

Journal of Information Systems and Telecommunication, Vol. 1, No. 2, April – June 2013

119

* Corresponding Author

A New Finite Field Multiplication Algorithm to Improve

Elliptic Curve Cryptosystem Implementations

Abdalhossein Rezai*
Electrical Engineering, Ph.D. Student, Electrical and Computer Engineering Faculty, Semnan University

rezaie@acecr.ac.ir

Parviz Keshavarzi
Electrical Engineering, Associate Professor, Electrical and Computer Engineering Faculty, Semnan University

pkeshavarzi@semnan.ac.ir

Received: 21/Jan/2013 Accepted: 15/Jul/2013

Abstract
This paper presents a new and efficient implementation approach for the elliptic curve cryptosystem

(ECC) based on a novel finite field multiplication in GF(2
m
) and an efficient scalar multiplication

algorithm. This new finite field multiplication algorithm performs zero chain multiplication and required

additions in only one clock cycle instead of several clock cycles. Using modified (limited number of

shifts) Barrel shifter; the partial result is also shifted in one clock cycle instead of several clock cycles.

Both the canonical recoding technique and the sliding window method are applied to the multiplier to

reduce the average number of required clock cycles. In the scalar multiplication algorithm of the

proposed implementation approach, the point addition and point doubling operations are computed in

parallel. The sliding window method and the signed-digit representation are also used to reduce the

average number of point operations. Based on our analysis, the computation cost (the average number of

required clock cycles) is effectively reduced in both the proposed finite field multiplication algorithm

and the proposed implementation approach of ECC in comparison with other ECC finite field

multiplication algorithms and implementation approaches.

Keywords: Computational Complexity, Network Security, Cryptography, Elliptic Curve Cryptosystem

(ECC), Finite Field Multiplication, Scalar Multiplication.

1. Introduction

Elliptic curve cryptosystem (ECC) [1,2] has

drawn more attentions in the network security

issues due to its higher speed, lower power

consumption and smaller key length in

comparison with other existing public key

cryptosystems [3,4]. These properties also make

ECC more suitable for using in limited

environments such as wireless sensor networks

(WSNs) [3,5]. In ECC implementations, the total

execution time and the power consumption are

lowered by reducing the number of required

clock cycles [3].

The most important operation in ECC is the

scalar multiplication [6,7]. This operation is the

most time-consuming operation and it takes 85%

of the cryptosystem execution time [6,7].

Hardware implementation of ECC usually

passes through three computational levels: Scalar

multiplication, point operations and finite field

operations that will be described in section 2.

There are many attempts to increase the

efficiency of the elliptic curve scalar

multiplication algorithm by increasing the

computational efficiency of these three levels

such as developing signed-digit scalar

representation [8,9,10,11,12,13], sliding window

method in scalar representation [7,9,12,13],

parallel architecture in point operations [9],

parallel architecture in finite field operations

[6,14,15,16] and scalable modular multiplication

[17,18]. A comprehensive review is also

presented in [19].

High performance implementations of ECC

depend heavily on the efficiency in the

computation of finite field operations. Most

popular finite fields which are commonly used in

ECC are the prime fields GF(p) and the binary

extension fields GF(2
m
). Usually the binary

extension fields GF(2
m
) leads to a smaller and

faster hardware [6,18].

In our previous work [20], the scalar

multiplication is improved by using a novel finite

field multiplication algorithm in GF(p). This

paper presents a novel finite field multiplication

algorithm in GF(2
m
) based on the finite field

multiplication in [20]. This new finite field

multiplication uses a new signed-digit multiplier

representation and multi bit scan-multi bit shift

technique. Using this new signed-digit

representation, the average Hamming weight of

mailto:rezaie@acecr.ac.ir
mailto:pkeshavarzi@semnan.ac.ir

Rezai & Keshavarzi, A New Finite Field Multiplication Algorithm to Improve …..

120

the multiplier is effectively reduced. Moreover,

the zero chain multiplication is performed in

only one clock cycle instead of several clock

cycles. Therefore, the average number of

required clock cycles (the computation cost) is

considerably reduced in the proposed finite field

multiplication algorithm. In addition, the

proposed finite field multiplication algorithm is

applied to the scalar multiplication algorithm in

[9]. So, the computation cost of the elliptic curve

scalar multiplication is also reduced considerably.

The rest of this paper is organized as follows:

section 2 describes the recoding technique, the

ECC over GF(2
m
), the methods of the scalar

multiplication and the finite field multiplication

algorithm. The proposed implementation

approach of ECC is presented in section 3.

Section 4 evaluates the proposed algorithms.

Finally, conclusion is given in section 5.

2. Preliminaries

2.1 The Recoding Technique

A signed-digit representation of an integer kCR

is the sequence of digits kCR=(dm,dm-1,…,d1,d0)SD

such that  


m

0i

i

iCR 2dk where 1,0,1}{di  .

Booth recoding [21] and canonical recoding (CR)

[22,23] are two well-known conversions which

can reduce the average Hamming weight of the

integer representation. Algorithm 1 shows the

canonical recoding algorithm.

Algorithm 1: The canonical recoding (CR) algorithm

Input: k= (km-1km-2…k1k0)2
Output: kCR= (dmdm-1…d1d0)SD

1. c0:= 0;

2. For i = 0 to m-1

3. ci+1:= (ki + ki+1 + ci)/2;

4. di := ki + ci - 2ci+1;

5. Return kCR;

In this algorithm, the input is the scalar k and

the output is kCR. It should be noted that, the CR

representation, which is also called non-adjacent

form (NAF), guarantees the minimal Hamming

weight of the integer representation. The average

Hamming weight of an m-bit canonical recoded

integer is about
3

m [11, 22, 23].

2.2 ECC Over GF(2
m

)

As described in the previous section, the

hardware implementation of ECC usually

involves three computational levels: scalar

multiplication, point operations and finite field

operations [6,20]. These three computational

levels are shown in figure 1.

Figure 1: The three-level model for elliptic curve scalar

multiplication [6,20]

The scalar multiplication at the top of the

hierarchy computes Q=kP with repeated point

addition (Q=R+P) and point doubling (Q=2P)

operations where k is a positive integer, and P

and Q are elliptic curve points. The middle level

of the hierarchy includes the point addition and

point doubling operations, which are based on

the coordinates used to represent the points. In

the lowest level of the hierarchy, the finite field

arithmetic includes four operations: finite field

multiplication, finite field squaring, finite field

addition and finite field inversion [6].

An elliptic curve E over GF(2
m
) in affine

coordinates is defined as the set of solutions of

the reduced Weierstrass equation

 : E 232 baxxxyy  (1)

where 02 ), bGF(a, b m , together with

the point at infinity O [24,25]. Note that for b=1,

equation (1) shows especial curves which are

commonly called Koblitz curves [12].

The point addition operation

)y,(x+)y,(x=P+R=)y,(x=Q pprrqq
is defined

by GF(2
m
) operations as the following equations

[24,25]:















)(

)x)/(xy(y

2

prpr

rqqpq

prq

yxxxy

axxx







 (2)

Similarly, the point doubling operation

)y,2(x=2P=)y,(x=Q ppqq
is defined by GF(2

m
)

operations as follows [24,25]:





















pqqpq

q

p

p

yxxxy

ax

x

y







)(

x

2

p

 (3)

Multiplication, addition, squaring

and inverse in finite field

Point addition and point

doubling

Scalar multiplication

Level 1

Level 2

Level 3

Journal of Information Systems and Telecommunication, Vol. 1, No. 2, April – June 2013 121

These point operations involve finite field

operations [24,25].

It should be noted that, the use of signed-digit

representation for finite field operation in GF(2
m
)

is considered in [18]. The multiple-precision

arithmetic for finite field operation in GF(2
m
) is

also investigated in [26].

2.3 The Methods of Scalar Multiplication

The most common method for performing an

elliptic curve scalar multiplication (Q=kP) is the

binary method which scans the bits of the scalar

k either from left to right (the L2R binary

method) or from right to left (the R2L binary

method) [19,24]. The proposed implementation

approach is based on the R2L binary method in

GF(2
m
) and its algorithm is shown in algorithm 2.

Algorithm 2: The R2L binary scalar multiplication algorithm

INPUT: k=(km-1km-2…k0)2, P=(x,y);
OUTPUT: Q=(x',y')=kP;

1. Q ← 0;

2. For i= 0 to m-1 do
3. If ki=1 then Q ← Q+P;

4. P←2P;

5. Return Q;

In algorithm 2, the inputs are the scalar k and

the elliptic curve point P. The output is the

elliptic curve point Q=kP. The computation cost

in the binary multiplication method depends on

the Hamming weight and the length of the binary

representation of the scalar k (for m-bit scalar k,

the binary multiplication method requires m

point doubling operations and
2

m point addition

operation on average).

The efficiency of the binary method may be

enhanced by scanning w bits at a time as with the

sliding window method [7,13] or reducing the

Hamming weight as with the signed-digit

recoding technique [10]. One of the efficient

efforts to reduce the computation cost in ECC is

the window scalar multiplication algorithm based

on interleaving (IW algorithm) on Koblitz curves

[9] which is shown in algorithm 3.

Algorithm 3:The window scalar multiplication algorithm

based on interleaving (IW algorithm)[9]

INPUT: w; k=(km-1km-2…k0)2; PGF(2m);

OUTPUT: Q=kP;

1. Use algorithm 3 in appendix [9] to compute ρ'=k
partmod δ;

2. Use algorithm 4 in appendix [9] to compute TNAFw(ρ')=

 

1
0

l
i

i
iu 

;

3. For u U={1,3,5,…,2w-1-1}, let Qu← 0;

4. For i=l-1 to 0 do
 4.1. If ui≠ 0 then

 Let u satisfy au=ui or a-u=-ui;

 If u>0 then Qu ← Qu+P;
 Else Q-u ← Q-u-P;

 4.2. P ← τP;

5. Compute Q ← Q +  Uu uiQu ;

6. Return Q;

The inputs of this algorithm are the scalar k,

window width w, and elliptic curve point P. The

output is the elliptic curve point Q=kP. Moreover,

2

7



 , a 1)1( , }1,0{a and

1

1










m

 [9,12]. In the IW algorithm, the

multiplication cost is reduced by using the

sliding window method and the signed-digit

representation (steps 1 and 2). In this algorithm,

when ui≠0, the point Qu is computed in which u

satisfies au=ui or, a-u=-ui [9].

2.4 The Finite Field Multiplication

Algorithm

The performance of ECC is primarily

determined by the efficient realization of the

arithmetic operations in the underlying finite

field [6].

Modular addition in GF(2
m
) is simple and

relatively straight forward . As a result, it can be

implemented by simply using XOR gates [14]. If

projective coordinates are used for ECC, the

inversion cost can be neglected because only one

inversion operation is required to be performed

at the end of the scalar multiplication. The

modular squaring in GF(2
m
) is simple and

straight forward [6,14]. Therefore, the modular

multiplication is the most important operation in

ECC implementations.

The Montgomery modular multiplication

algorithm [27] is widely used as an efficient

algorithm [18,28]. Algorithm 4 shows the

Montgomery modular multiplication algorithm

for GF(2
m
) [18]:

Algorithm 4: The Montgomery modular multiplication in

GF(2m)

Input: A(x),B(x),P(x),n;

 Output: C(x) =A(x).B(x) x-n mod P(x);
1. C(x)=0;

2. For i=0 to n-1

3.))(mod()).().()(()('

000

r

i xxpxbxaxcxq  ;

4. r

i xxPxqxBxaxCxC /))().()().()(()( ;

5. Return C(x)

The inputs of this algorithm are A(x), B(x),

P(x) and n, where A(x), B(x)GF(2
m
), P(x) is

the irreducible polynomial and n denotes the

operand length. The output is C(x)=A(x).B(x)x
-n

mod P(x). Moreover, r shows each digit length,

) x(x)(modp(x)p 1

0

'

0

r and ai(x) shows ith digit

of A(x). The output of this algorithm is

computed in n-clock cycle. Therefore, it is a

time- consuming operation.

Rezai & Keshavarzi, A New Finite Field Multiplication Algorithm to Improve …..

122

3. The Proposed Implementation

Approach of ECC

This section presents a novel and efficient

implementation approach for the elliptic curve

cryptosystem based on the parallel structure and

a new and efficient finite field multiplication

algorithm in GF(2
m
).

3.1 Scalar Multiplication

The basic operations in all scalar

multiplication algorithms are point addition and

point doubling operations over an elliptic curve

[20]. Using parallel structure for these point

operations, the speed of the cryptosystem is

increased considerably. We also used the scalar

multiplication algorithm [9] to compute point

addition and point doubling operations in parallel.

This algorithm is shown in algorithm 3 and was

described in section 2.3.

3.2 The Finite Field Arithmetic

In the finite field multiplication, zero

multiplication results in zero, but this zero

multiplication is performed and implemented per

clock cycle. In addition, partial result is shifted

one bit per clock cycle [29]. This section

presents a new finite field multiplication

algorithm in GF(2
m
) based on a new signed-digit

multiplier representation and multi bit scan-multi

bit shift technique. This new finite field

multiplication performs zero chain multiplication

in only one clock cycle instead of several clock

cycles. The proposed finite field multiplication

algorithm is based on Montgomery modular

multiplication algorithm in GF(2
m
). The

proposed algorithm is shown in algorithm 5:

Algorithm 5: The proposed finite filed multiplication in

GF(2m)

Input: A(x), B(x), P(x) , n;

Output: C(x)= A(x).B(x) x-n mod P(x);

1. C(x)=0;
{Canonical recoding phase}

2. Compute D(x) by applying algorithm 1 to A(x);

parallel begin
{partitioning phase}

 3.1. Building D*(x)=(us-1(x)us-2(x)…u0(x)) by applying

CLNZ sliding window method to D(x);
 3.2. s= #D*(x) ;

4. Compute and store table ui(x).B(x)

parallel end
{multiplication phase}

5. For i = 0 to s-1

6. C(x):= C(x) + ui(x).B(x);

7. q(x):=)('0 xP .C(x) mod ilx ;

8. C(x):= (C(x)+q(x).P(x))/ ilx ;

9. Return C(x)

In this algorithm, the inputs are A(x), B(x),

P(x) and n, where A(x), B(x)GF(2
m
), P(x) is

the irreducible polynomial and m denotes the

operand length. The output of this algorithm is

C(x)=A(x).B(x)x
-m

 mod P(x). Moreover,
i xmod (x)p(x)p 1

0

'

0

l , ui(x) is the ith partition

of D*(x), li is the ith partition length (i.e. the

number of digits in ith partition) and s= #D*(x)

is the number of partitions in the multiplier

representation.

In step 2 of the proposed finite field

algorithm, the canonical recoding algorithm is

performed on the multiplier. Then the constant

length nonzero (CLNZ) partitioning is performed

on the signed-digit multiplier. Therefore, the

average Hamming weight of the multiplier and

thereby the average number of multiplication

steps (or required clock cycles) in the finite field

multiplication algorithm are reduced

considerably. In algorithm 5, the CLNZ

partitioning method scans the multiplier from the

least significant digit to the most significant digit

according to a finite state machine, which is

shown in figure 2.

Figure 2: The finite state machine used in the CLNZ

partitioning method

Using the CLNZ partitioning method, the

zero partitions are allowed to have an arbitrary

length, but the maximum length of the nonzero

partitions should be the exact value (in figure 2,

d digits). For example, for A(x) =

(011111111110001111111101)2, the canonical

recoding of A(x) is

CR)0110010000000100100000000(D(x) 

and for d=4, the partition formed will be as

follows:

))0110(),000000(),0011(),000000000(),0001(((x)*D  .

As the least significant digit of the nonzero

partition is either 1 or 1 , the nonzero partition

value is always an odd number. So, we only

require pre-computation of ui(x).B(x) for the odd

number of ui(x) in step 4 of the proposed finite

field multiplication algorithm.

In the proposed finite field multiplication

algorithm, step 4 is performed independently and

parallel with steps 3.1 and 3.2. This parallel

computation also increases the speed of the finite

field multiplication algorithm.

Journal of Information Systems and Telecommunication, Vol. 1, No. 2, April – June 2013 123

The multiplication phase of the proposed

finite field multiplication algorithm is performed

s times. Recall that s denotes the number of

partitions in the proposed multiplier

representation. In each clock cycle of the

multiplication phase of the proposed finite field

multiplication algorithm, li bits of the multiplier

and m-bit multiplicand are processed.

Figure 3 shows the block diagram of the

hardware implementation of the proposed finite

field multiplication.

In the proposed hardware implementation

approach of the finite field multiplication, the

new multiplier representation D*(x) makes multi

bit scan possible, but the high-radix modular

multiplication (k×m multiplier) is required in

ui(x).B(x) and q(x).P(x) computation. In the

proposed hardware implementation approach of

the finite field multiplication, LUT1 and LUT2

are used for computing ui(x).B(x) and q(x).P(x)

respectively. Thus, the high-radix partial

multiplication problem in each clock cycle is

also solved.

In addition, the modified (limited number of

shifts) Barrel shifter is proposed to execute the

required multi bit shift operation in a single clock

cycle in step 8 of algorithm 5. The number of

required shifts in ith clock cycle (li) is provided

from the length of the ith digit of the new

multiplier representation D*(x). These two

properties imply the multi bit scan-multi bit shift

technique. So, the zero chain multiplication and

the required addition are performed in one clock

cycle instead of several clock cycles.

Multi-bit shifter

(Modified Barrel shifter)

Adder 2

Adder 1

k×m multiplier

(LUT 2)

A(x)

C(x)

Multiplier recoder

k×m multiplier

(LUT 1)

Shift register

B(x) P(x)

D*(x)=(us-1(x)us-2(x)...u0(x))

ui(x)

ui(x).B(x)

C(x)

C(x)+ui(x).B(x)

q(x).P(x)

Figure 3: The block diagram of the proposed finite field multiplication

4. Evaluation

4.1 Evaluation of the Proposed Finite

Field Multiplication Algorithm

In the proposed finite field multiplication

algorithm, the CLNZ sliding window method is

applied to the canonical recoded multiplier. So

according to computation analysis of [30], the

average Hamming weight of the multiplier is

about
43

3

d

m , where m denotes the multiplier

length and d denotes the window width in the

CLNZ partitioning method in the proposed finite

field multiplication algorithm. Thus, the

proposed finite field multiplication algorithm

reduces the average number of multiplication

steps by about:

43

6
143

6

1



dm

d

m

 (4)

Table 1 shows the multiplication step

(required clock cycle) improvement in the

Rezai & Keshavarzi, A New Finite Field Multiplication Algorithm to Improve …..

124

proposed finite field multiplication algorithm in

comparison with Montgomery modular

multiplication algorithm [27] for various d.

Table 1: Multiplication step improvement of the proposed

finite field multiplication algorithm

d
Clock cycle

improvement (%)
d

Clock cycle

improvement (%)

2 40 7 76

3 53.8 8 78.6

4 62.5 9 80.6

5 68.4 10 82.4

6 72.7

Based on our analysis which is shown in

table 1, the proposed finite field multiplication

algorithm reduces the average number of

multiplication steps (required clock cycles) by

about 40%-82.4% compared to Montgomery

modular multiplication algorithm in GF(2
m
) for

d=2-10.

4.2 Evaluation of the Proposed

Implementation Approach

According to the computational analysis of

[9,20], the implementation approach of the

traditional window NAF (TWN) scalar

multiplication algorithm [12] will cost:

DA
w

AD w m
1

m
)12(2 


  (5)

where D denotes the point doubling cost, A

denotes the point addition cost, m denotes the

operand length and w denotes the window width

in the sliding window method in the scalar

multiplication algorithm.

Moreover in the Karatsuba-Ofman method

[6,14], the computation cost is computed from

(5), but with different computation cost for the

point addition and point doubling operations.

In addition, the implementation approach of

the window scalar multiplication algorithm based

on interleaving (IWN) [9] will cost:

A
w

l
A

w

v

j
j

j

  


 1 11

m (6)

The proposed implementation approach of

ECC is a combination of the proposed finite field

multiplication algorithm and the IWN algorithm.

So, the computation cost of the proposed

implementation approach is computed from (6),

but the cost of the point addition in the proposed

implementation approach is reduced

considerably based on table 1.

 The point addition and point doubling

operations have the same cost using affine

coordinate, but the cost of the point addition

operation is twice the cost of the point doubling

operation using projective coordinate [9,24]. The

computation cost of the implementation

approaches in [6,9,12,14] and the proposed

implementation approach are computed by

analyzing (5) and (6) for various m, w and d.

Figures 4-6 show the comparison of the

computation cost of the proposed

implementation approach with implementation

approach in [6,9,12,14] for m=163 bit and

various window width w using affine coordinate

and projective coordinate for d=2,4,6,8 and 10.

Figure 4: Comparison of the computation cost between the proposed implementation approach and the implementation approach

in [9] using affine coordinate and projective coordinates

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

window width

co
st

[9]

This paper for d=2

This paper for d=4

This paper for d=6

This paper for d=8

This paper for d=10

Journal of Information Systems and Telecommunication, Vol. 1, No. 2, April – June 2013 125

Figure 5: Comparison of the computation cost between the proposed implementation approach and the implementation

approach in [6,12,14] using affine coordinate

Figure 6: Comparison of the computation cost between the proposed implementation approach and the implementation

approach in [6,12,14] using projective coordinate

As it is shown in figures 4-6, the computation

cost of the proposed implementation approach is

effectively reduced in comparison with the

implementation approach in [6,9,12,14] where

both window width in the scalar multiplication

(w) and the window width in the proposed finite

field multiplication (d) are varied from 2 to 10.

Table 2 and figures 7-8 summarize the

computation cost of the proposed

implementation approach and the

implementation approach in [6,9,12,14] for the

operand length of 163, 193 and 233 in affine

coordinate where w=4, d=8 and w=8, d=8.

Table 2: The comparative table for the computation cost

using affine coordinate for d=8, w=4 and 8.

Operand

length
Reference

Computation cost

w=4 w=8

163

[12] 199.6 245.1

[6][14] 100 122.5

[9] 65 36.1

This paper 13.9 7.7

193

[12] 235.6 278.4

[6][14] 117.8 139.1

[9] 77.2 42.8

This paper 16.5 9.2

233

[12] 283.6 322.9

[6][14] 141.8 161.5

[9] 93.1 51.4

This paper 20 11

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Window width

C
o

st

[12]

[6],[14]

This paper for d=2

This paper for d=4

This paper for d=6

This paper for d=8

This paper for d=10

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Window width

C
o

st

[12]

[6],[14]

This paper for d=2

This paper for d=4

This paper for d=6

This paper for d=8

This paper for d=10

Rezai & Keshavarzi, A New Finite Field Multiplication Algorithm to Improve …..

126

Figure 7: Comparison of the computation cost using affine coordinate for d=8, w=4

Figure 8: Comparison of the computation cost using affine coordinate for d=8, w= 8

Based on our analysis which is shown in

table 2 and figures 7-8, the average computation

cost of the proposed implementation approach is

reduced by about 93%-96%, 86%-93% and 78.6%

in comparison with the implementation approach

in [12], [6] (and its extension in [14]) and [9]

respectively for w=4, d=8 and w=8, d=8 using

affine coordinate. Table 3 summarizes these

improvements where the computation cost

improvement is computed as follows:

100)
cost old

cost new
(1t(%)improvemen  (7)

Table 3: The comparative table for the computation cost

using projective coordinate for d=8

Reference [12] [6][14] [9]

Window width w=4 w=8 w=4 w=8 w=4 w=8

Computation cost

improvement (%)
93 96 86 93 78.6 78.6

As it is shown in (5), the computation cost in [12]

has a multiplier as 2
w
. So, by increasing the window

width w, the computation cost in [12] is also increased.

In addition, table 4 and figures 9-10

summarize the computation cost of the proposed

implementation approach and the

implementation approach in [6,9,12,14] for the

operand length of 163, 193 and 233 in projective

coordinate where w=4, d=8 and w=8, d=8.

Table 4: The comparative table for the computation cost

using projective coordinate for d=8, w=4 and 8.

Operand

length
Reference

Computation cost

w=4 w =8

163

[12] 117.6 163.1

[6][14] 58.8 81.6

[9] 65.2 36

This paper 13.9 7.7

193

[12] 138.6 181.4

[6][14] 69.3 90.7

[9] 77.2 42.8

This paper 16.5 9.2

233

[12] 166.6 205.9

[6][14] 83.3 103

[9] 93.1 51.2

This paper 20 11

0

50

100

150

200

250

300

163 193 233

C
o
m

p
u
ta

ti
o
n
 c

o
st

operand length

[12]

[6], [14]

[9]

This paper

0

50

100

150

200

250

300

350

163 193 233

C
o

m
p

u
ta

ti
o

n

co

st

operand length

[12]

[6], [14]

[9]

This paper

Journal of Information Systems and Telecommunication, Vol. 1, No. 2, April – June 2013

127

Figure 9: Comparison of the computation cost using projective coordinate for d=8, w=4.

Figure 10: Comparison of the computation cost using projective coordinate for d=8 and w=8

As it is shown in table 4 and figures 9-10, the

average computation cost of the proposed

implementation approach is reduced by about

88%-95%, 76.1%-89.4% and 78.6% in

comparison with the implementation approach in

[12], [6] (and its extension in [14]) and [9]

respectively using projective coordinate where

w=4, d=8 and w=8, d=8. Table 5 summarizes

these improvements.

Table 5: The comparative table for the cost using projective

coordinate for d=8, w=4 and 8.

As the computation cost of the point doubling

operation using projective coordinate is half of

the point addition operation, the computation

cost improvement in comparison with [12] is

0

20

40

60

80

100

120

140

160

180

163 193 233

C
o

m
p

u
ta

ti
o
n

 c
o
st

operand length

[12]

[6][14]

[9]

This paper

0

50

100

150

200

250

163 193 233

C
o
m

p
u

ta
ti

o
n

co

st

operand length

[12]

[6][14]

[9]

This paper

Reference [12] [6][14] [9]

Window width w=4 w=8 w=4 w=8 w=4 w=8

Computation
cost

improvement

(%)

88 95 76.1 89.4 78.6 78.6

Rezai & Keshavarzi, A New Finite Field Multiplication Algorithm to Improve …..

128

reduced in projective coordinate compared to

affine coordinate.

Therefore, using the proposed

implementation approach for ECC, the efficiency

of the computation cost of ECC is improved

considerably.

5. Conclusion

In ECC implementation, the total execution

time and the energy consumption is dependent

on the required clock cycles for cryptosystem [3].

This paper presents a novel finite field

multiplication algorithm in GF(2
m
) based on a

new signed-digit multiplier representation and

multi bit scan-multi bit shift technique to reduce

the required clock cycle in ECC. In this new

finite field multiplication, the canonical recoding

technique is used to increase probability of the

zero bits in the multiplier. The CLNZ sliding

window method is also applied to the signed-

digit multiplier to reduce the average number of

multiplication steps (required clock cycles) in the

finite field multiplication algorithm. This new

multiplier representation makes multi bit scan

possible. The modified (limited number of shifts)

Barrel shifter is also proposed to make multi-bit

shift possible. Moreover, a new efficient

implementation approach for the elliptic curve

cryptosystem is presented by applying this new

finite field multiplication to the scalar

multiplication in [9]. In this new implementation

approach, the point addition and point doubling

operations are computed in parallel. In addition,

both sliding window method and canonical

recoding technique are used to reduce the

computation cost considerably.

Our analysis shows that the computation cost

of the proposed finite field multiplication

algorithm is reduced by about 40%-82.4% in

comparison with Montgomery modular

multiplication algorithm for d=2-10. Moreover,

the computation cost in the proposed

implementation approach of the elliptic curve

cryptosystem is reduced by about 88%-96%,

76%-93% and 78.6% in comparison with the

implementation approach in [12], [6] (and its

extension in [14]) and [9] respectively where

w=4 and 8, and d=8.

Journal of Information Systems and Telecommunication, Vol. 1, No. 2, April – June 2013 129

References
[1] N. Koblitz, “Elliptic curve cryptosystem”,

Mathematics of Computer, 1987, vol.48, pp.203-209.

[2] V. Miller, “Use of elliptic curves in cryptography”,

in Proc. of advances in cryptology (CRYPTO),

1985, LNCS .218, 417–428.

[3] H. R. Ahmadi, and A. Afzali-kusha, “A low-

power and low-energy flexible GF(p) elliptic-

curve cryptography processor”, Journal of

Zhejiang University-science C, 2010, Vol.11,

No.9, pp.724-736.

[4] A. P. Fournaris, “Toward Flexible Security and

Trust Hardware Structures for Mobile-Portable

Systems”, IEEE Latin America Transactions,

2012, Vol.10, No.3, pp.1719-1722.

[5] H. Wang, and Q. Li, “Achieving distributed user

access control in sensor networks”, Ad Hoc

Networks, 2012, Vol.10, No.3, pp.272-283.

[6] N. Saqib, F. Rodriguez-Henriquez, and A. Diaz-

perez, “A parallel architecture for fast

computation of elliptic curve scalar

multiplication over GF(2m)”, in Proc. of the 18th

IEEE. International parallel and distributed

processing symposium, 4004, pp.144.

[7] P. Shah, X. Huang, and D. Sharma, “Sliding

window method with flexible window size for

scalar multiplication on wireless sensor network

nodes”, in Proc. of the IEEE. International

conference on wireless communication and

sensor computing, 2010, pp.1-6.

[8] B. Qin, M. Li, F. Kong, and D. Li, “New left-to-

right minimal weight signed-digit radix-r

representation”, Computers and Electrical

Engineering, 2009, Vol.35, No.1, pp.150-158.

[9] X. Yin, H. Zhu, and R. Zhao, “Window

algorithm of scalar multiplication based on

interleaving”, in Proc. of the IEEE. International

conference on communications, circuits and

systems, 2009, pp.318-321.

[10] P. Balasubramanian, and E. Karthikeyan, “Elliptic

curve scalar multiplication algorithm using

complementary recoding”, Applied mathematics

and computation, 2007, Vol.190, No.1, pp.51-58.

[11] P. Balasubramaniam, and E. Karthikeyan, “Fast

simultaneous scalar multiplication”, Applied

mathematics and computation, 2007, Vol.192,

No.2, pp.399-404.

[12] J. Solinas, “Efficient arithmetic on Koblitz

curves”, Designs, codes and cryptography, 2000,

Vol.19, No.2-3, pp.125-179.

[13] A. Rezai, and P. Keshavarzi, “CCS Representation:

A new non-adjacent form and its application in

ECC”, Journal of Basic and Applied Scientific

Research, 2012, Vol.2, No.5, pp.4577-4586.

[14] S. Shohdy, A. Elsisi, and N. Ismail, “Hardware

implementation of efficient modified Karatsuba

multiplier used in elliptic curves”, International Journal

of Network Security, 2010, Vol.11, No.3, pp.138-145.

[15] B. Ansari, and A. Hasan, “High-Performance

architecture of elliptic curve scalar

multiplication”, IEEE. Transactions on

Computers, 2008, Vol.57, No.11, pp.1443-1453.

[16] Y. Dan, X. Zou, Z. Liu, Y. Han, and L. Yi,

“High-performance hardware architecture of
elliptic curve cryptography processor over

GF(2163)”, Journal of Zhejiang University -
Science A, 2009, Vol.10, No.2, pp.301-310.

[17] G. Orlando, and C. Paar, “A scalable GF(p)
elliptic curve processor architecture for

programmable hardware”, in Proc. of the third
international workshop on cryptographic
hardware and embedded systems (CHES2001),
2001, LNCS 2162, pp.348-363.

[18] E. Savas, and C. Koc, “Finite field arithmetic for

cryptography”, IEEE. Circuits and Systems
Magazine, 2010, Vol.10, No.2, pp.40-56.

[19] G. Dormale, and J. Quisquater, “High-speed
hardware implementations of elliptic curve

cryptography: a survey”, Journal of systems
architecture, 2007, Vol.53, No.2-3,pp.72-84.

[20] A. Rezai, and P. Keshavarzi, “High-performance
implementation approach of elliptic curve

cryptosystem for wireless network applications”,
in Proc. of the IEEE. International conference on
consumer electronics, communications and
networks, 2011, pp.1323-1327.

[21] A. Booth, “A signed binary multiplication

technique”, Journal of mechanics and applied
mathematics, 1951, Vol.4, pp.236-240.

[22] G. Reitwiesner, “Binary Arithmetic, Advances in

computers”, 1960, Vol.1, pp.231-308.
[23] S. Arno, and F. Wheeler, “Signed digit

representations of minimal Hamming weight”,
IEEE Transactions on Computers, 1993, Vol.42,
No.8, pp.1007-1010.

[24] D. Hankerson, A. Menezes, and S.Vanstone,
Guide to Elliptic Curve Cryptography, New
York: Springer-Verlag, 2004.

[25] G. Dormale, and J. Quisquater, “Area and time
trade-offs for iterative modular division over
GF(2m): novel algorithm and implementations on

FPGA”, International journal of electronics,
2007, Vol.94, No.5, pp.515-529.

[26] J. Großschädl, and G. A. Kamendje, “Instruction
set extension for fast elliptic curve cryptography

over binary finite fields GF(2m)”, in Proc. of the
14th IEEE International Conference on
Application-specific Systems, Architectures and
Processors (ASAP 2003), 2003, pp.455-468.

[27] P. Montgomery, “Modular multiplication

without trial division”, Mathematics of
computation, 1985, Vol.44, No.170, pp.519-521.

[28] A. Rezai, and P. Keshavarzi, “High-performance
modular exponentiation algorithm by using a new
modified modular multiplication algorithm and

common- multiplicand-multiplication method”, in
Proc .of the IEEE. World congress on internet
security, 2011, pp.192-197.

[29] A. Rezai, and P. Keshavarzi, “A new CMM-NAF
modular exponentiation algorithm by using a new

modular multiplication algorithm”, Trends in applied
sciences research, 2012, Vol.7, No.3, pp.240-247.

[30] C. Koc, and C. Hung, “Adaptive m-ary
segmentation and canonical recoding algorithms
for multiplication of large binary numbers,

Computers and Mathematics with Applications”,
1992, Vol.24, No.3, pp.3-12.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Ming.html

