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Abstract 
This paper deals with optimal beamforming in wireless multiple-input-multiple-output (MIMO) relay networks that 

involves multiple concurrent source-destination pairs with imperfect channel state information (CSI) at the relays. Our 

aim is the optimization of the MIMO relay weights that minimize the total relay transmit power subject to signal-to-

interference-plus-noise ratio (SINR) of all destinations to be kept above a certain threshold. Since power minimization is a 

non-convex quadratically constrained quadratic programming (QCQP), we use semi-definite programming (SDP) 

relaxation of above mentioned problem by using a randomization technique. Numerical Monte Carlo simulations verify 

the performance gain of our proposed multiple antenna relay system in terms of transmit power and symbol error 

probability. 
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1. Introduction 

Recently, using MIMO-relays in wireless networks 

has attracted significant attention. Due to the shadowing, 

multipath fading and interference, the link quality 

between the source and destination in a wireless network 

degrades intensively. Several schemes to achieve spatial 

diversity are considered in literature. The most popular 

cooperative schemes are amplify-and-forward (AF) [1], 

decode-and-forward (DF)[2], compress-and forward [3] 

and coded cooperation [4]. In the AF scheme, sources 

transmit messages to the relays, which then simply scale 

their received signals according to a power constraint and 

forward the scaled signals toward the destinations. AF 

scheme has received extensive attention due to its 

simplicity. 

In [5], distributed beamforming relay system with 

single transmitter-receiver pair and several relaying nodes 

has been proposed and perfect CSI knowledge is 

supposed to be available for each node. The authors in [6] 

have investigated the same scenario as in [5], but have 

assumed that the second-order statistics of all channel 

coefficients are available at the receiver. In [6,7], the 

beamforming weights are obtained in order to maximize 

the signal-to-noise ratio (SNR) at the destination subject 

to individual relay power. In the subsequent scenario, the 

problem has been solved subject to the total relay power 

constraints, while [5] solved the beamforming weights 

only subject to individual relay power constraints. 

Although, both of them have the same problem 

formulation, they have completely different approaches to 

solving the problem. 

MIMO systems attracted considerable attention 

because of their ability to support high data rate and 

wireless network improvement [8]. In this paper, we aim 

to design optimal beamforming in MIMO relay networks. 

Conic optimization techniques, as a result of modern 

convex optimization, have been extensively used in [9] to 

obtain a computational attractive problem emerged from 

the original difficult problem. The optimization problem 

of [7,10,11] is shown to be nonconvex quadratically 

constrained quadratic program, which can be solved by 

relaxing the original problem SDP problem [12], and 

employing the interior point methods (IPM) [13] for 

solving the SDP problem. Its problem has been solved 

efficiently because their solutions have been rank-one. 

The aim of this paper is the optimization of MIMO 

relay weights that minimize the total relay transmit power 

subject to SINR of all destinations be kept above a certain 

threshold. We show that such a power minimization 

problem is a non-convex QCQP problem. We turn it into 

a semi-definite programing problem using a well-known 

relaxation technique which is NP-hard in general, but in 

our case can be efficiently and exactly solved using a 

randomization technique. 
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Figure 1: A MIMO-Relay Multiuser Network 

2. System Model 

We consider a peer to peer MIMO-relay network with 

d pairs of source-destination nodes as shown in Fig. 1. 

We have assumed that all source and destination nodes 

are equipped with one antenna and each source aims to 

maintain communication with its corresponding 

destination. All nodes work in half duplex mode and it is 

assumed that there is no direct link between source and 

destination. We use a two-step AF protocol. During the 

first step, each source broadcasts its signals to MIMO-

relay. For the     user, given    as the source signal, the 

received signals at the MIMO-relay are collectively given 

as 

1

1

d
R

p rr rp
p

f s v 



  
 

where     is the channel coefficient from the     

source to the     MIMO-relay antenna,    is the 

information symbol assumed to be uncorrelated 

i.e. {    
 }        and     represents the AWGN at the 

MIMO relay, whose components are i.i.d. zero mean 

circularly symmetric Gaussian noise with unit 

variance ,i.e., CN(0,1). For simplicity, we rewrite the 

vector notation of the received signals as 

  ∑   
 
            (1) 

 

where  
 

  ,          -      ,          -  
 

and    [             ]
 
 

At MIMO-relay, the received signal for     user is 

processed by a complex beamforming weights       
, 

which should be designed appropriately. During the 2nd 

step, the adjusted signal retransmitted by MIMO-relay is 

          (2) 

where t is an     vector whose     entry is the 

signal transmitted by the     MIMO-relay antenna. Let us 

denote the vector of the channel coefficient from the 

MIMO-relay to the     destination as 

   ,            -
 .The received signal at the     

destination is expressed as  

     
        

        
 

   
   ∑      

 
      

         

   
          

   ∑    

 

       

     
         

 

 

(3) 

where    is the noise at the receiver, which is also 

assumed to be CN(0,1). 

3. Optimal Relay Power Control 

We aim to find the beamforming weights such that the 

MIMO-relay transmit power is minimized while 

maintaining the destinations QOS at a certain level, i.e., 

every destination SINR is required to be larger than a 

certain threshold value. The optimization problem is 

formulated as follows:  

Minimize

Subject to , 1,2,...,

T
w

k k

P

SINR for k d 
  (4) 

where    is the MIMO-relay transmit power,       

and    are the SINR and the target SINR at the 

   destination, respectively. Then, the SINR at the 

   destination is given by 
k

s
k k k

n i

P
SINR

P P



    (5) 

Here,   
     

  and   
  represent the power of  desired 

signal, noise and interference at the     destination, 

respectively. 

We now derive the expressions for the total transmit 

power of the MIMO-relay and      . Using (2), the total 

MIMO-relay transmit power can be obtained as 
 

    *   +   *      +   (6) 
 

      *     + 
 

where     *   + and can be expressed    as  

   ∑   

 

   

 {    
 }    

      

      (7) 

where   
 
  {    

 } and trace{.} represents the trace 

of a matrix. 

Using Kronecker identity, we have 
 

     (     )     ( ) (    )   ( ) 
 

Then, we can rewrite the total transmit power of 

MIMO-Relay as 
 

      ( ) (       )   ( )  (8) 
 

      
 

Let us define      ( )     (       )  where 

   ( )  is the vectorization operator which stacks all 

columns of a matrix on top of each other and   

desired signal Interfereence totalnoise 
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represents the kronecker multiplication of two matrices. 

Using desired signal component of (3), we can obtain   
  

as 
 

   
     

2*
k

k k
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s k k k k
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P E E s
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 



g

g W f f Wg
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where,      *  
   

 +    (   
     ), and the total 

noise power is given by 
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where      
 (   

   ). 
 

Denoting    *       +  * +  and using the 

interference component of (3), the interference power at 

    destination can be obtained as 

 
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where  

   (  ∑    

    

)     (   
    ) 

Finally, the optimization problem can be written as: 

  2

Minimize

Subject to

1,2,...,

H

w

H

k
kH

k K n

for k d





 



w Dw

w R w

w D Q w

  (12) 

Since   (     )    
   , the above problem 

is equivalent to  

   2

Minimize

Subject to

1,2,...,

H

w

H

k k k K k n

for k d

    



w Dw

w R D Q w

 (13) 

Let us define         (     ). In our QCQP 

problem, since all the matrices    are negative 

semidefinite for all k, the problem is convex and can be 

solved efficiently. However, the feasible set of our 

optimization problem is empty, since         for all 

k and w. Therefore, the non-convex equality constraint 

(13) reveals that the QCQP problem is non-convex and 

NP-hard in general. However, we will show that an exact 

and simple solution can be found in our specific problem 

4. Solution via SDP Relaxation 

We first turned our QCQP problem into the 

semidefinite programing (SDP) problem. Let us define 

     , thus we recast the problem as follows: 

 

  2

Minimize trace

Subject to trace , 1,2,...,

( ) 1, 0

X

k n for k d

and Rank

  

 

k

DX

T X

X X
 (14) 

The rank-one constraint on X is nonconvex, hence the 

problem is nonconvex. By dropping the nonconvex rank-

one constraint, the problem can be relaxed to a convex 

SDP problem. The relaxed version of the problem (14) 

can be represented by the following SDR
1
 form. Now we 

can obtain a lower bound on the optimal value of (14) by 

solving this relaxed problem. 

 

  2

Minimize trace

Subject to trace , for

0

kk k = 1,2,...,d 



X

k

DX

T X

X   (15) 

Modern SDP solvers, such as SeDuMi [14,15], use 

interior point methods to find an efficient optimal solution 

for the problem, if it be feasible; otherwise, they return to 

an assertion of infeasibility. Generally, the optimal value 

of SDP problem is a lower bound for the optimal value of 

the nonconvex QCQP problem, because the feasible set of 

problem (14) is only a subset of the feasible set of 

problem (15). If the optimal value in (15) ,i.e.     , is 

rank-one, then its principal eigenvector is exactly the 

optimal solution of the original optimization problem, 

otherwise, a rank-one solution for the original problem 

can be found using a randomization technique. The idea 

behind this technique is to generate candidate sets of 

beamforming vectors from the optimal solution matrix 

     of problem (15) [16]. The accuracy of these 

techniques for semidefinite problem has been analyzed for 

different problems in [17,18] and it has been found that 

the randomization has acceptable performance in practical 

scenarios. In order to achieve this goal, first the 

eigenvalue decomposition of      should be calculated as 

         . Then the candidate vector is generated as 

     (   )  , where    is a circularly symmetric 

complex white Gaussian vector generated as    

 
   

   (   ) . Hence, it can be recognized that the 

vector    satisfies  *    
 +      . This random vector 

generation procedure should be performed multiple times 

and in each iteration, any vector (or its scaled version) 

that satisfies SINR constraints of problem (15) is saved as 

a candidate vector     along with corresponding objective 

values. The vector generation should be performed for a 

predetermined number of times. The final minimum 

solution can be obtained by a simple minimization over 

the finite set of objective values as an approximate 

solution for the problem (14). One way to solve the 

problem (14) by    is to find a proper scaling factor 

                                                           
1 Semi Definite Representation 
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√   . Applying   to (15), the following problem will 

be attained 

 

  2

Minimize trace

Subject to trace , for
kk k = 1,2,...,d



  

X

k

DX

T X
 

Rank( ) 1 , 0 X X    (16) 

In the above algorithm, the acceptable scaling factors 

are those that        (   )   . Thus, the maximum 

scaling factor should be selected as [10]: 

 

2

1,...,
max

trace

kk

k d
k

 




  
  

  T X
   (17) 

Consequently, the approximate solution of problem 

(14) is √   . In our case, after an acceptable number of 

iterations (around 40 iterations), the solution of the 

randomization problem approached to its lower bound 

(the optimal value of relaxed problem). Therefore,      is 

an acceptable and near optimal solution for the original 

nonconvex problem. 

Another Suboptimal solution of the original problem 

(14) can be found by using penalty function in the 

objective part of the problem and converting the objective 

function into the difference of two convex functions [19] 

subject to current convex constraints. [20,21] have 

developed an effective nonsmooth optimization algorithm 

based on the sub-gradient of Rank one function. 

5. Computational Complexity 

The aim of this section is to analyze the computational 

complexity of related the MIMO relay systems used in 

practice. According to records, Nesterov and Nemirovskii 

[22] were the pioneers who extended interior-point 

methods from linear optimization to semi-definite 

optimization problem and built up the polynomial 

complexity of the algorithm, at least in theory.  

In this part, we assess the computational complexity 

of a standard problem with only equality constraints and 

then we extend conclusions to our case with inequality 

and/or equality constraints. The standard form of SDP 

problem is defined as: 

 

 i i

Minimize trace

Subject to trace , for i = 1,...,d

0

b



X
CX

A X

X
  (18) 

where C and   (     )  are symmetric     

matrices and     . Thus, for such a problem the 

complexity order with large-update (or long-step) 

algorithm based on the primal dual SDP algorithm is  

  log logn n n 
    (19) 

where   denotes the accuracy parameter of the 

algorithm, while this algorithm with small-update (or 

short-step) still has  (√    (   )) iterations bound [13]. 

Small-update IPMs are confined to unacceptably slow 

progress, while large-update IPMs are more efficient for 

faster progress in practice. Although, large-update IPMs 

perform much more efficiently and IPM algorithms are 

effective in practice, they often have somewhat worse 

complexity bounds. 

The complexity order of solving the SDP problem in 

(15) is polynomial time. To evaluate the complexity of 

the original problem, the dimension parameter n should 

be specified. 

Therefore, the dimensions of the matrices used in the 

objective and constraints of the problem (15) should be 

determined. 

Regarding to Kronecker product of two matrices, if 

      
 and       

, then     will be a       

matrix. According to the vectors definite in (8) and the 

sizes of        
 and       

, the dimension of D 

will be 
2 2R RD  

The same approach can be used to find the size of X 

and   , and as a result we have:            

. 

Consequently, the dimension of matrices        is   . It 

is notable that the constraints of our problem are not the 

same as the ones in the standard SDP problem. Therefore, 

they have to be modified to be similar to the standard 

format. In order to achieve this goal, the first step is to 

define    so that the inequality constraints of (15) change 

to equality relations.  

  2

i i

i

trace , for i =1,...,d

0, 0

k
y

y

  

 

iTX

X
 

Next, a new variable  ̂ should be defined in order to 

standardize the problem: 

2

2

1 0
ˆ

0

R d

d R

d

y

y





 
 

  
  
  
    

X 0

X
0

 
As a result, the following standard form will be 

attained. 

 

 i

ˆ ˆMinimize trace

ˆ ˆSubject to trace , for i = 1,...,d

ˆ 0

b



X

i

DX

TX

X
  (20) 

where  ̂ [
      

         
]   ̂  [

       

         
]  

 

Then, it is clear that  
2 2n R d R       (21) 

Consequently, the worst case complexity of solving 

(15) is  (    (  )    (    ))   (22) 
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6. Numerical Results 

In this section, we examine the performance of the 

proposed MIMO relay system in various scenarios. The 

channel vectors, f and g are assumed to be statistically 

independent and generated as i.i.d. complex Gaussian 

random variables with zero mean and different values of 

variances. Moreover, in all simulation results, the output 

power of all sources are assumed to be equal, i.e., 

*  +   
       , and also 

1{ }d

k k th  
 , 

2 2 2

1 1{ } { }
k

R d

v i k    
 

Throughout our numerical examples, the noise power 

is normalized by the source transmit power, i.e.    
   . Also, we assume that all of the channel coefficients 

are exactly known at a processing center in which the 

beamforming weights should be optimized. 

In all of the cases, we solved the relaxed version of 

optimization problem using CVX software. If      is 

rank-one matrix, its principal component is used to 

determine the solution of problem (14); otherwise the best 

rank-one approximation is obtained using the 

randomization procedure as described in section  4. In all 

of our scenarios, the relay transmit power is plotted for 

those values which qualify QoS constraint and each curve 

is plotted only for those threshold values for which the 

beamforming problem is feasible for at least 80% of the 

total realizations. 

 

Figure 2: Minimum MIMO-relay transmit power   
    versus destination 

SINR threshold value    , for different values of   
  and   

        

 

Figure 3: Minimum MIMO-relay transmit power   
    versus destination 

SINR threshold value    , for different values of   
  and   

        

  
  and   

  show the effect of the quality of the 

downlink and uplink channels, respectively. In Figure 2, 

we have plotted minimum MIMO-relay transmit power 

  
    versus destination SINR threshold value    , for 

  
       and different values of   

 . In this simulation 

setup, we have quantified the total relay transmit power 

by changing the SINR threshold value    , from 0 dB to 

25dB. The results are averaged over 1000 realizations of 

channel coefficients with CSG
1

 distribution shown in 

Figure 2 for different values of   
 . As can be seen from 

this figure, the better quality of uplink channel, the less 

minimum transmit power required to meet a certain QOS.  

Moreover, as expected, this figure shows that the 

transmit power for all cases increases with increasing    , 

due to the fact that, in order to achieve higher QOS 

requirement, the MIMO relay needs to spend more of its 

transmit power.  

Figure 3 illustrates the minimum transmit power of 

MIMO-relay versus    , for   
       and different 

values of   
 . This figure also shows the effect of the quality 

of downlink channel on the minimum transmit power. 

 

Figure 4: Minimum MIMO relay transmit power   
    versus destination 

SINR threshold value    , for different number of antennas. 

 

Figure 5: Minimum MIMO relay transmit power   
    versus destination 

SINR threshold value    , for different number of source-destination pairs. 

To study the effect of the number of MIMO-relay 

antennas in terms of quality of channels, we consider three 

different networks with different number of relay antennas, 

while setting   
      ,   

      . Figure 4 illustrates 

the average minimum transmit power of MIMO-relay 
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versus     for two users and different number of antennas. 

As expected, it is observed that for a certain minimum 

value of received SINR, more power saving will be 

obtained by increasing the number of antennas. It can be 

seen that increasing the number of antennas from 5 to 10 

results in at least 9 dB improvement in transmit power. 

This performance improvement decreases as the number of 

antennas increases.  

In Figure 5, we investigate the performance of the 

network by changing the number of source-destination 

pairs. This figure reveals that the lower the number of 

user, the lower the minimum MIMO-relay transmit power 

required to meet a certain threshold level. 

7. Conclusions 

This paper has studied the optimal beamforming 

design in wireless multi-user MIMO-relay network to 

minimize MIMO-relay transmit power with guaranteed 

QOS at destinations. The proposed designs are based on a 

two-step amplify-and-forward protocol and imperfect 

channel state information. It has been shown that the 

corresponding optimization problem is nonconvex, but it 

can be converted into a convex problem by using a 

semidefinite relaxation technique and can be solved 

efficiently and accurately using well-known 

randomization technique. 
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