

Journal of Information Systems and Telecommunication, Vol. 2, No. 3, July-September 2014

* Corresponding Author

173

Enhancing Efficiency of Software Fault Tolerance Techniques in
Satellite Motion System

Hoda Banki
Department of Electrical and Computer Engineering, University of Kashan, Isfahan, Iran

banki@grad.kashanu.ac.ir

Seyed Morteza Babamir
Department of Electrical and Computer Engineering, University of Kashan, Isfahan, Iran

babamir@kashanu.ac.ir

Azam Farokh
Department of Electrical and Computer Engineering, University of Kashan, Isfahan, Iran

farokh@grad.kashanu.ac.ir

Mohammad Mehdi Morovati*

Department of Electrical and Computer Engineering, University of Kashan, Isfahan, Iran
morovati@grad.kashanu.ac.ir

Received: 02/Oct/2012 Revised: 07/Jun/2014 Accepted: 02/Aug/2014

Abstract
This research shows the influence of using multi-core architecture to reduce the execution time and thus increase

performance of some software fault tolerance techniques. According to superiority of N-version Programming and

Consensus Recovery Block techniques in comparison with other software fault tolerance techniques, implementations

were performed based on these two methods. Finally, the comparison between the two methods listed above showed that

the Consensus Recovery Block is more reliable. Therefore, in order to improve the performance of this technique, we

propose a technique named Improved Consensus Recovery Block technique. In this research, satellite motion system

which known as a scientific computing system is consider as a base for our experiments. Because of existing any error in

calculation of system may result in defeat in system totally, it shouldn’t contains any error. Also the execution time of

system must be acceptable. In our proposed technique, not only performance is higher than the performance of consensus

recovery block technique, but also the reliability of our proposed technique is equal to the reliability of consensus

recovery block technique. The improvement of performance is based on multi-core architecture where each version of

software key units is executed by one core. As a result, by parallel execution of versions, execution time is reduced and

performance is improved.

Keywords: Software Fault Tolerance; Multi-core; Parallel Execution; Consensus Recovery Block; N-version

Programing; Acceptance Test.

1. Introduction

Nowadays the influence of software on different

domains such as economics, medicine, aerospace and so on

is quite sensible. One of the main requirements of these

systems is safety and reliability of software. According to

the importance of software reliability, demand for using

fault tolerance techniques in software development have

increased significantly. Design diversity is one of the fault

tolerance methods which needs to run multiple versions of

the program [1]. software fault tolerance techniques

increase software reliability, on the other hand by

increasing number of versions of the program, execution

time increases at the same time and this will reduce the

performance. by taking advantages of distributed and

parallel processing systems, the efficiency is increased and

thus the cost of using these systems will be acceptable.

Using the multi-core architecture is a good idea for taking

advantage of parallel processing.

Based on the idea of software fault tolerance, for some

software key units in a system, N versions can be

developed separately with similar functionality [2]. The

purpose of design diversity is constructing independent

modules as many as possible and minimizing occurrence of

identical errors in these modules [3]. All versions are

executed with identical initial conditions and inputs. Output

of all versions is given to a decision module and the

decision module selects a unique result as a correct output.

The paper continues as follow: section 2 introduces

N-version programming and recovery block and their

derivative techniques. Section 3, introduces satellite

motion system as a case study. Section 4, discusses the

usage of multi-core architecture in fault tolerance

techniques. Implementation results are reviewed in

Section 5 .the proposed method is presented in Section 6

and finally in Section 7 conclusions are discussed.

2. Software Fault-Tolerance Techniques

In this section some fault tolerance techniques are

introduced.

Banki, Babamir, Farokh & Morovati, Enhancing Efficiency of Software Fault Tolerance Techniques in Satellite Motion System

174

2.1 N-version programing technique

Using different algorithms and designs, Most program

functions can be performed in various ways. A program

version denoting a separate implementation of a program

function is called a variant. Each variant has a varying

degree of efficiency in terms of memory management and

utilization, execution time, reliability, and other criteria.

N-version programming (NVP) technique is one of the

main techniques of software fault tolerance. In this technique,

N different versions of a module are implemented and

executed concurrently (simultaneously). Then the results will

be presented to a decision module and this module selects

the correct result [3]. The decision module examines the

results and selects the “best” one if exists. There are other

available alternative decision mechanisms. For example one

decision mechanisms is majority voter. The NVP algorithm

technique is shown in Fig. 1.

Fig. 1. N-version programming technique algorithm

Other augmentations, enhancements, and combinations

have been made to the NVP techniques. These are typically

given an entirely new name rather than being called an

extension to the NVP technique. Some of these techniques

are described in the following.

2.2 N-version programing-Tie broker technique

In order to improve the performance of NVP

technique, N-version programming-Tie Broker (NVP-TB)

technique has been developed whose strategy is to

synchronize the versions. In this technique, assuming that

three versions of software key unit are developed, when

the results of two faster versions are produced, it does not

wait for the slowest version anymore. In other words,

when the two faster versions, complete their execution,

their results will be compared and one of the results is

returned as a correct result if they match, otherwise, it

waits for the result of slowest version and then the correct

result is determined by decision mechanism [4]. The

algorithm of this technique is represented in Fig. 2.

Fig. 2. N-version programming-Tie broker technique algorithm

2.3 N-version programing-Acceptance test technique

To reduce the probability of selecting an incorrect

result, Tai and his colleagues added an acceptance test to

the NVP technique. In this technique, after the decision

mechanism selects one of the results as the correct one,

this result is passed to the acceptance test for checking

its correctness in order to increase the reliability [4]. The

N-version programing-Acceptance test technique is

represented in Fig. 3.

Fig. 3. N-version programming-Acceptance test technique algorithm

2.4 N-version programing-Tie broker- Acceptance

test technique

Because the two modified NVP techniques are

complementary, N-version programming-Tie Broker-

acceptance test (NVP-TB-AT) technique has been

developed to concentrate on both reliability and

performance. Actually, this technique is a combination of

NVP-TB technique and acceptance test. Acceptance test

is used to increase the reliability which will cause the

execution time to increase and thus the performance will

be reduced. But by using the Tie-broker technique,

reduction of performance is compensated. As a result,

not only this technique has higher performance than

NVP-AT, but also has reliability equal to NVP-AT[5].

The N-version programing-Tie broker Acceptance test is

explained in Fig. 4.

Fig. 4. N-version programming-Tie broker-Acceptance test technique
algorithm

2.5 Recovery block technique

Recovery block (RcB) technique is one of the main

techniques of software fault tolerance. This technique

works in a way that different versions are prioritized in

order of their importance; then they is run in order of their

preferences. In other words, RcB incorporates these

variants such that the most efficient module is located

first in the series, and is called the primary alternate or

primary try block. Acceptance or rejection of each version

is identified by acceptance test module. At first, the

overall situation of system is stored. if no versions can

successfully pass the acceptance test, the system is

returned to the saved state and then the next module will

run [3]. If no alternates are successful, an error occurs.

The algorithm of RcB technique is shown in Fig. 5.

Journal of Information Systems and Telecommunication, Vol. 2, No. 3, July-September 2014 175

Fig. 5. Recovery block technique algorithm

2.6 Distributed recovery block technique

Distributed recovery block (DRB) technique, is the

distributed version of RcB technique in which several

recovery blocks are implemented in several systems. the

only difference between these blocks is the priority of

modules [6].

The basic DRB technique consists of a primary node

and a shadow node, each cooperating with each other and

running an RcB scheme. In DRB, the recovery blocks are

concurrently executed on both nodes. The initial primary

node executes the primary algorithm and the initial

shadow node executes the alternate alternative one. First,

the technique attempts to ensure that the primary

algorithm on node 1’s results passes the AT (i.e.,

produces a result which passes the test. If this result fails

the AT, then the DRB tries the result from the alternate

algorithm on node 2. If neither passes the AT, then

backward recovery is used to execute the alternate on

Node 1 and the primary on Node 2. The results of these

executions are checked to ensure the AT. If neither of

these results passes the AT, then an error occurs. If any of

the results are successful, the result is passed on to the

successor computing station.

2.7 Consensus recovery block technique

The consensus recovery block (CRB) technique is a

combination of NVP and RcB., at first NVP runs and if it

fails to produce the correct result, recovery Block runs

and produces the correct result[3]. The consensus

recovery block technique is represented in Fig. 6.

Fig. 6. Consensuse Recovery block technique algorithm

When two or more correct answers exist for the same

problem and the same input, we have multiple correct

results (MCR). NVP in general and voting-type decision

algorithms in particular, are not appropriate for situations

in which MCR may occur. It is claimed that the CRB

technique reduces the importance of the AT used in the

RcB. CRB is Also able to handle cases in which NVP

would not be appropriate because of MCR.

3. Acceptance Test

Acceptance Test (AT) is the most basic approach to

self-checking software (Fig. 7), which typically is used

with the RcB, CRB and DRB techniques. The AT is used

to verify the acceptance of the systems behavior based on

the assertion on the anticipated system state.

As shown in Fig. 7, a value of TRUE or FALSE is

returned. The AT needs to be simple, effective, and

highly reliable in order to: (1) decrease the chance of

additional design faults, (2) keep run-time overhead

reasonable, (3) ensure detection of the anticipated faults

and (4) ensure that a non-faulty behavior would not

incorrectly be detected.

Fig. 7. Acceptance test functionality.

ATs can thus be difficult in development depending

on their specifications. Also, the form of an AT depends

on its application. The coverage of an AT is an indicator

of its complexity, where an increase in coverage generally

requires a more complicated implementation of the test.

Increasing the complexity leads to increasing the time of

programs execution and fault manifestations [3,7].

4. Satellite Motion System

In this section the satellite motion system, which is

used in scientific computing, is introduced as a case study.

The calculation of satellite motion is the most critical part

of the satellite control system; so, errors in this part lead

to failure of entire system. The geodetic satellites have

two major missions: (1) positioning in geodesy or (2) to

be used as a sensor for measuring the external gravity

field of the Earth. In order to increase the reliability of

this part, the fault-tolerant software techniques were

utilized. Satellite motion equation is represent in Eq.(1)[8].

The analytical solution of this differential equation leads

to the Kepler orbit [9].

3

GM
r r K

r
  

 (1)

The satellite motion equation is a second order vector

differential equation; therefore it has to be converted to a first

order differential equation that is represent in Eq. (2) [8].

Banki, Babamir, Farokh & Morovati, Enhancing Efficiency of Software Fault Tolerance Techniques in Satellite Motion System

176

3

33

3

x

y

z

GM
x x K

r

GM GM
r r K y y K

r r

GM
z z K

r


  





       


   


3

3

3

x

y

z

x x

y y

z z

v x

v y

v z

GM
v x K

r

GM
v y K

r

GM
v z K

r






 



  
 


   


   

 (2)

Where, r is the position vector, GM is the product of

gravitational constant and Earth’s mass, k is the effects of

all the perturbing forces on a satellite. Since the equation

is a second order three-dimensional differential equation,

it could be solved numerically using methods such as

Runge-Kutta, Adams-Bashforth and Adams-Moulton. In

this paper, various implementations of these methods are

used as different versions of fault-tolerant techniques.

Ruge-Kutta, Adams-Bashforth and Adams-Moulton

are the most common methods for solving first order

differential equations numerically. Runge-Kutta

(Eq .(3),(4) and (5)) solves these equations in single-

phase, while Adams-Bashforth (Eq. (6) and (7)) and

Adams-Moulton (Eq. (6) and (8)) solve it in multi-phase.

(,)y f x y 
 (3)

1 (,)

1
2 (,)

2 2

2
3 (,)

2 2

4 (, 3)

n n

n n

n n

n n

k hf x y

h k
k hf x y

h k
k hf x y

k hf x h y k



   


   

    (4)

1 (1 2 2 2 3 4)
6

n n

h
y y k k k k     

 (5)

0 0

() (,)

()

y t f y t

y t y

 


 (6)
1

1

0

((1) ,
n

p

n n i i

i

y y h f t i h y






   
 (7)

1

1 1

0

(,)
n

c c

n n i i

i

y y h f t ih y a


 



  
 (8)

5. Multi-Core Architecture Usage

In a single-core platform, only one thread is running at

a certain time point. But In a multi-core platform, there

can be several threads which are running on different

cores at the same time. So in the multi-core architecture,

threads which are created to run the program, really run in

parallel on a multi-core platform. Therefore

synchronization issues and the cost for communication

among cores are discussed. If the extra cost is quite

considerable compared to the normal single core

execution cost , such applications are not suitable for the

multi-core architecture [9].

A software system is composed of a series of software

key and non-key units (Fig. 8). Each software system

includes critical and important parts in which occurrence

of error leads to the system failure whose cost cannot be

compensated. These critical and important parts are called

software key units and other sections are non-key units[2].

Fig. 8. non-Key software unit and key software unit

One way to increase fault tolerance is using different

versions and deployment of fault tolerance techniques.

But since the development of different versions of the

entire system is very costly, several different versions that

have different implementations are developed only for

software key units. Since the key units have several

versions which lead to increase of the execution time, we

use multi-core architecture features to reduce time and

run the versions on different cores in parallel. This

approach reduces execution time and thus increases the

performance. In comparison with the high cost of the

sequential program, the cost of synchronization and

communication between the cores is negligible [2].

6. Implementation and Results of Multi-

Core Usage

The effect of multi-core architecture on increasing

performance of the NVP technique has been discussed by

Yang et al [10]. In this paper we discuss the effect of

multi-core architecture on techniques derived from the

NVP, DRB, CRB and improved consensus recovery block.

In this paper, fault-tolerance techniques have been used to

increase reliability; so, different implementations of

numerical methods for solving differential equations of

the satellite motion were used as different versions in

fault tolerance techniques. Accordingly, Runge-Kutta,

Adams-Bashforth and Adams-Moulton methods are

implemented as different versions.

In other words, in each technique we execute different

versions on single and multi-core architecture and then

Journal of Information Systems and Telecommunication, Vol. 2, No. 3, July-September 2014 177

compare execution times on the single core with the

multi-core. Finally, we offer a new technique to reach a

higher performance where the execution times of

techniques are significantly decreased using the multi-

core architecture. As shown in Fig. 9, the speedup rate of

the NVP technique for dual and quad core processors is

1.73 and 2.42 respectively. Because the reliability on this

technique is low the NVP-TB-AT Technique is used

instead. The speedup rate of this technique is 1.70 and

2.06 for dual and quad core processors respectively. The

effect of multi-core architecture on performance of the

RcB technique is shown in Fig. 10.

Fig. 9. Execution time of NVP technique and derived technique

The RcB technique execution time on single core, dual

core and quad core are 11266, 6413 and 4718 respectively.

In single core architecture, all versions are executed

sequentially; so the execution time is longer than other ones.

For example, in our implementation the execution time of

each version is equal to 1945, 2356 and 1872 respectively.

This means that the execution time of RcB technique on

single core is about sum of all these times. In order to apply

advantage of parallelism, we can use distributed version of

this technique named Distributed Recovery Block (DRB).

The DRB technique has 1.76 and 2.39 speedup rate using

dual and quad core processors. Shown in Fig. 10, the

execution time improvement for quad core architecture is

more than dual core architecture in the case of parallelism.

In other words by increasing the number of cores, an

improvement of the performance is expected.

Fig. 10. Efect of multi-core architecture on performance of recovery

block technique

7. Suggested Technique (Improved Consensus

Recovery Block)

while using NVP-TB-AT, if the result of two faster

versions were equal, one of them would be announced as

the correct result and no acceptance test is performed on

the results [5]. So if there is an error in the system that

causes the result of two faster versions be similar and

wrong, probability of the overall system failure increases

using this technique. Thus this technique is less reliable

than RcB technique, because in RcB technique the result

goes to the acceptance test module in any conditions to be

returned as a correct result. Also, if a program had several

correct answers, the NVP-TB-AT technique might face

failure. If both faster versions produce correct but

different results, the voter waits for the slowest version

and judges between results of two faster versions and

result of slowest version using the decision mechanism. If

the lowest version has a correct but a different result than

results of faster versions, the voter cannot decide and

system will face failure. But, if the RcB technique is used

and the program has several correct results, system does

not fail because the AT is applied to every version and so

the correct result will be determined. Order of this

technique is shown by Eq. (9) and (10).

1 2

1 2 1 2

1 2

, , ,

(), (), , () , , ,

()

() , , ,

n

n n

n

Versions V V V

V Nmber of Versions

C Number of Cores

Order of Versions f V f V f V F F F

f V The Slowest Version

V
S

C

Q V F F F


 



 


 
 








(9)

(())

()
()

()
()

(())

(() ())

(() ())

RcB Order O Q V

Q V
O if C V

C
NVP Order

Q V
O if C V

V

DRB Order O S f V

CRB Order O NVP Order RcB Order

ICRB Order O NVP Order CRB Order

 




  
 


  

    

    

(10)

As mentioned in Section 2, different versions of RcB

technique are executed consecutively. Accordingly, the

RcB technique order is calculated by sum of all versions

time order. In the NVP technique, time order is related to

the number of versions and available cores because of

running versions simultaneously. In other words, if

available cores are more than the number of versions,

increasing the number of cores will be ineffective on

decreasing time order. On the other hand, while the

available cores are equal to or less than the number of

versions, increasing the number of cores leads to decrease

of time order.

Banki, Babamir, Farokh & Morovati, Enhancing Efficiency of Software Fault Tolerance Techniques in Satellite Motion System

178

In the DRB technique, the execution steps of versions

are computed based on relationship between the number

of versions and nodes (primary and shadow nodes). This

means that the arrangement for running versions

considers that all versions can be performed by minimum

steps. Moreover, according to concurrent execution, time

order of this technique always depends on the slowest

version. So, the DRB technique time order is determined

by product of the number of cases in which all versions

are executed and time order of the slowest version.

Since the CRB technique is a merger of the NVP and

RcB techniques, the proposed technique is a combination

of NVP and DRB techniques and the time order of these

two techniques are computed using sum of constituent

techniques time order.

On the other hand, the performance of the RcB

technique is largely dependent on the performance of

acceptance test. While in many cases, creation of the

acceptance test module is very difficult, the CRB

technique decreases the importance of acceptance test

more than the RcB one. Also, the NVP technique will not

be able to produce the final result when the problem has

several correct answers. So, the RcB and NVP techniques

have drawbacks in some cases which the CRB has

resolved by combining two techniques discussed above.

According to superiority of CRB technique over other

techniques, we concentrate on it and in order to improve

its performance, we have proposed a technique which is

similar to CRB technique and called Improved Consensus

Recovery Block. In execution of CRB, first the NVP

section tries to produce the correct result. If decision

module was able to produce the result, the technique

terminates. Otherwise, the second section namely

recovery block will execute to produce the correct result.

Since the execution of recovery block is sequentially, the

execution time is increased. The recovery block does not

use multi-core facility and therefore does not take

advantage of parallel processing. In this paper, in order to

take full advantage of multi-core facilities and reduce the

execution time of the CRB technique, we try to use

Distributed Recovery Block (DRB) instead of RcB.

Fig. 11 shows the proposed algorithm where the first

versions are executed simultaneously through NVP

technique and their result is given to a voter. If the voter

can produce a correct result, it returns the result.

Otherwise, different versions are executed through DRB

technique.

Fig. 11. Improved consensus recovery block technique algorithm

Influence of the multi-core architecture on

performance of the CRB technique is shown in Fig. 12.

Different implementations of numerical methods for

solving differential equations of satellite motion were

used as different versions which are required in CRB

technique. As Fig. 12 shows, the CRB execution time on

dual-core and quad-core architectures is 19106 and 16044

respectively, while Improved Consensus Recovery Block

execution time on dual-core and quad-core architectures

is 12637 and 10124 respectively. So Improved CRB

decreases total execution time. In other words, the

speedup rate of Improved CRB in comparison with CRB

for dual-core and quad-core architectures is 1.51 and 1.58

respectively. Execution of the NVP section is same in

CRB and Improved CRB techniques but the difference is

in the recovery block section because the CRB executes

the recovery block section sequentially.

(1)

()

T
Speed up

T P
 

 (11)

Also, the Improved CRB technique Speed-up for 2, 4

and 8 Cores cases are represented in the Table 1,

calculated using Eq.(11)[11] (Prefers to the number of

cores and T(P) is the execution time using P cores).

Table 1. Speed-up of Improved Consensus Recovery Block Technique

Statuses Speed up

2 Cores 1.78

4 Cores 2.22

8 Cores 2.29

Important point of this technique is the close relation

between speed-up and both the number of versions and

available cores., if the number of available cores is greater

than the number of versions, increasing the number of

cores will be ineffective on Speed-up improvement.

Otherwise, increasing the number of cores is effective on

speed-up.

In the worst case, namely the case in which last

version performs the acceptance test successfully, the

execution time will be equal to the total time of running

all versions. However, in the Improved CRB, the recovery

block section is executed distributedly and so its

execution time is equal to execution time of the longest

version.

Fig. 12. Influence of multi-core architecture on performance of

consensus recovery block technique

Journal of Information Systems and Telecommunication, Vol. 2, No. 3, July-September 2014 179

According to Fig. 10, execution time of the DRB

technique in quad core architecture is less than execution

time of CRB technique. But since the CRB does not have

problems of the DRB technique, it is more suitable in

many cases. In this paper, we showed that the CRB

execution time can also be decreased.

8. Conclusions

Among different software fault tolerance techniques

the Consensus Recovery Block (CRB) has more

reliability over other ones in some cases and also it does

not have problems of other techniques. To increase

performance of this technique, we proposed one

technique which is called Improved CRB technique in

which the reliability is like the CRB and because of using

distribution concepts, it has more performance. According

to capability of multi-core architecture for supporting

parallel processing, this architecture has been used to

decrease the execution time and thus increasing

performance of the fault-tolerance techniques. As a result,

we showed that the Improved CRB technique is more

suitable over other techniques from view of the reliability

and performance properties.

Because the satellite motion computation is the most

critical part of the system, in this paper we have used this

subsystem as a case study and software fault tolerance

techniques were used to solve the numerical differential

equation of satellite motion in order to increase the

reliability. To this end, different implementations of the

numerical differential equation of the satellite motion

methods were employed as different versions which are

required in software fault tolerance techniques. Then, to

determine the increase rate of the performance, we

compared the execution time for single core architecture

in the sequential mode and for multi-core one in the

concurrent mode in different fault tolerance techniques.

The NVP-TB-AT technique, which has more

performance and reliability over other derived NVP

techniques, the execution time in case of sequential mode

at single core architecture was 9335 while the execution

time in case of the parallel mode at dual-core and quad-

core architecture was 5477 and 4511 respectively. So, the

speedup rate for dual-core and quad-core architectures is

1.70 and 2.06 respectively. Moreover, the execution time

of recovery block technique on single-core, dual-core and

quad-core is 22.04, 16.14 and 12.14 respectively.

Since high reliability is critical in the satellite motion

computation system, we use the Consensus Recovery

Block technique which has high reliability but its problem

is high execution time. This problem was solved by

proposing an Improved Consensus Recovery Block

technique.

According to our experiments, the best execution time

of Improved CRB is at quad-core architecture and it is

equal to 10124, while the execution time of CRB is 16044

at quad core architecture. These two techniques have

similar reliability but their performance rate is different.

In other words, Consensus Recovery Block does not use

distribution and concurrency mechanisms, therefore it

cannot use advantages of concurrency in multi core

architecture. The proposed technique has high

performance because of taking advantage of distribution

mechanism and using concurrency in multi core

architecture.

Therefore according to the obtained results, using

Improved Recovery Block technique and the multi core

architecture simultaneously increases the reliability and

performance in a fault tolerant software.

References
[1] A. Avizienis and J. P. J. Kelly, "Fault tolerance by design

diversity- Concepts and experiments," IEEE Computer, vol.

17, pp. 67-80, 1984.

[2] L. Yang, L. Yu, J. Tang, L. Wang, J. Zhao, and X. Li,

"McC++/Java: Enabling Multi-core Based Monitoring and

Fault Tolerance in C++/Java," in 15th IEEE International

Conference on Engineering of Complex Computer Systems

(ICECCS), 2010, pp. 255-256.

[3] L. L. Pullum, Software fault tolerance techniques and

implementation: Artech House Publishers, 2001.

[4] A. T. Tai, J. F. Meyer, and A. Avizienis, "Performability

enhancement of fault-tolerant software," Reliability, IEEE

Transactions on, vol. 42, pp. 227-237, 1993.

[5] A. T. Tai, J. F. Meyer, and A. Avizienis, Software

performability: From concepts to applications: Kluwer

Academic Publishers, 1996.

[6] K. H. Kim, "The Distributed Recovery Block Scheme," M.

R. Lyu(ed.), Software Fault Tolerance, pp. 192-198, 1995.

[7] I. Koren and C. M. Krishna, Fault-tolerant systems:

Morgan Kaufmann, 2007.

[8] M. Eshagh and M. Najafi Alamdari, "Comparison of

numerical Integration methods in orbit determination of

low earth orbiting satellites," Journal of The Earth and

Space Physics, vol. 32, pp. 41-57, 2006.

[9] S. Akhter and J. Roberts, Multi-Core Programming vol. 33:

Intel Press, 2006.

[10] L. Yang, Z. Cui, and X. Li, "A case study for fault

tolerance oriented programming in multi-core

architecture," in 11th IEEE International Conference on

High Performance Computing and Communications,

HPCC '09. , 2009, pp. 630-635.

[11] B. Parhami, Introduction to parallel processing:

algorithms and architectures vol. 1: Springer, 1999.

Banki, Babamir, Farokh & Morovati, Enhancing Efficiency of Software Fault Tolerance Techniques in Satellite Motion System

180

Hoda Banki is M.Sc. student at Kashan University in software
engineering. She received B.Sc. degree in software engineering
from Islamic Azad University Central Tehran Branch (IAUCTB) in
2008. Her main research interests are high performance computing,
distributed systems, quantitative evaluation of software architecture
and design based on software architecture styles.

Seyed Morteza Babamir received BS degree in Software
Engineering from Ferdowsi University of Meshhad and MS and
PhD degrees in Software Engineering from Tarbiat Modares
University in 2002 and 2007 respectively. He was a researcher
at Iran Aircraft Industries, Tehran City, Iran, from 1987 to 1993,
head of Computer Center in University of Kashan, Kashan, Iran,
from 1997 to 1999 and haed of Computer Engineering Department
in University of Kashan from 2002 to 2005. Since 2007, he has
been an associate professor of Department of Computer
Engineering in University of Kashan, Kashan, Iran. He authored
one book in Software Testing, four book chapters, fourteen journal
papers and more than forty international and internal conference
papers (http://ce.kashanu.ac.ir/babamir/Publication.htm). He is

managing director of Soft Computing Journal published by
supporting University of Kashan, Kashan, Iran. He is a member of
the ACM.

Azam Farokh is M.S. student at Kashan University in software
engineering. She received B.S. degree in software engineering
from Arak University in 2009. Her research interests are including
Software Engineering, high performance computing, Distributed
Systems, Fault Tolernat Systems and software architecture. Her
current research project is Evaluation of the appropriate style for
Adaptive software architecture.

Mohammad Mehdi Morovati is M.Sc. student at Kashan
University in software engineering. He received B.Sc. degree in
software engineering in 2008 from college of Bahonar. His
research interests include the field of Software Engineering and
Artificial Intelligence and to date his focus has spanned the areas
of Distributed Software Systems, Fault Tolerance Software
Systems, High Performance Computing and Self-adaptive
Software Systems.

http://ce.kashanu.ac.ir/babamir/Publication.htm

