

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013

39

* Corresponding Author

Network RAM Based Process Migration for HPC Clusters

Hamid Sharifian
*

Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

sharifian@comp.iust.ac.ir

Mohsen Sharifi

Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

msharifi@iust.ac.ir

Received: 04/Dec/2012 Accepted: 09/Feb/2013

Abstract
Process migration is critical to dynamic balancing of workloads on cluster nodes in any high

performance computing cluster to achieve high overall throughput and performance. Most existing

process migration mechanisms are however unsuccessful in achieving this goal proper because they

either allow once-only migration of processes or have complex implementations of address space

transfer that degrade process migration performance. We propose a new process migration mechanism

for HPC clusters that allows multiple migrations of each process by using the network RAM feature of

clusters to transfer the address spaces of processes upon their multiple migrations. We show

experimentally that the superiority of our proposed mechanism in attaining higher performance

compared to existing comparable mechanisms is due to effective management of residual data

dependencies.

Keywords: High Performance Computing (HPC) Clusters, Process Migration, Network RAM, Load

Balancing, Address Space Transfer.

1. Introduction

A standard approach to reducing the runtime

of any high performance scientific computing

application on a high performance computing

(HPC) cluster is to partition the application into

several portions that can be run in parallel by

multiple cluster nodes simultaneously.

HPC clusters generally consist of three main

parts: a collection of off-the-shelf (COTS)

computing and storage nodes, a network

connecting the nodes, and a cluster manager

system software that manages all nodes and

presents a single system image to applications

while exploiting the parallel processing power of

multiple nodes.

The cluster manager system software

provides a set of global services that aim at

making resource distribution transparent to all

applications, managing resource sharing between

applications, deploying as much cluster resources

as possible for demanding applications, and

scheduling parallel processes on all cluster nodes.

The services include global resource

management, distributed scheduling, load

sharing, process migration, and network RAM.

Dynamic load sharing can be achieved by

moving processes from heavily-loaded nodes to

lightly-loaded nodes at runtime. This can lead to

fault resilience, ease of system administration,

and data access locality in addition to an

enhanced degree of dynamic load distribution [1].

Upon migration of a process, the process

must be suspended and its context information in

the source node extracted and transferred to the

destination node. The process can only then

resume executing from the point it was

suspended. Two critical challenges of process

migration are the transfer of the process address

space from the source node to the destination

node, and access to the opened files in the

destination node after process migration [2].

In this paper we only focus on resolving the

first challenge of process migration by

introducing a new process migration mechanism

by using the network RAM feature of HPC

clusters, wherein the aggregate main memory of

all cluster nodes in a cluster represents the

network RAM of that cluster [3]. In addition to

achieve comparably higher performance than

existing process migration mechanisms, our

proposed mechanism is intended to allow for

multiple-migration of each process that is a

missing feature in existing process migration

mechanisms that is accounted as a source of

inefficiency.

The rest of paper is organized as follows.

Sections 2 and 3 introduce process migration and

network RAM. Section 4 reviews related works

on process migration with respect to transfer of

mailto:sharifian@comp.iust.ac.ir
mailto:msharifi@iust.ac.ir

Sharifian & Sharifi, Network RAM Based Process Migration 48 for HPC Clusters

40

process address space. Sections 5 and 6 present

our network RAM based mechanism and its

evaluation, and Section 7 concludes the paper.

2. Process Migration

Process migration is the act of transferring an

active process between two computers and

restoring its execution in a destination node from

the point it left off in the source node. The goals

of process migration are closely tied to

applications that use migration. The primary

goals include resource locality, resource sharing,

dynamic load balancing, fault resilience, and

ease of system administration [1]. Any process

migration mechanism can thus be benchmarked

and evaluated with respect to the degree it

satisfies these goals.

Considering an HPC cluster, process

migration has three main phases [4] (note that

these phases are applicable to process migration

in all types of networks of computers in general

including HPC clusters that are the main focus of

this paper):

1. Detaching Phase that involves the

suspension and the extraction of the

context of a migrant process in its current

node. These activities must be done in a

way that none of the other processes

running on the current node or in other

nodes of the cluster experience any

execution inconsistencies. At the start of

this phase, the execution of the migrant

process is frozen.

2. Transfer Phase that involves the transfer

of the extracted context of the migrant

process to the destination node.

3. Attaching Phase that involves the

reconstruction of the migrant process on

the destination node. The reconstruction in

turn involves the allocation of resources on

the target node to the migrant process,

informing the beneficiaries and/or brokers

of the migrant process about the current

executing place of the migrant process,

and resuming the execution of the migrant

process on the destination node from the

point it left off on the source node.

The time interval between freezing a migrant

process on a source node and resuming its

execution on a destination node is called the

freeze time representing the status wherein the

migrant process is neither executing on the

source nor executing on the destination node.

The longer the freeze time the lower will be the

performance of the process migration.

The context of a process to be migrated

includes the process’s running state; stack

contents; processor registers; address space; heap

data; and process’s communication state (like

open files or message channels). The whole

context must be transferred to the destination

node before the process can continue its

execution on the destination node. The process

address space is the largest part of the process

context that might have hundreds of megabyte of

data [5] taking longest to be transferred to the

destination node. This can adversely affect the

performance of process migration. Therefore, the

performance of any process migration

mechanism largely depends on how long it takes

to transfer the context of migrant processes to

destination nodes.

Various data transfer techniques have been

presented in the literature that try to reduce the

high cost of address space transfer [6]. A well-

known technique is to transfer only parts of

process address space to allow resumption of

processes on destination nodes without waiting

for the transfer of the whole process address

space and context. Though very attractive on

grounds of improving the performance of process

migration, this technique leaves parts (pages) of

process address space on different nodes when

multiple migrations in the lifetime of process is

allowed and occurs. In other words, the process

address space is scattered on multiple nodes

resulting in residual dependencies. Management

of residual dependencies increases the

implementation complexity of process migration

that in turn results in performance degradation of

process migration.

Our proposed mechanism is particularly

useful to strong migrations wherein the entire

process state (rather than code and some

initialization data in weak code migration) must

be transferred to destination.

3. Network RAM

Large-memory high-performance applications

such as scientific computing, weather prediction

simulations, data warehousing and graphic

rendering applications need massive fast

accessible address spaces [7] that are not provided

by even high capacity DRAMs. The runtime

performance of these applications degrades

quickly when system encounters memory shortage

and starts swapping memory to local disks.

In today’s clusters with very low-latency

networks, the idle memory of other nodes can be

used as storage media faster than local disks,

called network RAM. The goal of network RAM

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 41

is to improve the performance of memory

intensive workloads by paging to idle memory

over the network rather than to disk [8].

Some common uses of network RAM are

remote memory paging [9], network memory file

systems, and swap block devices [10,11].

Locating unused memory in every node requires

that network RAM keeps up-to-date information

about all unused memories.

Since network RAM stores data on remote

memories, it includes remote memory paging

facility to keep information on all remote data.

This functionality of network RAM can be used

to alleviate the performance overhead of process

migration in transferring and managing the

address spaces of migrant processes. This

describes why we have deployed network RAM

technology to propose a novel process migration

mechanism for HPC clusters in this paper.

4. Related Works

We can categorize into three categories the

works on process migration that have presented

solutions to cope with the address space transfer

issue in particular into three categories.

4.1 Address Space Transfer Techniques

To avoid the high cost of process address

space transfer, several techniques have been

introduced. In the total-copy technique, which is

the simplest and weakest one, the whole process

address space is copied to destination node at the

migration time [12,13,14,15,16]. The pre-copy

technique transfers the whole process address

space to destination node before starting to

migrate the process in order to reduce the freeze

time of the process [17]. The copy-on-reference

technique transfers only the process state to the

destination node and pages of process address

space are transferred on demand [18,19]. In the

flushing technique, dirty pages are flushed to disk

and the process accesses them on demand from

disk instead of memory on the source node [20].

4.2 Prefetching Techniques

Besides techniques for transferring process

address space, another technique is proposed to

increase the performance of address space

transfer while migrant is running on the

destination node. This technique includes

prefetching of those pages that are likely to be

accessed by the migrant to avoid remote page

faults. This solution is used in openMosix and it

is called Lightweight Prefetching [21].

4.3 DSM-based Techniques

Some HPC clusters have used the distributed

shared memory (DSM) mechanism to transfer

process address spaces between nodes upon

process migrations. Pages stored on DSM need

not be transferred at all during process migration.

Only pages accessed by the migrant after

migration are provided to the migrant process

using the DSM mechanisms. Kerrighed is a kind

of SSI operating system that has used this

technique for process migration [2]. CORAL [4]

and Mach [6] use the same technique for process

migration and MigThread [22] uses a DSM

framework for thread migration.

4.4 Comparison

DSM-based and copy-on-reference techniques

in support of process address space transfer are

more efficient than their counterparts because they

do not transfer the whole process address space

and avoid storing pages on disk. However,

systems such as Mosix [15], Accent [19] and

RHODOS [18] that have used the copy-on-

reference migration technique allow processes to

migrate just once in their lifetime in order to avoid

the complex implementation of multiple process

migrations or better said the complex management

of dependencies of data residual on different

nodes if multiple migrations were allowed. On the

other hand, systems that have used the DSM-

based technique are quite dependent on the

implementation of their DSM manager for

handling dependencies between residual data on

different nodes that are provided to migrant

processes on demand. In this paper, we propose a

transfer technique in the face of multiple process

migration allowance whose performance is higher

than existing implementations of the DSM-based

technique.

5. Motivation

Process migration has gained popularity for

several reasons. Traditional process scheduling

mechanisms lack enough flexibility to cope with

changing loads of very large HPC clusters and

process migration can be beneficial here. Unlike

other mechanisms such as check-pointing,

process migration needs no server coordination

[20] and is more suited to make clusters scalable.

By growing the size of data in high performance

applications rather than process code size which

is quite stable, process migration will be very

promising when data are located on several

nodes.

In spite of above advantages, process

migration has not been widely used in HPC

Sharifian & Sharifi, Network RAM Based Process Migration 48 for HPC Clusters

42

clusters. This is mainly due to the low

performance of process migration mechanisms

and the complexity of implementing the

migration support in commodity operating

systems.

In HPC clusters executing applications with

huge address spaces, the use of idle memories of

remote cluster nodes instead of disk is more

attractive. This can be achieved by network

RAM. With growing applications with large data,

the use of network RAM has become more

advantageous. That is why various models have

been implemented in recent years

[7,9,10,11,23,24]. In such applications whose

address spaces are very large and distributed

among multiple nodes, process migration is more

beneficial because of the smaller sizes of the

process states, though data distribution makes

data provision to migrant processes more

difficult.

By using the network RAM technology,

memory is managed without any direct

interference of process migration mechanism

simplifying the implementation of process

migration and improving the overall performance

of process migration mechanism.

6. Proposed Mechanism

Network RAM uses memories of remote cluster

nodes to store data. When a process migrates to

another node, some parts of its address space are

remained on the source node. This is similar to

the case that the process is on the destination and

data are stored in remote memory of the network

RAM that becomes accessible to the migrant

process on demand. Inspired by this similarity,

we propose a new process migration mechanism

that uses network RAM for the purpose of

transferring process address spaces during

process migrations. This approach decreases the

implementation complexity of our process

migration mechanism, reduces the overhead of

residual data dependencies, and improves the

performance of migrant processes.

Network RAM has good facilities that can

be used in process migration. These facilities

include remote memory pager and an efficient

module to locate remote pages across an HPC

cluster. Thanks to these facilities, we can transfer

only the required pages and at the same time,

allow processes to migrate multiple times on

various nodes.

In our mechanism, there is no need for

transfer of the whole process address space and

pages required by the migrant process can be

accessed through the network RAM remotely.

Fig. 1 shows the schema of our proposed

mechanism.

When a process is selected for migration, no

pages are transferred. Instead, each page in

address space of the migrant process is added to

the data structures of the network RAM and

marked as a remote page. Then, page faults of

migrant are handled by the network RAM faster

than DSM-based solutions.

The network RAM module manages all

memory-related issues of process migration

mechanism including the transfer of process

address space during migration, management of

residual dependencies and handling page faults

in addition to its own work. This simplifies the

implementation of process migration mechanism.

Fig.1. A schematic view of our network RAM-based process

migration mechanism

7. Experimental Result

To evaluate our proposed mechanism, we

simulated our mechanism by running it on a

homogenous cluster with 20 nodes connected to

an Ethernet switch via a 10Gbps cluster network

connection. Each node had a 3GHz CPU. The

cluster has global distributed shared memory,

global network RAM and global process and

network management features in addition to

process migration facility.

We evaluated our mechanism by DGEMM

HPC benchmark. Fig. 3 shows the migration

times of processes with different sizes of address

spaces under DSM-based, network RAM-based

and copy-on-reference process migration

mechanisms. Among previous solutions only

DSM-based migration method support multiple

migration of a process in its lifetime on different

workstations.

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 43

0

10

20

30

40

50

60

70

20x20 50x50 100x100 250x250 500x500

T
o

ta
l

M
ig

r
a

ti
o
n

 T
im

e
 (

m
s)

Matrix Size

Copy_on_Reference

DSM-based

NetworkRAM-based

As Fig. 3 shows, the migration times under

DSM-based and our proposed mechanisms were

almost equal. The migration time has increased

linearly with increases in the size of process

address space. In both mechanisms, the whole

process address space was not transferred to the

destination node at migration time. However, the

larger the process address space the higher was

the migration time implying that bigger address

spaces take longer to be managed that is quite

logical and sensible. The migration time under

copy-on-reference mechanism is not dependent

on address space size of process and almost

remains unchanged.

So far our experiments showed the same

performance for DSM-based vs. network RAM-

based process migration mechanisms.

Fig.2. Total migration time for different matrix Sizes

Fig.3. Page fault handle time for process migration

mechanisms

The key improvement in our network RAM-

based mechanism is handling page faults of the

migrant process on destination node. Fig. 3

shows the average page fault handling time for

DSM-based, copy-on-reference and network

RAM-based mechanisms. As Fig. 3 shows, our

proposed mechanism handle page fault of the

migrant process faster than DSM-based

mechanism. That is because network RAM-

based does not consider memory sharing issues

and providing pages to the demanding process is

performed without locking operations. However,

copy-on-reference mechanism has minimum

page fault time, because in this way, requested

pages are being brought from one specified

workstation namely the source workstation.

Due to the fact that page faults may occur

thousands of times while executing the migrant

process on destination node, improvement of

page fault time in our proposed mechanism

results in improvement of execution time of

process compared to DSM-based mechanism.

Given that our network RAM-based

mechanism supports multiple migration of the

process, the advantage of our network RAM-

based mechanism showed even more when a

process was allowed to migrate to more than one

cluster node in its lifetime. The more a process is

selected to migrate, the more page faults it may

experience in its execution.

Fig. 4 shows the execution times of the

DGEMM process with 500×500 matrix size after

multiple migrations on different cluster nodes in

its lifetime. As a result of effective page fault

handling by the network RAM, the execution

times of the migrant were reduced compared to

those of DSM-based mechanism.

8. Conclusion and Future Works

In this paper, we proposed a mechanism that

exploited the network RAM facility existing in

clusters to transfer

Fig.4. Execution time of DGEMM process after multiple
migration in DSM- and Network RAM-based process migrations

Sharifian & Sharifi, Network RAM Based Process Migration 48 for HPC Clusters

44

process address spaces during process

migrations in HPC clusters.

Our simulative experiments showed higher

overall performance of migrant processes under

our proposed mechanism compared to a

simulated DSM-based process migration

mechanism when processes were allowed to

migrate to more than one cluster node in their

life-time. This implies that our proposed

mechanism is especially attractive to scientific

applications with coarse-grain long-lived

processes that may require multiple migrations in

their life-time; we know as a fact that migration

of short-lived processes is not efficient [6]. The

network RAM facility we used in our proposed

process migration mechanism managed access to

remote memory and consequently simplified the

implementation of our mechanism.

We can further improve the performance of

our proposed process migration mechanism by

reducing the numbers of required page transfers

by coordinating the network RAM as to where to

store remote pages with the task that selects a

node as destination upon migration.

Acknowledgments

We hereby acknowledge the help of Mr.

Reza Azariun in drafting this paper. We also

wish to thank Mr. Ehsan Mousavi and Ms

Mirtaheri for their guidance in initiating research

on migration in HPC clusters. We also thank

ITRC for partially supporting the research whose

results are partially reported in this paper

.

References
[1] Nalini Vasudevan and Prasanna Venkatesh,

"Design and Implementation of a Process

Migration System for the Linux Environment," 3rd

International Conference on Neural, Parallel and

Scientific Computation, August 2006, pp. 1 - 8.

[2] Geoffroy Vall´ee, Christine Morin, Jean-Yves

Berthou, Ivan Dutka Malen, and Renaud Lottiaux,

"Process Migration based on Gobelins Distributed

Shared Memory," Proceedings of the 2nd

IEEE/ACM International Symposium on Cluster

Computing and the Grid, May 2002, pp. 325 - 325

[3] Michail D. Flouris and Evangelos P. Markatos,

"Network RAM," High Performance Cluster

Computing, Architectures and Systems.: Prentice

Hall, vol. 1, ch. 16, pp. 383-408, 1999.

[4] Ivan Zoraja, Arndt Bode, and Vaidy Sunderam, "A

Framework for Process Migration in Software

DSM Environments," Proceedings of 8th

Euromicro Workshop on Parallel and Distributed

Processing, 2000, pp. 158 - 165.

 [5] Ehsan Mousavi Khaneghah, Najmeh Osouli

Nezhad, Seyedeh Leili Mirtaheri, Mohsen Sharifi,

and Ashakan Shirpour, "An Efficient Live Process

Migration Approach for High Performance Cluster

Computing Systems," Communications in

Computer and Information Science, 2011, vol. 241

part 8, pp. 362 - 373.

[6] Dejan S. Milojicic, Fred Douglis, Yves

Paindaveine, Richard Wheeler, and Songnian

Zhou, "Process Migration," ACM Computing

Surveys (CSUR), vol. 32, no. 3, September 2000,

pp. 241 - 299.

[7] Michael R. Hines, Mark Lewandowski, and Katrik

Gopalan, "Anemone: Adaptive Network Memory

Engine," Proceedings of the twentieth ACM

symposium on Operating systems principles, 2005.

[8] Eric A. Anderson and Jeanna M. Neefe, "An

Exploration of Network RAM", University of

California at Berkeley, 1999.

[9] Hiroko Midorikawa, Motoyoshi Kurokawa, Ryutaro

Himeno, and Mitsuhisa Sato, "DLM: A Distributed

Large Memory System using Remote Memory

Swapping over Cluster Nodes," Proceedings of

2008 IEEE International Conference on Cluster

Computing, 2008, pp. 268 - 273.

[10] Hui Jin, Xian-He Sun, Yong Chen, and Tao Ke,

"REMEM: Rmote Memory as Checkpointing

Storage," 2nd IEEE International Conference on

Cloud Computing Technology and Science, 2010.

[11] Changgyoo Park, Shin-gyu Kim, Hyuck Han,

Hyeonsang Eom, and Heon Y. Yeom, "Design and

Evaluation of Remote Memory Disk Cache,"

Proceedings of 2010 IEEE International

Conference on Cluster Computing Workshops and

Posters (CLUSTER WORKSHOPS), 20-24 Sept.

2010, pp. 1 - 4.

[12] Michael L. Powell and Barton P. Miller, "Process

Migration in Demos/MP," Proceedings of the ninth

ACM symposium on Operating systems principles,

1983, New York, NY, USA, pp. 110 - 119.

[13] Yeshayahu Artsy and Raphael Finkel, "Designing

a Process Migration Facility: The Charlotte

Experience," IEEE Computer, vol. 22, no. 9,

September 1989, pp. 47 - 56.

[14] Chris Steketee, Piotr Socko, and Bartosz

Kiepuszewski, "Experiences with the

Implementation of a Process Migration

Mechanism for Amoeba," Proceedings of the 19th

ACSC Conference, January-February 1996,

Melbourne, Australia, p. 140—148.

[15] Amnon Barak, Oren Laden, and Yuval Yarom,

"The NOW MOSIX and its Preemptive Process

Migration Scheme," Bulletin of the IEEE

Technical Committee on Operating Systems and

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 45

Application Environments (TCOS), vol. 7, no. 2,

Summer 1995, pp. 5 - 11.

[16] Gerald Popek and B. WALKER, The Locus

Distributed System Architecture: MIT Press, 1985.

[17] Marvin M. Theimer, Keith A. Lantz, and David R.

Cheriton, "Preemptable Remote Execution

Facilities for the V-System", Proceedings of the

10th ACM symposium on Operating systems

principles, 1985, New York, pp. 2 - 12.

[18] Damien De Paoli and Andrzej Goscinski, "Copy

on Reference Process Migration in RHODOS,"

1996 IEEE Second International Conference on

Algorithms and Architectures for Parallel

Processing(ICAPP 96), Jun 1996, pp. 100 - 107.

[19] Edward R. Zayas, "Attacking the Process

Migration Bottleneck," Proceedings of the 11th

ACM Symposium on Operating systems principles,

1987, New York, USA, pp. 13 - 24.

[20] Fred Douglis and John Ousterhout, "Transparent

Process Migration: Design Alternatives and the Sprite

Implementation," Software - Practice and Experience,

vol. 21, no. 8, August 1991, pp. 757 – 785.

[21] Roy S.C. Ho, Cho-Li Wang, and C.M. Francis

Lau, "Lightweight Process Migration and Memory

Prefetching in openMosix," IEEE International

Symposium on Parallel and Distributed Processing

(IPDPS 2008) , April 2008, Hong Kong, pp. 1 - 12.

[22] Hai Jiang and Vipin Chaudhary, "MigThread:

Thread Migration in DSM Systems," Proceedings

of International Conference on Parallel Processing

Workshops, 2002, pp. 581 - 588.

[23] Nan Wang et al., "Collaborative Memory Pool in

Cluster System," IEEE International Conference

on Parallel Processing, 2007, Boston MA, USA,

pp. 17 - 24.

[24] Paul Werstein, Xiangfei Jia, and Zhiyi Huang, "A

Remote Memory Swapping System for Cluster

Computers," Proceedings of Eighth International

Conference on Parallel and Distributed Computing,

Applications and Technologies, 3-6 Dec. 2007, pp.

75 - 81.

