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Abstract 
This paper presents a new and efficient implementation approach for the elliptic curve cryptosystem 

(ECC) based on a novel finite field multiplication in GF(2
m
) and an efficient scalar multiplication 

algorithm. This new finite field multiplication algorithm performs zero chain multiplication and required 

additions in only one clock cycle instead of several clock cycles. Using modified (limited number of 

shifts) Barrel shifter; the partial result is also shifted in one clock cycle instead of several clock cycles. 

Both the canonical recoding technique and the sliding window method are applied to the multiplier to 

reduce the average number of required clock cycles. In the scalar multiplication algorithm of the 

proposed implementation approach, the point addition and point doubling operations are computed in 

parallel. The sliding window method and the signed-digit representation are also used to reduce the 

average number of point operations. Based on our analysis, the computation cost (the average number of 

required clock cycles) is effectively reduced in both the proposed finite field multiplication algorithm 

and the proposed implementation approach of ECC in comparison with other ECC finite field 

multiplication algorithms and implementation approaches. 

 

Keywords: Computational Complexity, Network Security, Cryptography, Elliptic Curve Cryptosystem 

(ECC), Finite Field Multiplication, Scalar Multiplication. 
 

 

1. Introduction 

Elliptic curve cryptosystem (ECC) [1,2] has 

drawn more attentions in the network security 

issues due to its higher speed, lower power 

consumption and smaller key length in 

comparison with other existing public key 

cryptosystems [3,4]. These properties also make 

ECC more suitable for using in limited 

environments such as wireless sensor networks 

(WSNs) [3,5]. In ECC implementations, the total 

execution time and the power consumption are 

lowered by reducing the number of required 

clock cycles [3]. 

The most important operation in ECC is the 

scalar multiplication [6,7]. This operation is the 

most time-consuming operation and it takes 85% 

of the cryptosystem execution time [6,7]. 

Hardware implementation of ECC usually 

passes through three computational levels: Scalar 

multiplication, point operations and finite field 

operations that will be described in section 2. 

There are many attempts to increase the 

efficiency of the elliptic curve scalar 

multiplication algorithm by increasing the 

computational efficiency of these three levels 

such as developing signed-digit scalar 

representation [8,9,10,11,12,13], sliding window 

method in scalar representation [7,9,12,13], 

parallel architecture in point operations [9], 

parallel architecture in finite field operations 

[6,14,15,16] and scalable modular multiplication 

[17,18]. A comprehensive review is also 

presented in [19]. 

High performance implementations of ECC 

depend heavily on the efficiency in the 

computation of finite field operations. Most 

popular finite fields which are commonly used in 

ECC are the prime fields GF(p) and the binary 

extension fields GF(2
m
). Usually the binary 

extension fields GF(2
m
) leads to a smaller and 

faster hardware [6,18]. 

In our previous work [20], the scalar 

multiplication is improved by using a novel finite 

field multiplication algorithm in GF(p). This 

paper presents a novel finite field multiplication 

algorithm in GF(2
m
) based on the finite field 

multiplication in [20]. This new finite field 

multiplication uses a new signed-digit multiplier 

representation and multi bit scan-multi bit shift 

technique. Using this new signed-digit 

representation, the average Hamming weight of 
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the multiplier is effectively reduced. Moreover, 

the zero chain multiplication is performed in 

only one clock cycle instead of several clock 

cycles. Therefore, the average number of 

required clock cycles (the computation cost) is 

considerably reduced in the proposed finite field 

multiplication algorithm. In addition, the 

proposed finite field multiplication algorithm is 

applied to the scalar multiplication algorithm in 

[9]. So, the computation cost of the elliptic curve 

scalar multiplication is also reduced considerably.  

The rest of this paper is organized as follows: 

section 2 describes the recoding technique, the 

ECC over GF(2
m
), the methods of the scalar 

multiplication and the finite field multiplication 

algorithm. The proposed implementation 

approach of ECC is presented in section 3. 

Section 4 evaluates the proposed algorithms. 

Finally, conclusion is given in section 5. 

2. Preliminaries 

2.1 The Recoding Technique 

A signed-digit representation of an integer kCR 

is the sequence of digits kCR=(dm,dm-1,…,d1,d0)SD 

such that  


m

0i

i

iCR 2dk  where 1,0,1}{di  . 

Booth recoding [21] and canonical recoding (CR) 

[22,23] are two well-known conversions which 

can reduce the average Hamming weight of the 

integer representation. Algorithm 1 shows the 

canonical recoding algorithm. 

 
Algorithm 1: The canonical recoding (CR) algorithm 

Input: k= (km-1km-2…k1k0)2         
Output: kCR= (dmdm-1…d1d0)SD        

1. c0:= 0; 

2.  For i = 0 to m-1  

3.      ci+1:= (ki + ki+1 + ci)/2; 

4.      di := ki + ci - 2ci+1; 

5.  Return kCR; 

In this algorithm, the input is the scalar k and 

the output is kCR. It should be noted that, the CR 

representation, which is also called non-adjacent 

form (NAF), guarantees the minimal Hamming 

weight of the integer representation. The average 

Hamming weight of an m-bit canonical recoded 

integer is about 
3

m [11, 22, 23]. 

2.2 ECC Over GF(2
m

) 

As described in the previous section, the 

hardware implementation of ECC usually 

involves three computational levels: scalar 

multiplication, point operations and finite field 

operations [6,20]. These three computational 

levels are shown in figure 1. 

 
Figure 1: The three-level model for elliptic curve scalar 

multiplication [6,20] 

The scalar multiplication at the top of the 

hierarchy computes Q=kP with repeated point 

addition (Q=R+P) and point doubling (Q=2P) 

operations where k is a positive integer, and P 

and Q are elliptic curve points. The middle level 

of the hierarchy includes the point addition and 

point doubling operations, which are based on 

the coordinates used to represent the points. In 

the lowest level of the hierarchy, the finite field 

arithmetic includes four operations: finite field 

multiplication, finite field squaring, finite field 

addition and finite field inversion [6]. 

An elliptic curve E over GF(2
m
) in affine 

coordinates is defined as the set of solutions of 

the reduced Weierstrass equation  

                    : E 232 baxxxyy   (1) 

where 02  ), bGF( a, b m , together with 

the point at infinity O [24,25]. Note that for b=1, 

equation (1) shows especial curves which are 

commonly called Koblitz curves [12].  

The point addition operation 

 )y,(x+)y,(x=P+R=)y,(x=Q pprrqq
is defined 

by GF(2
m
) operations as the following equations 

[24,25]: 















 

)(

)x)/(xy(y

2

prpr

rqqpq

prq

yxxxy

axxx







  (2) 

Similarly, the point doubling operation 

 )y,2(x=2P=)y,(x=Q ppqq
is defined by GF(2

m
) 

operations as follows [24,25]:  




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These point operations involve finite field 

operations [24,25]. 

It should be noted that, the use of signed-digit 

representation for finite field operation in GF(2
m
) 

is considered in [18]. The multiple-precision 

arithmetic for finite field operation in GF(2
m
) is 

also investigated in [26]. 

2.3 The Methods of Scalar Multiplication 

The most common method for performing an 

elliptic curve scalar multiplication (Q=kP) is the 

binary method which scans the bits of the scalar 

k either from left to right (the L2R binary 

method) or from right to left (the R2L binary 

method) [19,24]. The proposed implementation 

approach is based on the R2L binary method in 

GF(2
m
) and its algorithm is shown in algorithm 2. 

 

Algorithm 2: The R2L binary scalar multiplication algorithm  

INPUT: k=(km-1km-2…k0)2, P=(x,y); 
OUTPUT: Q=(x',y')=kP; 

1. Q ← 0; 

2. For i= 0 to m-1 do  
3.       If ki=1 then  Q ← Q+P; 

4.       P←2P; 

5. Return Q; 

In algorithm 2, the inputs are the scalar k and 

the elliptic curve point P. The output is the 

elliptic curve point Q=kP. The computation cost 

in the binary multiplication method depends on 

the Hamming weight and the length of the binary 

representation of the scalar k (for m-bit scalar k, 

the binary multiplication method requires m 

point doubling operations and 
2

m  point addition 

operation on average). 

The efficiency of the binary method may be 

enhanced by scanning w bits at a time as with the 

sliding window method [7,13] or reducing the 

Hamming weight as with the signed-digit 

recoding technique [10]. One of the efficient 

efforts to reduce the computation cost in ECC is 

the window scalar multiplication algorithm based 

on interleaving (IW algorithm) on Koblitz curves 

[9] which is shown in algorithm 3. 
 

Algorithm 3:The window scalar multiplication algorithm 

based on interleaving (IW algorithm)[9] 

INPUT: w; k=(km-1km-2…k0)2; PGF(2m); 

OUTPUT: Q=kP; 

1. Use algorithm 3 in appendix [9] to compute ρ'=k 
partmod δ; 

2. Use algorithm 4 in appendix [9] to compute TNAFw(ρ')=

 

1
0

l
i

i
iu 

; 

3. For u U={1,3,5,…,2w-1-1}, let Qu← 0; 

4. For i=l-1 to 0 do 
    4.1. If ui≠ 0 then 

           Let u satisfy au=ui or a-u=-ui; 

           If u>0 then Qu ← Qu+P; 
           Else Q-u ← Q-u-P; 

     4.2. P ← τP; 

5. Compute Q ← Q +  Uu uiQu ; 

6. Return Q; 

The inputs of this algorithm are the scalar k, 

window width w, and elliptic curve point P. The 

output is the elliptic curve point Q=kP. Moreover, 

2

7



 , a 1)1( , }1,0{a  and 

1

1










m

 [9,12]. In the IW algorithm, the 

multiplication cost is reduced by using the 

sliding window method and the signed-digit 

representation (steps 1 and 2). In this algorithm, 

when ui≠0, the point Qu is computed in which u 

satisfies au=ui or, a-u=-ui [9]. 

2.4 The Finite Field Multiplication 

Algorithm 

The performance of ECC is primarily 

determined by the efficient realization of the 

arithmetic operations in the underlying finite 

field [6].  

Modular addition in GF(2
m
) is simple and 

relatively straight forward . As a result, it can be 

implemented by simply using XOR gates [14]. If 

projective coordinates are used for ECC, the 

inversion cost can be neglected because only one 

inversion operation is required to be performed 

at the end of the scalar multiplication. The 

modular squaring in GF(2
m
) is simple and 

straight forward [6,14]. Therefore, the modular 

multiplication is the most important operation in 

ECC implementations.  

The Montgomery modular multiplication 

algorithm [27] is widely used as an efficient 

algorithm [18,28]. Algorithm 4 shows the 

Montgomery modular multiplication algorithm 

for GF(2
m
) [18]: 

 
Algorithm 4: The Montgomery modular multiplication in 

GF(2m) 

Input: A(x),B(x),P(x),n; 

 Output: C(x) =A(x).B(x) x-n mod P(x); 
1. C(x)=0; 

2. For i=0 to n-1 

3. ))(mod()).().()(()( '

000

r

i xxpxbxaxcxq  ; 

4. r

i xxPxqxBxaxCxC /))().()().()(()(  ; 

5. Return C(x) 

 

The inputs of this algorithm are A(x), B(x), 

P(x) and n, where A(x), B(x)GF(2
m
), P(x) is 

the irreducible polynomial and n denotes the 

operand length. The output is C(x)=A(x).B(x)x
-n

 

mod P(x). Moreover, r shows each digit length, 

) x(x)(modp(x)p 1

0

'

0

r  and ai(x) shows ith digit 

of A(x). The output of this algorithm is 

computed in n-clock cycle. Therefore, it is a 

time- consuming operation. 
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3. The Proposed Implementation 

Approach of ECC 

This section presents a novel and efficient 

implementation approach for the elliptic curve 

cryptosystem based on the parallel structure and 

a new and efficient finite field multiplication 

algorithm in GF(2
m
). 

3.1 Scalar Multiplication 

The basic operations in all scalar 

multiplication algorithms are point addition and 

point doubling operations over an elliptic curve 

[20]. Using parallel structure for these point 

operations, the speed of the cryptosystem is 

increased considerably. We also used the scalar 

multiplication algorithm [9] to compute point 

addition and point doubling operations in parallel. 

This algorithm is shown in algorithm 3 and was 

described in section 2.3. 

3.2 The Finite Field Arithmetic 

In the finite field multiplication, zero 

multiplication results in zero, but this zero 

multiplication is performed and implemented per 

clock cycle. In addition, partial result is shifted 

one bit per clock cycle [29]. This section 

presents a new finite field multiplication 

algorithm in GF(2
m
) based on a new signed-digit 

multiplier representation and multi bit scan-multi 

bit shift technique. This new finite field 

multiplication performs zero chain multiplication 

in only one clock cycle instead of several clock 

cycles. The proposed finite field multiplication 

algorithm is based on Montgomery modular 

multiplication algorithm in GF(2
m
). The 

proposed algorithm is shown in algorithm 5: 

 
Algorithm 5: The proposed finite filed multiplication in 

GF(2m) 

Input: A(x), B(x), P(x) , n; 

Output: C(x)= A(x).B(x) x-n mod P(x); 

1. C(x)=0; 
{Canonical recoding  phase} 

2. Compute D(x) by applying algorithm 1 to A(x); 

parallel begin 
{partitioning phase} 

 3.1. Building D*(x)=(us-1(x)us-2(x)…u0(x)) by applying 

CLNZ sliding window method to D(x); 
  3.2. s= #D*(x) ; 

4. Compute and store table ui(x).B(x) 

parallel end 
{multiplication phase} 

5. For i = 0 to s-1 

6.     C(x):= C(x) + ui(x).B(x); 

7.     q(x):= )('0 xP .C(x) mod ilx ; 

8.     C(x):= (C(x)+q(x).P(x))/ ilx ; 

9. Return C(x) 

 

 

 

In this algorithm, the inputs are A(x), B(x), 

P(x) and n, where A(x), B(x)GF(2
m
), P(x) is 

the irreducible polynomial and m denotes the 

operand length. The output of this algorithm is 

C(x)=A(x).B(x)x
-m

 mod P(x). Moreover,
i xmod (x)p(x)p 1

0

'

0

l , ui(x) is the ith partition 

of D*(x), li is the ith partition length (i.e. the 

number of digits in ith partition) and s= #D*(x) 

is the number of partitions in the multiplier 

representation.  

In step 2 of the proposed finite field 

algorithm, the canonical recoding algorithm is 

performed on the multiplier. Then the constant 

length nonzero (CLNZ) partitioning is performed 

on the signed-digit multiplier. Therefore, the 

average Hamming weight of the multiplier and 

thereby the average number of multiplication 

steps (or required clock cycles) in the finite field 

multiplication algorithm are reduced 

considerably. In algorithm 5, the CLNZ 

partitioning method scans the multiplier from the 

least significant digit to the most significant digit 

according to a finite state machine, which is 

shown in figure 2.  

 

 
  

Figure 2: The finite state machine used in the CLNZ 

partitioning method 

Using the CLNZ partitioning method, the 

zero partitions are allowed to have an arbitrary 

length, but the maximum length of the nonzero 

partitions should be the exact value (in figure 2, 

d digits). For example, for A(x) = 

(011111111110001111111101)2, the canonical 

recoding of A(x) is 

CR)0110010000000100100000000(D(x) 
 

and for d=4, the partition formed will be as 

follows: 

))0110(),000000(),0011(),000000000(),0001(((x)*D  . 

As the least significant digit of the nonzero 

partition is either 1 or 1 , the nonzero partition 

value is always an odd number. So, we only 

require pre-computation of ui(x).B(x) for the odd 

number of ui(x) in step 4 of the proposed finite 

field multiplication algorithm.  

In the proposed finite field multiplication 

algorithm, step 4 is performed independently and 

parallel with steps 3.1 and 3.2. This parallel 

computation also increases the speed of the finite 

field multiplication algorithm.  
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The multiplication phase of the proposed 

finite field multiplication algorithm is performed 

s times. Recall that s denotes the number of 

partitions in the proposed multiplier 

representation. In each clock cycle of the 

multiplication phase of the proposed finite field 

multiplication algorithm, li bits of the multiplier 

and m-bit multiplicand are processed. 

Figure 3 shows the block diagram of the 

hardware implementation of the proposed finite 

field multiplication. 

In the proposed hardware implementation 

approach of the finite field multiplication, the 

new multiplier representation D*(x) makes multi 

bit scan possible, but the high-radix modular 

multiplication (k×m multiplier) is required in 

ui(x).B(x) and q(x).P(x) computation. In the 

proposed hardware implementation approach of 

the finite field multiplication, LUT1 and LUT2 

are used for computing ui(x).B(x) and q(x).P(x) 

respectively. Thus, the high-radix partial 

multiplication problem in each clock cycle is 

also solved. 

In addition, the modified (limited number of 

shifts) Barrel shifter is proposed to execute the 

required multi bit shift operation in a single clock 

cycle in step 8 of algorithm 5. The number of 

required shifts in ith clock cycle (li) is provided 

from the length of the ith digit of the new 

multiplier representation D*(x). These two 

properties imply the multi bit scan-multi bit shift 

technique. So, the zero chain multiplication and 

the required addition are performed in one clock 

cycle instead of several clock cycles.   

 

Multi-bit shifter   

(Modified Barrel shifter)

Adder 2

Adder 1

k×m multiplier 

(LUT 2)

A(x)

C(x)

Multiplier recoder

k×m multiplier 

(LUT 1)

Shift register

B(x) P(x)

D*(x)=(us-1(x)us-2(x)...u0(x))

ui(x)

ui(x).B(x)

C(x)

C(x)+ui(x).B(x)

q(x).P(x)

 
Figure 3: The block diagram of the proposed finite field multiplication 

 

4. Evaluation 

4.1 Evaluation of the Proposed Finite 

Field Multiplication Algorithm 

In the proposed finite field multiplication 

algorithm, the CLNZ sliding window method is 

applied to the canonical recoded multiplier. So 

according to computation analysis of [30], the 

average Hamming weight of the multiplier is 

about
43

3

d

m , where m denotes the multiplier 

length and d denotes the window width in the 

CLNZ partitioning method in the proposed finite 

field multiplication algorithm. Thus, the 

proposed finite field multiplication algorithm 

reduces the average number of multiplication 

steps by about: 

43

6
143

6

1



dm

d

m

   (4) 

Table 1 shows the multiplication step 

(required clock cycle) improvement in the 
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proposed finite field multiplication algorithm in 

comparison with Montgomery modular 

multiplication algorithm [27] for various d. 

Table 1: Multiplication step improvement of the proposed 

finite field multiplication algorithm 

d 
Clock cycle 

improvement (%) 
d 

Clock cycle 

improvement (%) 

2 40 7 76 

3 53.8 8 78.6 

4 62.5 9 80.6 

5 68.4 10 82.4 

6 72.7   

 

Based on our analysis which is shown in 

table 1, the proposed finite field multiplication 

algorithm reduces the average number of 

multiplication steps (required clock cycles) by 

about 40%-82.4% compared to Montgomery 

modular multiplication algorithm in GF(2
m
) for 

d=2-10. 

4.2 Evaluation of the Proposed 

Implementation Approach 

According to the computational analysis of 

[9,20], the implementation approach of the 

traditional window NAF (TWN) scalar 

multiplication algorithm [12] will cost: 

DA
w

AD w m
1

m
)12( 2 


    (5) 

where D denotes the point doubling cost, A 

denotes the point addition cost, m denotes the 

operand length and w denotes the window width 

in the sliding window method in the scalar 

multiplication algorithm.  

Moreover in the Karatsuba-Ofman method 

[6,14], the computation cost is computed from 

(5), but with different computation cost for the 

point addition and point doubling operations.  

In addition, the implementation approach of 

the window scalar multiplication algorithm based 

on interleaving (IWN) [9] will cost: 

A
w

l
A

w

v

j
j

j

  


 1 11

m    (6) 

The proposed implementation approach of 

ECC is a combination of the proposed finite field 

multiplication algorithm and the IWN algorithm. 

So, the computation cost of the proposed 

implementation approach is computed from (6), 

but the cost of the point addition in the proposed 

implementation approach is reduced 

considerably based on table 1. 

 The point addition and point doubling 

operations have the same cost using affine 

coordinate, but the cost of the point addition 

operation is twice the cost of the point doubling 

operation using projective coordinate [9,24]. The 

computation cost of the implementation 

approaches in [6,9,12,14] and the proposed 

implementation approach are computed by 

analyzing (5) and (6) for various m, w and d. 

Figures 4-6 show the comparison of the 

computation cost of the proposed 

implementation approach with implementation 

approach in [6,9,12,14] for m=163 bit and 

various window width w using affine coordinate 

and projective coordinate for d=2,4,6,8 and 10. 

 
Figure 4: Comparison of the computation cost between the proposed implementation approach and the implementation approach 

in [9] using affine coordinate and projective coordinates 
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Figure 5: Comparison of the computation cost between the proposed implementation approach and the implementation 

approach in [6,12,14] using affine coordinate 

 
Figure 6: Comparison of the computation cost between the proposed implementation approach and the implementation 

approach in [6,12,14] using projective coordinate 

As it is shown in figures 4-6, the computation 

cost of the proposed implementation approach is 

effectively reduced in comparison with the 

implementation approach in [6,9,12,14] where 

both window width in the scalar multiplication 

(w) and the window width in the proposed finite 

field multiplication (d) are varied from 2 to 10. 

Table 2 and figures 7-8 summarize the 

computation cost of the proposed 

implementation approach and the 

implementation approach in [6,9,12,14] for the 

operand length of 163, 193 and 233 in affine 

coordinate where w=4, d=8 and w=8, d=8. 

 

 

Table 2: The comparative table for the computation cost 

using affine coordinate for d=8, w=4 and 8.  

Operand 

length 
Reference 

Computation cost 

w=4 w=8 

163 

[12] 199.6 245.1 

[6][14] 100 122.5 

[9] 65 36.1 

This paper 13.9 7.7 

193 

[12] 235.6 278.4 

[6][14] 117.8 139.1 

[9] 77.2 42.8 

This paper 16.5 9.2 

233 

[12] 283.6 322.9 

[6][14] 141.8 161.5 

[9] 93.1 51.4 

This paper 20 11 
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Figure 7: Comparison of the computation cost using affine coordinate for d=8, w=4 

 

Figure 8: Comparison of the computation cost using affine coordinate for d=8, w= 8 

 

Based on our analysis which is shown in 

table 2 and figures 7-8, the average computation 

cost of the proposed implementation approach is 

reduced by about 93%-96%, 86%-93% and 78.6% 

in comparison with the implementation approach 

in [12], [6] (and its extension in [14]) and [9] 

respectively for w=4, d=8 and w=8, d=8 using 

affine coordinate. Table 3 summarizes these 

improvements where the computation cost 

improvement is computed as follows: 

100)
cost old

cost  new
(1t(%)improvemen   (7) 

Table 3: The comparative table for the computation cost 

using projective coordinate for d=8 

Reference [12] [6][14] [9] 

Window width w=4 w=8 w=4 w=8 w=4 w=8 

Computation cost 

improvement (%) 
93 96 86 93 78.6 78.6 

As it is shown in (5), the computation cost in [12] 

has a multiplier as 2
w
. So, by increasing the window 

width w, the computation cost in [12] is also increased. 

In addition, table 4 and figures 9-10 

summarize the computation cost of the proposed 

implementation approach and the 

implementation approach in [6,9,12,14] for the 

operand length of 163, 193 and 233 in projective 

coordinate where w=4, d=8 and w=8, d=8.  

Table 4: The comparative table for the computation cost 

using projective coordinate for d=8, w=4 and 8. 

Operand 

length 
Reference 

Computation cost 

w=4 w =8 

163 

[12] 117.6 163.1 

[6][14] 58.8 81.6 

[9] 65.2 36 

This paper 13.9 7.7 

193 

[12] 138.6 181.4 

[6][14] 69.3 90.7 

[9] 77.2 42.8 

This paper 16.5 9.2 

233 

[12] 166.6 205.9 

[6][14] 83.3 103 

[9] 93.1 51.2 

This paper 20 11 
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Figure 9: Comparison of the computation cost using projective coordinate for d=8, w=4. 

 
Figure 10: Comparison of the computation cost using projective coordinate for d=8 and w=8 

 

As it is shown in table 4 and figures 9-10, the 

average computation cost of the proposed 

implementation approach is reduced by about 

88%-95%, 76.1%-89.4% and 78.6% in 

comparison with the implementation approach in 

[12], [6] (and its extension in [14]) and [9] 

respectively using projective coordinate where 

w=4, d=8 and w=8, d=8. Table 5 summarizes 

these improvements. 
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Reference [12] [6][14] [9] 
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Computation 
cost 

improvement 

(%) 
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Rezai & Keshavarzi, A New Finite Field Multiplication Algorithm to Improve ….. 

 

128 

reduced in projective coordinate compared to 

affine coordinate.  

Therefore, using the proposed 

implementation approach for ECC, the efficiency 

of the computation cost of ECC is improved 

considerably. 

5. Conclusion 

In ECC implementation, the total execution 

time and the energy consumption is dependent 

on the required clock cycles for cryptosystem [3]. 

This paper presents a novel finite field 

multiplication algorithm in GF(2
m
) based on a 

new signed-digit multiplier representation and 

multi bit scan-multi bit shift technique to reduce 

the required clock cycle in ECC. In this new 

finite field multiplication, the canonical recoding 

technique is used to increase probability of the 

zero bits in the multiplier. The CLNZ sliding 

window method is also applied to the signed-

digit multiplier to reduce the average number of 

multiplication steps (required clock cycles) in the 

finite field multiplication algorithm. This new 

multiplier representation makes multi bit scan 

possible. The modified (limited number of shifts) 

Barrel shifter is also proposed to make multi-bit 

shift possible. Moreover, a new efficient 

implementation approach for the elliptic curve 

cryptosystem is presented by applying this new 

finite field multiplication to the scalar 

multiplication in [9]. In this new implementation 

approach, the point addition and point doubling 

operations are computed in parallel. In addition, 

both sliding window method and canonical 

recoding technique are used to reduce the 

computation cost considerably.  

Our analysis shows that the computation cost 

of the proposed finite field multiplication 

algorithm is reduced by about 40%-82.4% in 

comparison with Montgomery modular 

multiplication algorithm for d=2-10. Moreover, 

the computation cost in the proposed 

implementation approach of the elliptic curve 

cryptosystem is reduced by about 88%-96%, 

76%-93% and 78.6% in comparison with the 

implementation approach in [12], [6] (and its 

extension in [14]) and [9] respectively where 

w=4 and 8, and d=8. 
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