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Abstract 
The dependability of concurrent programs is usually limited by concurrency errors like deadlocks and 

data races in allocation of resources. Deadlocks are difficult to find during the program testing because 

they happen under very specific thread or process scheduling and environmental conditions. In this 

study, we extended our previous approach for online potential deadlock detection in resources allocated 

by multithread programs. Our approach is based on reasoning about deadlock possibility using the 

prediction of future behavior of threads. Due to the nondeterministic nature, future behavior of 

multithread programs, in most of cases, cannot be easily specified. Before the prediction, the behavior of 

threads should be translated into a predictable format. Time series is our choice to this conversion 

because many Statistical and Artificial Intelligence techniques can be developed to predict the future 

members of the time series. Among all the prediction techniques, artificial neural networks showed 

applicable performance and flexibility in predicting complex behavioral patterns which are the most 

usual cases in real world applications. Our model focuses on the multithread programs which use locks 

to allocate resources. The proposed model was used to deadlock prediction in resources allocated by 

multithread Java programs and the results were evaluated. 

 

Keywords: Detecting Potential Deadlocks, Time Series Prediction, Multithread Programs, Behavior 

Extraction. 
 

 

1. Introduction 

Multithread programs are becoming 

increasingly common. Since multi-core 

processor generation has brought more cores, 

developers must parallelize programs if they 

want to speed the program execution up. 

However, applying concurrency method causes 

some integrity and mutual exclusion issues in 

allocating resources. To resolve them, locking 

mechanism was developed. However, this 

mechanism leads to some other known problems 

like starvation and deadlock in resources 

allocated by concurrent systems. Detection of 

such errors in the program testing phase may be 

difficult since they often occur in the special 

sequence of events [1]. This is why that, these 

errors are sensitive to timings, workloads, 

compiler options and memory models. In 

addition, if a deadlock or data race in resource 

allocation emerges in the testing phase, it is 

difficult to find out its root cause; because in a 

multithread program, even if there is a deadlock 

between some threads in allocating resources at 

runtime, other threads still can run. The effects of 

such a situation can manifest itself millions of 

cycles after occurring the error. Deadlock is a 

common form of bug in software nowadays. 

Sun‟s bug database showed that 6,500 bug 

reports out of 198,000 contain “deadlock” [2]. 

Main reasons of deadlock are: (1) software 

systems are often written by diverse 

programmers; therefore, it is difficult to follow a 

lock order discipline in allocating resources, (2) 

programmers often introduce deadlocks when 

they fix race conditions by adding new locks and 

(3) using third-party software such as plug-in 

because the third-party software may not follow 

the locking discipline followed by the parent 

software [3]. This is why that “deadlock 

avoidance” techniques became unusable. Such 

techniques are simple in theory but so restrictive 

in real application.  

Therefore “detecting potential deadlocks” 

became an acceptable method to solve deadlock 

problem in resources allocation. “Potential 

deadlock detection” techniques are Online or 

Offline, which Online ones try to find the 

concurrency errors at runtime. Such approaches 

mostly use a monitor to observe the program 
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execution and based on the observations, they 

decide about the error possibility. In comparison 

with offline techniques, online ones have the 

following advantages: 

1. They only visit feasible paths of program 

executions and have accurate views of the 

values [1], 

2. Because of their accurate view, they 

generate fewer false alarms. False alarm 

means a fake report of an error (in our case, 

a deadlock), 

3. They don‟t need considerable programmer 

effort, 

4. These approaches are language independent 

meaning that the solution is not depended 

on features of a specific programming 

language. 

 In this paper, we demonstrate and extend a 

novel online potential deadlock detection 

approach, whose base was presented in [4]. It 

was based on the prediction of processes or 

threads behavior at runtime and dealt with 

reasoning about the deadlock possibility in the 

future. In this work, we introduce time series 

analysis approaches in configuring prediction 

parameters. Also, we include the environmental 

conditions in predicting the threads behavior to 

improve the correctness of obtained results. We 

obtained considerable improvement in detecting 

potential deadlocks in comparison with our 

previous work.  

This paper is organized as follows: Section 2 

overviews the related works and our proposed 

model is discussed in Section 3. We analyze our 

approach and evaluate its results in Section 4. 

We draw conclusions in Section 5. 

2. Related works 

As mentioned in the previous section, our 

approach is based on finding potential deadlocks 

in allocating resources at runtime using program 

behavior extraction and time series prediction. 

Therefore in this section, we first overview 

online approaches detecting potential deadlocks 

in resources allocated by concurrent programs. 

Afterwards, we discuss different approaches used 

time series for the prediction. 

2.1 Online potential deadlock detection 

Informally, in multi-threaded systems used 

shared memory, deadlocks in allocating 

resources happen when a set of threads are 

blocked forever; this is because each thread in 

the set is waiting to acquire a lock held by some 

thread [2]. Generally in a concurrent system, the 

order of acquiring and releasing locks in 

allocating and freeing resources can be described 

as a directed graph where nodes indicate locking 

resources so that an edge from node A to node B 

means the system has locked resource A and is 

waiting for resource B. There will be a deadlock 

in allocation of resources if a circle is found in 

the graph. Lock graphs and their variations have 

been used for detection of deadlocks in resources 

allocated by concurrent programs.  

GoodLock algorithm [5] is an approach to 

detect potential deadlocks in multithread 

programs. It only detects potential deadlocks 

caused through interleaving locks by just two 

threads. To overcome this limitation, some 

generalized versions of GoodLock algorithm was 

presented in [6] and [7] which detect potential 

deadlocks caused by any number of threads. 

Their approach address programs that use bloc 

and non-block structured locking. 

In [8], authors constructed an online lock 

graph and found specific paths, which named 

“not guarded SCC (strongly connected 

components)”. “Not guarded SCC” indicates one 

or more potential deadlocks because there can be 

several cycles in the SCC. They tried to exhibit 

the deadlocks using injection of noises in the 

SCCs. A noise is inserted to create a delay to 

acquire a lock; accordingly, they raised the 

probability of manifesting the real deadlocks. 

Although this approach is based on GoodLock 

algorithm, its advantage over one that presented 

in [6] and [7] is regarding different runs. The 

Goodlock looks at the scope of one process run. 

This means, when a cycle in the graph is caused 

by sequences of two different runs, Goodlock 

can‟t detect.  

GoodLock algorithm also was used in 

combination with other techniques to find the 

potential deadlock at runtime such as 

DEADLOCKFUZZER [2]. This approach 

consists of two phases. In the first phase, a 

simple variant of the Goodlock algorithm, called 

informative Goodlock, was used to discover 

cycles of potential deadlock. In the second phase, 

DEADLOCKFUZZER executed the program at 

a random schedule in order to create a real 

deadlock corresponding to a cycle which 

reported in the previous phase. In [3] “deadlock 

immunity” concept was introduced for avoiding 

occurrence of deadlocks occurred in the past. 

When a deadlock occurs for the first time, the 

deadlock information is saved in a "context" in 

order to avoid the similar contexts in future runs. 

This approach achieved “immunity” against the 

corresponding deadlocks. To avoid deadlock 

whose context has been already seen, the 

approach changed the schedule of threads. As the 

several deadlocks occur, the numbers of contexts 
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increases; therefore it can avoid a wider range of 

deadlocks. However, if a deadlock does not have 

a pattern similar to one that already encountered, 

the approach cannot avoid its occurrence. 

As we mentioned in Section Introduction, all 

the online deadlock detection approaches share 

some common advantages like: language 

independency, accurate views of the values, 

fewer false alarms and programmer efforts. But 

online techniques suffer from some 

disadvantages too. The most common problem is 

imposing the heavy overhead at runtime, both in 

time or space. All the mentioned techniques try 

to extract some relevant traces before their real 

execution based on observed current execution. 

In fact, they pre-run these extracted traces to find 

out whether there is any deadlock in the trace or 

not. This phase is time consuming because of 

extracting and running relevant traces. Also, one 

of the important steps for online techniques is the 

code instrumentation. Code instrumentation 

means modifying the target code for runtime 

monitoring code behavior. This step could be 

time consuming too and for the legacy codes it is 

more difficult. Sometimes, online potential 

deadlock detection techniques may show 

deadlocks late. This leads to finding a potential 

deadlock when the rollback mechanism is 

impossible because of some preclude actions like 

I/O.  

2.2 Time series prediction approaches 

Because of weaknesses of the online potential 

deadlock detection techniques mentioned in 

previous section, we proposed a novel online 

approach which targets the increase of 

performance, decrease of instrumentation and the 

enhancement of the prediction [4]. In this 

approach, we needed to predict future members 

of the generated time series at runtime. In 

general, time series prediction techniques can be 

classified in two categories: statistical and neural 

network based techniques. The statistical 

prediction techniques such as Autoregressive 

(AR), Moving Average (MA) and combined AR 

and MA (ARIMA) [9] have several limitations, 

such as inefficiency for real world problems 

which are often complex and nonlinear. This is 

due to the fact that these techniques assume that 

a time series is generated by a linear process. 

Thus, they are called linear statistical predictors.  

The nonlinear statistical predictors such as 

predictors, “threshold”, “exponential”, 

“polynomial” and “bilinear” were proposed to 

increase of the prediction precision [9],[10]. 

However, the selection of a suitable nonlinear 

model and the computation of its parameters are 

difficult tasks for a practical problem especially 

when the time series behavior is non-

deterministic. Moreover, it has been shown that 

the capability of the nonlinear model is limited, 

because it is unable to provide a long-term 

prediction [11].  

In recent years, artificial intelligence tools 

have been extensively used for time-series based 

prediction [12, 13]. In particular, artificial neural 

networks are frequently exploited for time-series 

based prediction of systems behavior. A neural 

network is an information processing system that 

is capable of treating complex problems of 

pattern recognition, dynamic and nonlinear 

processes. In particular, it can be an efficient tool 

for prediction applications. The advantage of 

neural networks based approaches over statistical 

ones is the capability of learning and accordingly 

generalization of their knowledge [14]. Also the 

neural networks are based on training and in 

many cases their prediction results are more 

precise, even if the training set has considerable 

noise [14]. These approaches are much more 

suitable for real world problems which do not 

have specific rules.  

There are some composite approaches which 

try to take the advantage of the accuracy of 

statistical models and the generality of neural 

network approaches. In [15], authors composed 

statistical model ARIMA and a feed-forward 

neural network to forecast time series. A feed 

forward network is a type of neural networks 

where all of its connections have the same 

direction [16]. This composition could be 

efficient in predicting some well-known time 

series. However, in the case of other time series, 

finding the proper value for statistical part of the 

composition is a difficult task and wrong values 

could affect the accuracy of prediction. Also it 

has been proved that the capability of recurrent 

neural networks is equivalent to the Turing 

machine [17]. Recurrent network is a class of 

neural network where connections between the 

layers of it could be backward or forward [16]. 

Therefore recurrent networks can approximate 

any function by learning from the function inputs 

and outputs. 

3. Potential deadlock prediction 

In our previous work we proposed an online 

predictive model to detect the potential 

deadlocks in multithread programs which is the 

basis of our approach [4]. Figure 1 shows our 

proposed model architecture. This model is 

consists of four components which are 

collaborating together at runtime. In this work, 

we aim to extend the basis model, indeed we 

extend “predictor” component, to be able to 

generate much more accurate prediction. 

http://en.wikipedia.org/wiki/Neural_network
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3.1 The basis of proposed model 

We used dependency graph in our model 

which nodes are the concurrent threads or 

processes. There is an edge from node A to node 

B if and only if thread A wants to acquire a lock 

which held by thread B and A has to wait until B 

release the lock, after that the edge will be erased. 

There is a deadlock in the system if there is a 

cycle in dependency graph. Therefore, except 

requesting or releasing the locks, other behavior 

of threads does not play any role in deadlock 

occurrence. For this reason in our proposed 

model we target only the instructions which are 

related to acquiring or releasing the locks. We 

named this type of instructions deadlock-prone 

behavior. The main difference between our 

approach and other online potential deadlock 

detection approaches which we explained in 

Section 2, is that we try to predict the future 

deadlock-prone behavior of threads at runtime 

rather than try to abstract different execution 

traces from the current execution by changing 

threads schedules or noise injection. If we could 

have an accurate view of future deadlock-prone 

behavior of threads then we can accurately result 

about the deadlock occurrence in the future [4]. 

 

 
 

Fig 1. The basis of proposed model [4] 

 

The start point of our model is the "Behavior 

extractor & Time series generator" component. 

Actually this component is composed of two 

elements:  

Two annotated Java functions: one for 

extracting deadlock-prone behavior and another 

for converting extracted behavior to univariate 

time series. Figure 2 shows these two functions: 

1- extractor & convertor () 2- this Period 

behaviors (). The first one task is catching lock () 

and unlock () at runtime and the second one task, 

is appending these instructions to the proper time 

series.  

 

1. @AfterRunning( pointcut = "execution(* 

java.util.concurrent.locks.unlock(..))") 

2. @Before(pointcut = "execution(* 

java.util.concurrent.locks.lock(..))") 

3. public void extarctor&convertor 

(JoinPoint joinPoint) { 

4. String 

functionName=joinPoint.getSignature().ge

tName(); 

5. If(functionName.eguals(“lock”)){ 

6. thisPeriodBehaviors(“1”, 

Arrays.toString(joinPoint.getArgs()),this.n

ame); 

7. } 

8. Else{ 

9. thisPeriodbehaviors(“2”, 

Arrays.toString(joinPoint.getArgs()),this.n

ame); 

10. } 

} 
Fig 2. Functions pseudo code 

 

Line 1, shows an annotation which means: 

whenever an Unlock() instruction executed, the 

extractor&convertor(…) method, should be 

executed immediately. Line 2, shows an 

annotation which means: right before the 

execution of a Lock() instruction, the 

extractor&convertor(…) method, should be 

executed. Line 3 is the method sign and line 4, is 

for obtaining the name of the event which caused 

the extractor&convertor(…) method to be 

executed. In line 5 to 10, based on the name of 

event (lock or unlock), a specific character will 

be appended to a specific time series. In this way 

all the lock() and unlock() events which are 
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issued from threads at runtime, are caught and 

converted to time series. 

ApectJ compiler. The task of this compiler is 

weaving two Java functions to the target 

multithread programs in the locations which are 

specified by annotations above the method. 

We mentioned that, one of the problems in 

runtime verification approaches is source code 

instrumentation step. The instrumentation is a 

time consuming task and when the verification 

logic is complex, it could be inefficient at 

runtime, both in time and space. But our two 

Java functions which are weaved to the target 

multithread program, are easy and light weight 

thus their runtime overhead is negligible. 

As we said, there are two Java functions for 

extracting dedicated behavior and time series 

generating goals. Time series is a set of 

observations from past until present, denoted by 

s(t-i) {i= 0.. P }, where P is the number of 

observations. Time series prediction is to 

estimate future observations, let's say s (t+i) for 

{i= 1.. N}, where N is the size of prediction 

window. Also, a univariate time series refers to 

the set of values over the time of a single 

quantity.  

The next component in our model is "Online 

Lock Tracker". According to Figure 1, this 

component takes the deadlock-prone behavior 

from "Behavior extractor & Time series 

generator" component at runtime and draws a 

dependency graph. This dependency graph will 

be updated whenever a thread issues a deadlock-

prone behavior.  

The "predictor" component takes the 

generated time series from "Behavior extractor & 

Time series generator" and tries to predict the 

next members of the time series. In a multithread 

program, the order of executed instructions of a 

thread could be affected by other threads 

executions. This fact makes the concurrent 

systems nondeterministic thus it is hard to 

predict the future thread behavior. We can't 

assume any pre-defined generator for the time 

series which are representing threads behavior. 

This property makes the statistical prediction 

techniques useless for our purpose. Because the 

statistical prediction techniques, assume that a 

time series is generated by linear or nonlinear 

process, but the selection of the suitable 

nonlinear or linear model and computation of its 

parameters is a difficult task for a practical 

problem without a priori knowledge about the 

time series[10]. The prediction requirements of 

our model lead us to use artificial intelligence 

prediction techniques. Time series prediction 

techniques which are based on AI use several 

Artificial Neural Networks [10]. Based on the 

properties of time series, there are different 

network topologies and learning algorithms. The 

selection of a proper network model and 

adjustment of its parameters should be carried 

out by considering the problem requirements. 

The predictions of the “predictor” component 

are also in the form of time series. These 

predictions and current dependency graph (the 

output of “online lock tracker” component) are 

injected to the "Decision maker" component. 

This component is responsible for deciding about 

the deadlock possibility in the next period. We 

try to clarify our model using an example. 

Assume that we have four threads named 

T1,…,T4 and five locks named L1, …,L5. Also 

assume the current dependency graph is 

something like Figure 3 (a). This graph 

represents that T1 has held L1 and L3 and wants 

to hold L2 which held by T2 thus T1 stops 

proceeding and waits until T2 releases L2. Also 

T4 has held L5 and wants to hold L3 which held 

by T1 thus T4 stops proceeding. Suppose the 

predictions of "Predictor" component are the 

following: 

“Predictor” component predictions  

T3={ will request L5}, T2={ will request L4} 

"Decision maker" takes current lock graph 

and predictions and composes them together to 

construct an abstract graph. Afterwards, decision 

maker searches the abstract graph to find a cycle. 

If so, it reports a possibility of deadlock in the 

next period. Figure 3 (b) shows the abstract 

graph of our example as a composition of 

predictions and dependency graph.  

 

 
Fig 3 (a). Current lock graph                                       Fig 3(b). Resulted abstract graph 
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In our example, the abstract graph has a cycle, 

therefore the "Decision maker" component reports: 

(1) a deadlock possibility in the next period and (2) 

T1 to T4 as the threads will be involved in this 

deadlock. But, if the predictions are:  

“Predictor” component predictions  

T3={will request L5}, T2={ will request L4 and 

will release L2} 

For this case, Figure 4 shows the abstract 

graph where there is not any cycle. Therefore, 

the "Decision maker" component will not report 

any possibility of deadlock in the next period. 

 
Fig 4. Resulted another abstract graph 

3.2 Applying the Extensions 

In our previous work we used a recurrent 

neural network named non-linear autoregressive 

(NAR) in predictor component. A NAR network 

tries to predict the future element of a given time 

series using d last values of that series [18]. That 

is, NAR network assumes the future element of a 

series is a function of its last values (Formula 1).  

                           
                  

 

The structure of NAR network has been 

shown in Figure 5. This network has d inputs, 

each for one of the last values of time series. 

 
Fig 5. Structure of a NAR network 

We named d as the delay parameter and it is 

one of the important factors which directly 

imposes the precision of predictions in a 

predictor neural network. Suppose in a time 

series each element is dependent on two last 

elements, That is                      . If 
we try to predict      using a predictor neural 

network such as NAR, the most accurate results 

will be acquired if         . Actually in this 

way the network considers two last elements in 

predicting the future element. In previous work 

we obtained the proper value for delay parameter 

using “try & fail” approach. That is, we gathered 

the runtime behavior of our multithread test 

program and converted them into the time series. 

Then we tried to predict the future members of 

test time series, using multiple NAR networks so 

that every network had a different value for delay 

parameter from others. After that we chose the 

delay value of a network which made the most 

precise predictions.  

In this work we improve the prediction 

precision of our “predictor” component, by 

configuring the delay parameter of network using 

a time series analysis methods. “Embedded 

dimension” is a factor which determines the 

relationships among the past and future members 

of a time series [19]. The value of the 

“Embedded dimension” for a time series 

represents the optimum number of last elements 

which every element is dependent on. Therefore 

we apply the “Embedded dimension “as the 

delay parameter in our predictor network. To 

obtain the “Embedded dimension” of a time 

series there are multiple approaches. The most 

known approach is False-Nearest-Neighbor, 

algorithm. This algorithm was firstly proposed 

by Kennel et al [20]. The calculation of the 

“Embedded dimension” allows one to extract the 

process behavior parameters from the observed 

series of events [19]. The predictor network can 

be further configured according to the obtained 

results from False-Nearest-Neighbor (FNN), in 

order to remember the required number of last 

elements in time series. 

In this work, in addition to applying 

“Embedded dimension” as the delay parameter, 

we use “Nonlinear Autoregressive with External 

input” (NARX) network instead of NAR network. 

Because in our model the major task of the 

predictor network is predicting threads behavior 

at runtime. But the behavior of threads is not 

completely separate from each other, actually the 

future behavior of each thread is affected by 

other threads past and current behavior. Thus we 

need a prediction methodology which could 

satisfy this requirement. As it is obvious, the 

NAR does not consider an external input in its 

prediction procedure. Because of this limitation 

of NAR, it may not meet our prediction 

requirements properly. We need a prediction 

method which could consider other series (that is, 
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other thread‟s behavior) in predicting a time 

series. 

NARX network, like NAR network, is a 

recurrent network with an external input [21]. 

The main idea of recurrent networks is providing 

a weighted feedback connection between layers 

of neurons and adding time significance to entire 

network. Therefore, recurrent neural networks 

simulate a temporal memory and are suitable for 

tasks like prediction which need a memory for 

the past events. NARX network assumes the 

future element of a given time series is a function 

of its last elements and another series last 

elements (Formula 2). 

        (                  

                      

   )                
Using this external input, it is possible to 

predict a time series considering the last 

elements of the time series under prediction and 

also considering other time series last elements. 

Figure 6 shows our extended “Predictor” 

component. 

 
Fig 6. The extended “Predictor” component 

 

 
Fig 7. The NARX networks of example 

 

To clarify the differences between the 

previous and current “Predictor” component at 

runtime, we use an example. Suppose there are 

three time series at runtime, then the "predictor" 

component will have three networks, each for 

predicting one of the series future elements. Each 

network uses some last members of target time 

series named y(t), and some last members of the 

other series named x(t), as its inputs. Therefore 

the new predictor networks have been shown in 

Figure 7, but the networks of our “previous” 

predictor component have been shown in Figure 

8. It is obvious from the Figure 7 that, in the 

“predictor” component there are three NARX 

networks, each for predicting one of the threads 

(time series) future behavior. The output of a 

NARX network is a function of its two inputs 

named x(t) and y(t), therefore each network takes 

a target time series last behavior and another 

time series which represents the last behavior of 

the other threads. Future behavior of y(t) 

predicted by its past behavior and also the past 

behavior of x(t) and the number of last behavior 

obtained by FNN algorithm. 
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But in our previous work for this example, 

we there were three NAR networks and Future 

behavior of y(t) predicted by only its past 

behavior and the number of last behavior 

obtained by “try & fail ” approach. 

 

 
 

Fig 8. The NAR networks of example 

 

4. Evaluation of the results 

4.1 Experiments 

Our model needs a preparation phase before 

that it could be used at runtime. This phase is 

related to configuring and training the predictor 

networks. For this reason first of all we should 

run the target multithread program for a while 

and gather the generated time series by 

"Behavior extractor & Time series generator" 

component during these test runs. We named 

these time series training phase information. 

Therefore we have to apply this information to 

train the networks and to measure the embedded 

dimension of time series using False-nearest-

neighbor algorithm. Afterwards the obtained 

embedded dimensions should be used as the 

delay parameters in the networks. After this 

phase our model is ready to be used at runtime. 

We tested our proposed model using a Java 

written multithread program which consists of 50 

threads and 10 shared locks. We will refer to the 

test multithread program as the target program in 

the remaining of this paper. We ran the target 

program 100, 500 and 1000 times. We measured 

and divided the failure rate in predicting future 

behavior of threads in four categories:  

1. Failure rate based on our previous work [4] 

(which we: (1) considered no embedded 

dimension as the delay parameter and (2) did not 

count the other threads behavior in predicting 

each thread behavior)  

2. Failure rate when we count the other 

threads behavior in predicting each thread 

behavior  

3. Failure rate when we include embedded 

dimension as the delay parameter  

4. Failure rate when we: (1) include 

embedded dimension as the delay parameter and 

(2) count the other threads behavior in predicting 

each thread behavior  

Each category was considered using different 

trains, validations and test sets. Tables 1 to 4 

show results using Markov Chain where 15%, 

20%, 30% and 40% of data were respectively 

used for testing and 85%, 80%, 70% and 60% of 

data were respectively used for validating and 

training the networks. Similarly, Tables 5 to 8 

show results using NARX model where 15%, 

20%, 30% and 40% of data were respectively 

used for testing and 85%, 80%, 70% and 60% of 

data were respectively used for validating and 

training the networks.  
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Table 1. Failure rate using markov chain with 15% test data and 85% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data Percentage Failure Rate Runs 

70% 15% 15% -2.16 100 

70% 15% 15% -2.3 500 

70% 15% 15% -2.5 1000 

 
Table 2. Failure rate using Markov Chain with 20% test data and 80% validation and train data 

Train Data Percentage Validation Data Percentage Test Data Percentage Failure Rate Runs 

65% 15% 20% -2.2 100 

65% 15% 20% -2.45 500 

65% 15% 20% -2.36 1000 

 
Table 3. Failure rate using Markov Chain with 30% test data and 70% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data Percentage Failure Rate Runs 

55% 15% 30% -2.39 100 

55% 15% 30% -2.49 500 

55% 15% 30% -2.62 1000 

 
Table 4. Failure rate using Markov Chain with 40% test data and 60% validation and train data 

Train Data Percentage Validation Data Percentage Test  Data Percentage Failure Rate Runs 

45% 15% 40% -3.59 100 

45% 15% 40% -3.89 500 

45% 15% 40% -3.87 1000 

 
Table 5. Failure Rate using NARX with 15% test data and 85% validation and train data 

Failure Rate Train Data 

Percentage 

Validation Data 

Percentage 

Test Data  

Percentage 

Environment 

Conditions 

Embedding  

Dimension 

Runs 

6.119e-1 70% 15% 15% NO NO 100 

6.054e-1 70% 15% 15% NO YES 100 

6.043e-1 70% 15% 15% YES NO 100 

5.801e-1 70% 15% 15% YES YES 100 

8.719e-1 70% 15% 15% NO NO 500 

4.57e-1 70% 15% 15% NO YES 500 

5.962e-1 70% 15% 15% YES NO 500 

4.411e-2 70% 15% 15% YES YES 500 

8.212e-1 70% 15% 15% NO NO 1000 

4.008e-1 70% 15% 15% NO YES 1000 

6.009e-1 70% 15% 15% YES NO 1000 

3.089e-1 70% 15% 15% YES YES 1000 

 
Table 6. Failure Rate using NARX with 20% test data and 80% validation and train data 

Failure Rate Train Data  

Percentage 

Validation Data  

Percentage 

Test Data  

Percentage 

Environment  

Conditions 

Embedding  

Dimension 

Runs 

6.093e-1 65% 15% 20% NO NO 100 

6.043e-1 65% 15% 20% NO YES 100 

6.085e-1 65% 15% 20% YES NO 100 

5.221e-1 65% 15% 20% YES YES 100 

8.332e-1 65% 15% 20% NO NO 500 

4.431e-1 65% 15% 20% NO YES 500 

5.101e-1 65% 15% 20% YES NO 500 

4.01e-2 65% 15% 20% YES YES 500 

8.77e-1 65% 15% 20% NO NO 1000 

3.981e-1 65% 15% 20% NO YES 1000 

6.764e-1 65% 15% 20% YES NO 1000 

3.821e-1 65% 15% 20% YES YES 1000 
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Table 7. Failure Rate using NARX with 30% test data and 70% validation and train data 

Failure Rate Train Data 

Percentage 

Validation Data 

Percentage 

Test Data  

Percentage 

Environment 

 Conditions 

Embedding  

Dimension 

Runs 

7.498e-1 55% 15% 30% NO NO 100 

6.327e-1 55% 15% 30% NO YES 100 

6.59e-1 55% 15% 30% YES NO 100 

6.481e-1 55% 15% 30% YES YES 100 

10.112e-1 55% 15% 30% NO NO 500 

6.001e-1 55% 15% 30% NO YES 500 

6.439e-1 55% 15% 30% YES NO 500 

5.021e-1 55% 15% 30% YES YES 500 

9.114e-1 55% 15% 30% NO NO 1000 

5.11e-1 55% 15% 30% NO YES 1000 

7.872e-1 55% 15% 30% YES NO 1000 

5.082e-1 55% 15% 30% YES YES 1000 

 
Table 8. Failure Rate using NARX with 40% test data and 60% validation and train data 

Average 

Failure 

Failure 

Rate 

Train Data  

Percentage 

Validation Data  

Percentage 

Test Data  

Percentage 

Environment 

Conditions 

Embedded  

Dimension 

Runs 

8.61E-01 13.309e-1 45% 15% 40% NO NO 100 

7.006e-1 45% 15% 40% NO YES 100 

8.12e-1 45% 15% 40% YES NO 100 

6.006e-1 45% 15% 40% YES YES 100 

7.99E-01 14.589e-1 45% 15% 40% NO NO 500 

5.043e-1 45% 15% 40% NO YES 500 

8.229e-1 45% 15% 40% YES NO 500 

4.1e-1 45% 15% 40% YES YES 500 

4.90E-01 12.984e-1 45% 15% 40% NO NO 1000 

9.034e-2 45% 15% 40% NO YES 1000 

5.002e-1 45% 15% 40% YES NO 1000 

7.001e-2 45% 15% 40% YES YES 1000 

 

The 1st, 5th and 9th rows from every NARX 

table show the results of prediction based on our 

previous work. The failure rate of the rows 

which consider the extensions is much more 

accurate. Therefore we can say, importing the 

new extensions in this work, that is, embedded 

dimension as the delay parameter and 

considering each thread behavior in predicting 

other threads future behavior, made considerable 

improvement in prediction results particularly 

when the number of runs increases. We also 

showed the prediction results of NARX networks 

was much more accurate than the results 

obtained by Markov Chain, which is a statistical 

approach. As we stated, our test target program 

behaves randomly at runtime. Therefore, it was 

not possible to suppose an accurate model for 

Markov Chain prediction strategy. This is why 

that the failure rate of this strategy, as shown in 

Tables 1 to 4, are imprecise in comparison with 

the similar tables of the NARX prediction. 

The average results of every NARX table 

(Figure 9) show a comparative view of the 

results of this strategy. Every line marked with a 

(X,Y,Z) statement, which X means the test set 

percentage, Y means validation set percentage 

and Z means the training set percentage.  When 

the training set percentage is significantly lower 

than twofold test set percentage, the failure rate 

will increase. Also as the number of runs 

increases the effect of training is much more 

visible. According to the chart, the best overall 

result is in the case of (20, 15 and 65). This result 

is dedicated for our target multithread program 

and it may differ for other multithread programs. 

In [4], after training networks we ran target 

program 500 times and tried to predict the 

deadlock possibility during these runs. During 

these runs deadlock occurred 17 times. Our 

approach reported 13 before their occurrences 

and missed 4. Also in 3 cases, it reported false 

positive, thus the precision was about 74%. In 

this work, after training the networks using 

considered extensions, we again ran test 

multithread program 500 times to see how many 

deadlocks will be reported correctly. It results 15 

deadlocks during 500 times. Our model, this time, 

reported 14 and missed just one deadlock not 

reported; also it didn‟t report any false positive. 

This time, the precision was about 88%. In 
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comparison with our previous work [4], the 

extensions made a clear improvement in the 

results up to 15%. 

5. Conclusion 

Online potential deadlock detection 

techniques received lots of attention in recent 

years. But these techniques often are not cost 

efficient, neither in time or space. Also they need 

extra programmer effort to instrument the code 

and in some cases the results of these techniques 

may come too late. Considering these problems 

we proposed a novel online model to predict the 

deadlock at runtime in multithread programs 

rather than discovering deadlocks by pre-running 

some execution traces to find the potential 

deadlocks. In our proposed model the main 

runtime overhead is through the predictor 

component which predicts the future behavior of 

threads using neural network. In this work we 

used the "Nonlinear Autoregressive with external 

input (NARX)" network. The learning phase of 

NARX network has the order of complexity 

)( 3nO  in worst case [22]. But this complexity is 

related to offline phase of our proposed model 

and once the networks were trained, then at 

runtime the output of predictor will be generated 

with a lower order of complexity, therefore our 

model doesn„t force considerable overhead at 

runtime. Also our model could be execute on a 

completely different core from the main program 

and because of the simplicity of instrumentation 

logic it doesn„t interfere in the target program 

execution. 

In this work we extended our previous work 

in two ways:  

1. Using time series analysis approaches in 

configuring predictor network parameter  

2. Using NARX network instead of NAR 

network.  

The obtained results showed that the 

extensions described in this paper, made 

improvement in the prediction of potential 

deadlocks. The configuring a predictor neural 

network considering the problem specification 

and requirements resulted the more precise 

predictions. Because of this experience, in our 

future work, we are planning to configure the 

predictor networks parameters based on the static 

analysis and structure of the target multithread 

program, we hope to obtain more accurate results. 

 

 

 
Fig. 9. Average results of NARX strategy with different test, validation and train data 
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