the 

results of numerical simulations and compared with the 

results of ordinary least-squares estimation algorithms, 

fixed and variable forgetting factor algorithm. Results 

indicate that the adaptive coefficient matrix algorithm 

compared with other methods have better performance 

especially at the fault moment modeled as the immediate 

stiffness parameter change. Evaluation of the method to 

measurement noise, application to more complex 

structures and improvement of the optimization method 

are some future research topics. 
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