

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013

27

* Corresponding Author

Prediction of Deadlocks in Concurrent Programs

Using Neural Network

Elmira Hasanzad
Department of Computer Engineering, University of Kashan, Iran

elm.hasanzade@grad.kashanu.ac.ir

Seyed Morteza Babamir
*

Department of Computer Engineering, University of Kashan, Iran

babamir@kashanu.ac.ir

Received: 26/Nov/2012 Accepted: 20/Feb/2013

Abstract
The dependability of concurrent programs is usually limited by concurrency errors like deadlocks and

data races in allocation of resources. Deadlocks are difficult to find during the program testing because

they happen under very specific thread or process scheduling and environmental conditions. In this

study, we extended our previous approach for online potential deadlock detection in resources allocated

by multithread programs. Our approach is based on reasoning about deadlock possibility using the

prediction of future behavior of threads. Due to the nondeterministic nature, future behavior of

multithread programs, in most of cases, cannot be easily specified. Before the prediction, the behavior of

threads should be translated into a predictable format. Time series is our choice to this conversion

because many Statistical and Artificial Intelligence techniques can be developed to predict the future

members of the time series. Among all the prediction techniques, artificial neural networks showed

applicable performance and flexibility in predicting complex behavioral patterns which are the most

usual cases in real world applications. Our model focuses on the multithread programs which use locks

to allocate resources. The proposed model was used to deadlock prediction in resources allocated by

multithread Java programs and the results were evaluated.

Keywords: Detecting Potential Deadlocks, Time Series Prediction, Multithread Programs, Behavior

Extraction.

1. Introduction

Multithread programs are becoming

increasingly common. Since multi-core

processor generation has brought more cores,

developers must parallelize programs if they

want to speed the program execution up.

However, applying concurrency method causes

some integrity and mutual exclusion issues in

allocating resources. To resolve them, locking

mechanism was developed. However, this

mechanism leads to some other known problems

like starvation and deadlock in resources

allocated by concurrent systems. Detection of

such errors in the program testing phase may be

difficult since they often occur in the special

sequence of events [1]. This is why that, these

errors are sensitive to timings, workloads,

compiler options and memory models. In

addition, if a deadlock or data race in resource

allocation emerges in the testing phase, it is

difficult to find out its root cause; because in a

multithread program, even if there is a deadlock

between some threads in allocating resources at

runtime, other threads still can run. The effects of

such a situation can manifest itself millions of

cycles after occurring the error. Deadlock is a

common form of bug in software nowadays.

Sun‟s bug database showed that 6,500 bug

reports out of 198,000 contain “deadlock” [2].

Main reasons of deadlock are: (1) software

systems are often written by diverse

programmers; therefore, it is difficult to follow a

lock order discipline in allocating resources, (2)

programmers often introduce deadlocks when

they fix race conditions by adding new locks and

(3) using third-party software such as plug-in

because the third-party software may not follow

the locking discipline followed by the parent

software [3]. This is why that “deadlock

avoidance” techniques became unusable. Such

techniques are simple in theory but so restrictive

in real application.

Therefore “detecting potential deadlocks”

became an acceptable method to solve deadlock

problem in resources allocation. “Potential

deadlock detection” techniques are Online or

Offline, which Online ones try to find the

concurrency errors at runtime. Such approaches

mostly use a monitor to observe the program

mailto:Elm.hasanzade@grad.kash%20anu.ac.ir
mailto:babamir@kashanu.ac.ir

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network

28

execution and based on the observations, they

decide about the error possibility. In comparison

with offline techniques, online ones have the

following advantages:

1. They only visit feasible paths of program

executions and have accurate views of the

values [1],

2. Because of their accurate view, they

generate fewer false alarms. False alarm

means a fake report of an error (in our case,

a deadlock),

3. They don‟t need considerable programmer

effort,

4. These approaches are language independent

meaning that the solution is not depended

on features of a specific programming

language.

 In this paper, we demonstrate and extend a

novel online potential deadlock detection

approach, whose base was presented in [4]. It

was based on the prediction of processes or

threads behavior at runtime and dealt with

reasoning about the deadlock possibility in the

future. In this work, we introduce time series

analysis approaches in configuring prediction

parameters. Also, we include the environmental

conditions in predicting the threads behavior to

improve the correctness of obtained results. We

obtained considerable improvement in detecting

potential deadlocks in comparison with our

previous work.

This paper is organized as follows: Section 2

overviews the related works and our proposed

model is discussed in Section 3. We analyze our

approach and evaluate its results in Section 4.

We draw conclusions in Section 5.

2. Related works

As mentioned in the previous section, our

approach is based on finding potential deadlocks

in allocating resources at runtime using program

behavior extraction and time series prediction.

Therefore in this section, we first overview

online approaches detecting potential deadlocks

in resources allocated by concurrent programs.

Afterwards, we discuss different approaches used

time series for the prediction.

2.1 Online potential deadlock detection

Informally, in multi-threaded systems used

shared memory, deadlocks in allocating

resources happen when a set of threads are

blocked forever; this is because each thread in

the set is waiting to acquire a lock held by some

thread [2]. Generally in a concurrent system, the

order of acquiring and releasing locks in

allocating and freeing resources can be described

as a directed graph where nodes indicate locking

resources so that an edge from node A to node B

means the system has locked resource A and is

waiting for resource B. There will be a deadlock

in allocation of resources if a circle is found in

the graph. Lock graphs and their variations have

been used for detection of deadlocks in resources

allocated by concurrent programs.

GoodLock algorithm [5] is an approach to

detect potential deadlocks in multithread

programs. It only detects potential deadlocks

caused through interleaving locks by just two

threads. To overcome this limitation, some

generalized versions of GoodLock algorithm was

presented in [6] and [7] which detect potential

deadlocks caused by any number of threads.

Their approach address programs that use bloc

and non-block structured locking.

In [8], authors constructed an online lock

graph and found specific paths, which named

“not guarded SCC (strongly connected

components)”. “Not guarded SCC” indicates one

or more potential deadlocks because there can be

several cycles in the SCC. They tried to exhibit

the deadlocks using injection of noises in the

SCCs. A noise is inserted to create a delay to

acquire a lock; accordingly, they raised the

probability of manifesting the real deadlocks.

Although this approach is based on GoodLock

algorithm, its advantage over one that presented

in [6] and [7] is regarding different runs. The

Goodlock looks at the scope of one process run.

This means, when a cycle in the graph is caused

by sequences of two different runs, Goodlock

can‟t detect.

GoodLock algorithm also was used in

combination with other techniques to find the

potential deadlock at runtime such as

DEADLOCKFUZZER [2]. This approach

consists of two phases. In the first phase, a

simple variant of the Goodlock algorithm, called

informative Goodlock, was used to discover

cycles of potential deadlock. In the second phase,

DEADLOCKFUZZER executed the program at

a random schedule in order to create a real

deadlock corresponding to a cycle which

reported in the previous phase. In [3] “deadlock

immunity” concept was introduced for avoiding

occurrence of deadlocks occurred in the past.

When a deadlock occurs for the first time, the

deadlock information is saved in a "context" in

order to avoid the similar contexts in future runs.

This approach achieved “immunity” against the

corresponding deadlocks. To avoid deadlock

whose context has been already seen, the

approach changed the schedule of threads. As the

several deadlocks occur, the numbers of contexts

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 29

increases; therefore it can avoid a wider range of

deadlocks. However, if a deadlock does not have

a pattern similar to one that already encountered,

the approach cannot avoid its occurrence.

As we mentioned in Section Introduction, all

the online deadlock detection approaches share

some common advantages like: language

independency, accurate views of the values,

fewer false alarms and programmer efforts. But

online techniques suffer from some

disadvantages too. The most common problem is

imposing the heavy overhead at runtime, both in

time or space. All the mentioned techniques try

to extract some relevant traces before their real

execution based on observed current execution.

In fact, they pre-run these extracted traces to find

out whether there is any deadlock in the trace or

not. This phase is time consuming because of

extracting and running relevant traces. Also, one

of the important steps for online techniques is the

code instrumentation. Code instrumentation

means modifying the target code for runtime

monitoring code behavior. This step could be

time consuming too and for the legacy codes it is

more difficult. Sometimes, online potential

deadlock detection techniques may show

deadlocks late. This leads to finding a potential

deadlock when the rollback mechanism is

impossible because of some preclude actions like

I/O.

2.2 Time series prediction approaches

Because of weaknesses of the online potential

deadlock detection techniques mentioned in

previous section, we proposed a novel online

approach which targets the increase of

performance, decrease of instrumentation and the

enhancement of the prediction [4]. In this

approach, we needed to predict future members

of the generated time series at runtime. In

general, time series prediction techniques can be

classified in two categories: statistical and neural

network based techniques. The statistical

prediction techniques such as Autoregressive

(AR), Moving Average (MA) and combined AR

and MA (ARIMA) [9] have several limitations,

such as inefficiency for real world problems

which are often complex and nonlinear. This is

due to the fact that these techniques assume that

a time series is generated by a linear process.

Thus, they are called linear statistical predictors.

The nonlinear statistical predictors such as

predictors, “threshold”, “exponential”,

“polynomial” and “bilinear” were proposed to

increase of the prediction precision [9],[10].

However, the selection of a suitable nonlinear

model and the computation of its parameters are

difficult tasks for a practical problem especially

when the time series behavior is non-

deterministic. Moreover, it has been shown that

the capability of the nonlinear model is limited,

because it is unable to provide a long-term

prediction [11].

In recent years, artificial intelligence tools

have been extensively used for time-series based

prediction [12, 13]. In particular, artificial neural

networks are frequently exploited for time-series

based prediction of systems behavior. A neural

network is an information processing system that

is capable of treating complex problems of

pattern recognition, dynamic and nonlinear

processes. In particular, it can be an efficient tool

for prediction applications. The advantage of

neural networks based approaches over statistical

ones is the capability of learning and accordingly

generalization of their knowledge [14]. Also the

neural networks are based on training and in

many cases their prediction results are more

precise, even if the training set has considerable

noise [14]. These approaches are much more

suitable for real world problems which do not

have specific rules.

There are some composite approaches which

try to take the advantage of the accuracy of

statistical models and the generality of neural

network approaches. In [15], authors composed

statistical model ARIMA and a feed-forward

neural network to forecast time series. A feed

forward network is a type of neural networks

where all of its connections have the same

direction [16]. This composition could be

efficient in predicting some well-known time

series. However, in the case of other time series,

finding the proper value for statistical part of the

composition is a difficult task and wrong values

could affect the accuracy of prediction. Also it

has been proved that the capability of recurrent

neural networks is equivalent to the Turing

machine [17]. Recurrent network is a class of

neural network where connections between the

layers of it could be backward or forward [16].

Therefore recurrent networks can approximate

any function by learning from the function inputs

and outputs.

3. Potential deadlock prediction

In our previous work we proposed an online

predictive model to detect the potential

deadlocks in multithread programs which is the

basis of our approach [4]. Figure 1 shows our

proposed model architecture. This model is

consists of four components which are

collaborating together at runtime. In this work,

we aim to extend the basis model, indeed we

extend “predictor” component, to be able to

generate much more accurate prediction.

http://en.wikipedia.org/wiki/Neural_network

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network

30

3.1 The basis of proposed model

We used dependency graph in our model

which nodes are the concurrent threads or

processes. There is an edge from node A to node

B if and only if thread A wants to acquire a lock

which held by thread B and A has to wait until B

release the lock, after that the edge will be erased.

There is a deadlock in the system if there is a

cycle in dependency graph. Therefore, except

requesting or releasing the locks, other behavior

of threads does not play any role in deadlock

occurrence. For this reason in our proposed

model we target only the instructions which are

related to acquiring or releasing the locks. We

named this type of instructions deadlock-prone

behavior. The main difference between our

approach and other online potential deadlock

detection approaches which we explained in

Section 2, is that we try to predict the future

deadlock-prone behavior of threads at runtime

rather than try to abstract different execution

traces from the current execution by changing

threads schedules or noise injection. If we could

have an accurate view of future deadlock-prone

behavior of threads then we can accurately result

about the deadlock occurrence in the future [4].

Fig 1. The basis of proposed model [4]

The start point of our model is the "Behavior

extractor & Time series generator" component.

Actually this component is composed of two

elements:

Two annotated Java functions: one for

extracting deadlock-prone behavior and another

for converting extracted behavior to univariate

time series. Figure 2 shows these two functions:

1- extractor & convertor () 2- this Period

behaviors (). The first one task is catching lock ()

and unlock () at runtime and the second one task,

is appending these instructions to the proper time

series.

1. @AfterRunning(pointcut = "execution(*

java.util.concurrent.locks.unlock(..))")

2. @Before(pointcut = "execution(*

java.util.concurrent.locks.lock(..))")

3. public void extarctor&convertor

(JoinPoint joinPoint) {

4. String

functionName=joinPoint.getSignature().ge

tName();

5. If(functionName.eguals(“lock”)){

6. thisPeriodBehaviors(“1”,

Arrays.toString(joinPoint.getArgs()),this.n

ame);

7. }

8. Else{

9. thisPeriodbehaviors(“2”,

Arrays.toString(joinPoint.getArgs()),this.n

ame);

10. }

}
Fig 2. Functions pseudo code

Line 1, shows an annotation which means:

whenever an Unlock() instruction executed, the

extractor&convertor(…) method, should be

executed immediately. Line 2, shows an

annotation which means: right before the

execution of a Lock() instruction, the

extractor&convertor(…) method, should be

executed. Line 3 is the method sign and line 4, is

for obtaining the name of the event which caused

the extractor&convertor(…) method to be

executed. In line 5 to 10, based on the name of

event (lock or unlock), a specific character will

be appended to a specific time series. In this way

all the lock() and unlock() events which are

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 31

issued from threads at runtime, are caught and

converted to time series.

ApectJ compiler. The task of this compiler is

weaving two Java functions to the target

multithread programs in the locations which are

specified by annotations above the method.

We mentioned that, one of the problems in

runtime verification approaches is source code

instrumentation step. The instrumentation is a

time consuming task and when the verification

logic is complex, it could be inefficient at

runtime, both in time and space. But our two

Java functions which are weaved to the target

multithread program, are easy and light weight

thus their runtime overhead is negligible.

As we said, there are two Java functions for

extracting dedicated behavior and time series

generating goals. Time series is a set of

observations from past until present, denoted by

s(t-i) {i= 0.. P }, where P is the number of

observations. Time series prediction is to

estimate future observations, let's say s (t+i) for

{i= 1.. N}, where N is the size of prediction

window. Also, a univariate time series refers to

the set of values over the time of a single

quantity.

The next component in our model is "Online

Lock Tracker". According to Figure 1, this

component takes the deadlock-prone behavior

from "Behavior extractor & Time series

generator" component at runtime and draws a

dependency graph. This dependency graph will

be updated whenever a thread issues a deadlock-

prone behavior.

The "predictor" component takes the

generated time series from "Behavior extractor &

Time series generator" and tries to predict the

next members of the time series. In a multithread

program, the order of executed instructions of a

thread could be affected by other threads

executions. This fact makes the concurrent

systems nondeterministic thus it is hard to

predict the future thread behavior. We can't

assume any pre-defined generator for the time

series which are representing threads behavior.

This property makes the statistical prediction

techniques useless for our purpose. Because the

statistical prediction techniques, assume that a

time series is generated by linear or nonlinear

process, but the selection of the suitable

nonlinear or linear model and computation of its

parameters is a difficult task for a practical

problem without a priori knowledge about the

time series[10]. The prediction requirements of

our model lead us to use artificial intelligence

prediction techniques. Time series prediction

techniques which are based on AI use several

Artificial Neural Networks [10]. Based on the

properties of time series, there are different

network topologies and learning algorithms. The

selection of a proper network model and

adjustment of its parameters should be carried

out by considering the problem requirements.

The predictions of the “predictor” component

are also in the form of time series. These

predictions and current dependency graph (the

output of “online lock tracker” component) are

injected to the "Decision maker" component.

This component is responsible for deciding about

the deadlock possibility in the next period. We

try to clarify our model using an example.

Assume that we have four threads named

T1,…,T4 and five locks named L1, …,L5. Also

assume the current dependency graph is

something like Figure 3 (a). This graph

represents that T1 has held L1 and L3 and wants

to hold L2 which held by T2 thus T1 stops

proceeding and waits until T2 releases L2. Also

T4 has held L5 and wants to hold L3 which held

by T1 thus T4 stops proceeding. Suppose the

predictions of "Predictor" component are the

following:

“Predictor” component predictions

T3={ will request L5}, T2={ will request L4}

"Decision maker" takes current lock graph

and predictions and composes them together to

construct an abstract graph. Afterwards, decision

maker searches the abstract graph to find a cycle.

If so, it reports a possibility of deadlock in the

next period. Figure 3 (b) shows the abstract

graph of our example as a composition of

predictions and dependency graph.

Fig 3 (a). Current lock graph Fig 3(b). Resulted abstract graph

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network

32

In our example, the abstract graph has a cycle,

therefore the "Decision maker" component reports:

(1) a deadlock possibility in the next period and (2)

T1 to T4 as the threads will be involved in this

deadlock. But, if the predictions are:

“Predictor” component predictions

T3={will request L5}, T2={ will request L4 and

will release L2}

For this case, Figure 4 shows the abstract

graph where there is not any cycle. Therefore,

the "Decision maker" component will not report

any possibility of deadlock in the next period.

Fig 4. Resulted another abstract graph

3.2 Applying the Extensions

In our previous work we used a recurrent

neural network named non-linear autoregressive

(NAR) in predictor component. A NAR network

tries to predict the future element of a given time

series using d last values of that series [18]. That

is, NAR network assumes the future element of a

series is a function of its last values (Formula 1).

The structure of NAR network has been

shown in Figure 5. This network has d inputs,

each for one of the last values of time series.

Fig 5. Structure of a NAR network

We named d as the delay parameter and it is

one of the important factors which directly

imposes the precision of predictions in a

predictor neural network. Suppose in a time

series each element is dependent on two last

elements, That is . If
we try to predict using a predictor neural

network such as NAR, the most accurate results

will be acquired if . Actually in this

way the network considers two last elements in

predicting the future element. In previous work

we obtained the proper value for delay parameter

using “try & fail” approach. That is, we gathered

the runtime behavior of our multithread test

program and converted them into the time series.

Then we tried to predict the future members of

test time series, using multiple NAR networks so

that every network had a different value for delay

parameter from others. After that we chose the

delay value of a network which made the most

precise predictions.

In this work we improve the prediction

precision of our “predictor” component, by

configuring the delay parameter of network using

a time series analysis methods. “Embedded

dimension” is a factor which determines the

relationships among the past and future members

of a time series [19]. The value of the

“Embedded dimension” for a time series

represents the optimum number of last elements

which every element is dependent on. Therefore

we apply the “Embedded dimension “as the

delay parameter in our predictor network. To

obtain the “Embedded dimension” of a time

series there are multiple approaches. The most

known approach is False-Nearest-Neighbor,

algorithm. This algorithm was firstly proposed

by Kennel et al [20]. The calculation of the

“Embedded dimension” allows one to extract the

process behavior parameters from the observed

series of events [19]. The predictor network can

be further configured according to the obtained

results from False-Nearest-Neighbor (FNN), in

order to remember the required number of last

elements in time series.

In this work, in addition to applying

“Embedded dimension” as the delay parameter,

we use “Nonlinear Autoregressive with External

input” (NARX) network instead of NAR network.

Because in our model the major task of the

predictor network is predicting threads behavior

at runtime. But the behavior of threads is not

completely separate from each other, actually the

future behavior of each thread is affected by

other threads past and current behavior. Thus we

need a prediction methodology which could

satisfy this requirement. As it is obvious, the

NAR does not consider an external input in its

prediction procedure. Because of this limitation

of NAR, it may not meet our prediction

requirements properly. We need a prediction

method which could consider other series (that is,

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 33

other thread‟s behavior) in predicting a time

series.

NARX network, like NAR network, is a

recurrent network with an external input [21].

The main idea of recurrent networks is providing

a weighted feedback connection between layers

of neurons and adding time significance to entire

network. Therefore, recurrent neural networks

simulate a temporal memory and are suitable for

tasks like prediction which need a memory for

the past events. NARX network assumes the

future element of a given time series is a function

of its last elements and another series last

elements (Formula 2).

 (

)
Using this external input, it is possible to

predict a time series considering the last

elements of the time series under prediction and

also considering other time series last elements.

Figure 6 shows our extended “Predictor”

component.

Fig 6. The extended “Predictor” component

Fig 7. The NARX networks of example

To clarify the differences between the

previous and current “Predictor” component at

runtime, we use an example. Suppose there are

three time series at runtime, then the "predictor"

component will have three networks, each for

predicting one of the series future elements. Each

network uses some last members of target time

series named y(t), and some last members of the

other series named x(t), as its inputs. Therefore

the new predictor networks have been shown in

Figure 7, but the networks of our “previous”

predictor component have been shown in Figure

8. It is obvious from the Figure 7 that, in the

“predictor” component there are three NARX

networks, each for predicting one of the threads

(time series) future behavior. The output of a

NARX network is a function of its two inputs

named x(t) and y(t), therefore each network takes

a target time series last behavior and another

time series which represents the last behavior of

the other threads. Future behavior of y(t)

predicted by its past behavior and also the past

behavior of x(t) and the number of last behavior

obtained by FNN algorithm.

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network

34

But in our previous work for this example,

we there were three NAR networks and Future

behavior of y(t) predicted by only its past

behavior and the number of last behavior

obtained by “try & fail ” approach.

Fig 8. The NAR networks of example

4. Evaluation of the results

4.1 Experiments

Our model needs a preparation phase before

that it could be used at runtime. This phase is

related to configuring and training the predictor

networks. For this reason first of all we should

run the target multithread program for a while

and gather the generated time series by

"Behavior extractor & Time series generator"

component during these test runs. We named

these time series training phase information.

Therefore we have to apply this information to

train the networks and to measure the embedded

dimension of time series using False-nearest-

neighbor algorithm. Afterwards the obtained

embedded dimensions should be used as the

delay parameters in the networks. After this

phase our model is ready to be used at runtime.

We tested our proposed model using a Java

written multithread program which consists of 50

threads and 10 shared locks. We will refer to the

test multithread program as the target program in

the remaining of this paper. We ran the target

program 100, 500 and 1000 times. We measured

and divided the failure rate in predicting future

behavior of threads in four categories:

1. Failure rate based on our previous work [4]

(which we: (1) considered no embedded

dimension as the delay parameter and (2) did not

count the other threads behavior in predicting

each thread behavior)

2. Failure rate when we count the other

threads behavior in predicting each thread

behavior

3. Failure rate when we include embedded

dimension as the delay parameter

4. Failure rate when we: (1) include

embedded dimension as the delay parameter and

(2) count the other threads behavior in predicting

each thread behavior

Each category was considered using different

trains, validations and test sets. Tables 1 to 4

show results using Markov Chain where 15%,

20%, 30% and 40% of data were respectively

used for testing and 85%, 80%, 70% and 60% of

data were respectively used for validating and

training the networks. Similarly, Tables 5 to 8

show results using NARX model where 15%,

20%, 30% and 40% of data were respectively

used for testing and 85%, 80%, 70% and 60% of

data were respectively used for validating and

training the networks.

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 35

Table 1. Failure rate using markov chain with 15% test data and 85% validation and train data

Train Data Percentage Validation Data Percentage Test Data Percentage Failure Rate Runs

70% 15% 15% -2.16 100

70% 15% 15% -2.3 500

70% 15% 15% -2.5 1000

Table 2. Failure rate using Markov Chain with 20% test data and 80% validation and train data

Train Data Percentage Validation Data Percentage Test Data Percentage Failure Rate Runs

65% 15% 20% -2.2 100

65% 15% 20% -2.45 500

65% 15% 20% -2.36 1000

Table 3. Failure rate using Markov Chain with 30% test data and 70% validation and train data

Train Data Percentage Validation Data Percentage Test Data Percentage Failure Rate Runs

55% 15% 30% -2.39 100

55% 15% 30% -2.49 500

55% 15% 30% -2.62 1000

Table 4. Failure rate using Markov Chain with 40% test data and 60% validation and train data

Train Data Percentage Validation Data Percentage Test Data Percentage Failure Rate Runs

45% 15% 40% -3.59 100

45% 15% 40% -3.89 500

45% 15% 40% -3.87 1000

Table 5. Failure Rate using NARX with 15% test data and 85% validation and train data

Failure Rate Train Data

Percentage

Validation Data

Percentage

Test Data

Percentage

Environment

Conditions

Embedding

Dimension

Runs

6.119e-1 70% 15% 15% NO NO 100

6.054e-1 70% 15% 15% NO YES 100

6.043e-1 70% 15% 15% YES NO 100

5.801e-1 70% 15% 15% YES YES 100

8.719e-1 70% 15% 15% NO NO 500

4.57e-1 70% 15% 15% NO YES 500

5.962e-1 70% 15% 15% YES NO 500

4.411e-2 70% 15% 15% YES YES 500

8.212e-1 70% 15% 15% NO NO 1000

4.008e-1 70% 15% 15% NO YES 1000

6.009e-1 70% 15% 15% YES NO 1000

3.089e-1 70% 15% 15% YES YES 1000

Table 6. Failure Rate using NARX with 20% test data and 80% validation and train data

Failure Rate Train Data

Percentage

Validation Data

Percentage

Test Data

Percentage

Environment

Conditions

Embedding

Dimension

Runs

6.093e-1 65% 15% 20% NO NO 100

6.043e-1 65% 15% 20% NO YES 100

6.085e-1 65% 15% 20% YES NO 100

5.221e-1 65% 15% 20% YES YES 100

8.332e-1 65% 15% 20% NO NO 500

4.431e-1 65% 15% 20% NO YES 500

5.101e-1 65% 15% 20% YES NO 500

4.01e-2 65% 15% 20% YES YES 500

8.77e-1 65% 15% 20% NO NO 1000

3.981e-1 65% 15% 20% NO YES 1000

6.764e-1 65% 15% 20% YES NO 1000

3.821e-1 65% 15% 20% YES YES 1000

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network

36

Table 7. Failure Rate using NARX with 30% test data and 70% validation and train data

Failure Rate Train Data

Percentage

Validation Data

Percentage

Test Data

Percentage

Environment

 Conditions

Embedding

Dimension

Runs

7.498e-1 55% 15% 30% NO NO 100

6.327e-1 55% 15% 30% NO YES 100

6.59e-1 55% 15% 30% YES NO 100

6.481e-1 55% 15% 30% YES YES 100

10.112e-1 55% 15% 30% NO NO 500

6.001e-1 55% 15% 30% NO YES 500

6.439e-1 55% 15% 30% YES NO 500

5.021e-1 55% 15% 30% YES YES 500

9.114e-1 55% 15% 30% NO NO 1000

5.11e-1 55% 15% 30% NO YES 1000

7.872e-1 55% 15% 30% YES NO 1000

5.082e-1 55% 15% 30% YES YES 1000

Table 8. Failure Rate using NARX with 40% test data and 60% validation and train data

Average

Failure

Failure

Rate

Train Data

Percentage

Validation Data

Percentage

Test Data

Percentage

Environment

Conditions

Embedded

Dimension

Runs

8.61E-01 13.309e-1 45% 15% 40% NO NO 100

7.006e-1 45% 15% 40% NO YES 100

8.12e-1 45% 15% 40% YES NO 100

6.006e-1 45% 15% 40% YES YES 100

7.99E-01 14.589e-1 45% 15% 40% NO NO 500

5.043e-1 45% 15% 40% NO YES 500

8.229e-1 45% 15% 40% YES NO 500

4.1e-1 45% 15% 40% YES YES 500

4.90E-01 12.984e-1 45% 15% 40% NO NO 1000

9.034e-2 45% 15% 40% NO YES 1000

5.002e-1 45% 15% 40% YES NO 1000

7.001e-2 45% 15% 40% YES YES 1000

The 1st, 5th and 9th rows from every NARX

table show the results of prediction based on our

previous work. The failure rate of the rows

which consider the extensions is much more

accurate. Therefore we can say, importing the

new extensions in this work, that is, embedded

dimension as the delay parameter and

considering each thread behavior in predicting

other threads future behavior, made considerable

improvement in prediction results particularly

when the number of runs increases. We also

showed the prediction results of NARX networks

was much more accurate than the results

obtained by Markov Chain, which is a statistical

approach. As we stated, our test target program

behaves randomly at runtime. Therefore, it was

not possible to suppose an accurate model for

Markov Chain prediction strategy. This is why

that the failure rate of this strategy, as shown in

Tables 1 to 4, are imprecise in comparison with

the similar tables of the NARX prediction.

The average results of every NARX table

(Figure 9) show a comparative view of the

results of this strategy. Every line marked with a

(X,Y,Z) statement, which X means the test set

percentage, Y means validation set percentage

and Z means the training set percentage. When

the training set percentage is significantly lower

than twofold test set percentage, the failure rate

will increase. Also as the number of runs

increases the effect of training is much more

visible. According to the chart, the best overall

result is in the case of (20, 15 and 65). This result

is dedicated for our target multithread program

and it may differ for other multithread programs.

In [4], after training networks we ran target

program 500 times and tried to predict the

deadlock possibility during these runs. During

these runs deadlock occurred 17 times. Our

approach reported 13 before their occurrences

and missed 4. Also in 3 cases, it reported false

positive, thus the precision was about 74%. In

this work, after training the networks using

considered extensions, we again ran test

multithread program 500 times to see how many

deadlocks will be reported correctly. It results 15

deadlocks during 500 times. Our model, this time,

reported 14 and missed just one deadlock not

reported; also it didn‟t report any false positive.

This time, the precision was about 88%. In

Journal of Information Systems and Telecommunication, Vol. 1, No. 1, Jan – March 2013 37

comparison with our previous work [4], the

extensions made a clear improvement in the

results up to 15%.

5. Conclusion

Online potential deadlock detection

techniques received lots of attention in recent

years. But these techniques often are not cost

efficient, neither in time or space. Also they need

extra programmer effort to instrument the code

and in some cases the results of these techniques

may come too late. Considering these problems

we proposed a novel online model to predict the

deadlock at runtime in multithread programs

rather than discovering deadlocks by pre-running

some execution traces to find the potential

deadlocks. In our proposed model the main

runtime overhead is through the predictor

component which predicts the future behavior of

threads using neural network. In this work we

used the "Nonlinear Autoregressive with external

input (NARX)" network. The learning phase of

NARX network has the order of complexity

)(3nO in worst case [22]. But this complexity is

related to offline phase of our proposed model

and once the networks were trained, then at

runtime the output of predictor will be generated

with a lower order of complexity, therefore our

model doesn„t force considerable overhead at

runtime. Also our model could be execute on a

completely different core from the main program

and because of the simplicity of instrumentation

logic it doesn„t interfere in the target program

execution.

In this work we extended our previous work

in two ways:

1. Using time series analysis approaches in

configuring predictor network parameter

2. Using NARX network instead of NAR

network.

The obtained results showed that the

extensions described in this paper, made

improvement in the prediction of potential

deadlocks. The configuring a predictor neural

network considering the problem specification

and requirements resulted the more precise

predictions. Because of this experience, in our

future work, we are planning to configure the

predictor networks parameters based on the static

analysis and structure of the target multithread

program, we hope to obtain more accurate results.

Fig. 9. Average results of NARX strategy with different test, validation and train data

References
[1] D. Engler, K. Ashcraft,“ RacerX: effective, static

detection of race conditions and deadlocks,” ACM

SIGOPS Operating Systems Review, vol. 37, no. 5,

pp. 237–252, 2003.

[2] P. Joshi, C. S. Park, K. Sen, and M. Naik, “ A

randomized dynamic program analysis technique

for detecting real deadlocks,” in ACM Sigplan

Notices, 2009, vol. 44, pp. 110–120.

[3] H. Jula, D. Tralamazza, C. Zamfir, G. Candea,

“ Deadlock immunity: Enabling systems to defend

against deadlocks,” in Proceedings of the 8th

USENIX conference on Operating systems design

and implementation, 2008, pp. 295–308.

[4] E. Hasanzade , S. M. Babamir, “An Artificial

Neural Network Based Model for Online

Prediction of Potential Deadlock in Multithread

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

100 run 500 run 1000 run

(15,15,70)

(20,15,65)

(30,15,55)

(40,15,45)

Hasanzade & Babamir, Prediction of Deadlocks in Concurrent Programs Using Neural Network

38

Programs,” in 16th Symposium of Artificial

Intelligence and Signal Processing, AISP 2012,

IEEE Society, pp. 417-422, 2012.

[5] Klaus Havelund. Using runtime analysis to guide

model checking of java programs. In Proc. 7th Int'l.

SPIN Workshop on Model Checking of

Software,volume 1885 of Lecture Notes in

Computer Science, pages 245-264. Springer-

Verlag, August 2000.

[6] R. Agarwal, L. Wang, S. Stoller, “ Detecting

potential deadlocks with static analysis and

run-time monitoring,” Hardware and Software,

Verification and Testing, pp. 191–207, 2006.

[7] S. Bensalem, K. Havelund, “Scalable deadlock

analysis of multi-threaded programs,” in

Proceedings of the Parallel and Distributed

Systems: Testing and Debugging (PADTAD)

Track of the 2005 IBM Verification Conference.

Springer-Verlag, 2005.

[8] Y. Nir-Buchbinder, R. Tzoref, S. Ur, “Deadlocks:

From exhibiting to healing,” in Runtime

Verification, 2008, pp. 104–118.

[9] O. Voitcu, Y. Wong, “On the construction of a

nonlinear recursive predictor,” Science B.V.,

Journal of Computational and Applied

Mathematics, 2004.

[10] N. Baccour, H. Kaaniche, M. Chtourou, M. B.

Jemaa, “ Recurrent neural network based time

series prediction: Particular design problems,”

studies, vol. 1, p. 7.

 [11] Y. Chen B. Yang J. Dong A. Abraham, “ Time-

series forecasting using flexible neural tree model,”

Science, Information Sciences pp 219–235, 2004.

[12] C.J. Lin, Y.J. Xu, “A self-adaptive neural fuzzy

network with group-based symbiotic evolution and

its prediction applications,” Science, Fuzzy Sets

and Systems, 2 September 2005.

[13] R. Zemouri, P. Ciprian Patic “Recurrent Radial

Basis Function Network for Failure Time Series

Prediction,” World Academy of Science,

Engineering and Technology 72, 2010.

[14] R. Zemouri, D. Racoceanu, N. Zerhouni,

“Recurrent radial basis function network for time-

series prediction,” Engineering Applications of

Artificial Intelligence pp. 453–463, 2003.

[15] M. Khashei, M. Bijari, “ An artificial neural

network (p,d,q) model for time series forecasting”

Journal of Expert Systems with Applications, pp.

479-489, 2010.

[16] R. Rojas, “Neural networks: a systematic

introduction,” Springer. pp. 336, 1996.

[17] H. Hyotyniemi, “ Turing Machines are Recurrent

Neural Networks,” Proceedings of STeP'96. Jarmo

Alander, Timo Honkela and Matti Jakobsson, pp.

13-24, 1996.

[18] G. Dorffner, “Neural Networks for Time Series

Processing,” Neural Network World, Vol. 6, No.

4, 447-468, 1996

[19] E. Dodonov, R. F. de Mello, “A novel approach

for distributed application scheduling based on

prediction of communication events,” Future

Generation Computer Systems, vol. 26, no. 5, pp.

740–752, 2010.

[20] M.B. Kennel, R. Brown, H.D.I. Abarbanel,

“Determining embedding dimension for phase-

space reconstruction using a geometrical

construction”, Physical Review A 45 (6) (1992)

34033411.

[21] T.Lin, B.G. Horne, P.Tino, C. Lee Giles, “ Learning

long-term dependencies in NARX recurrent neural

networks,” IEEE Transactions on Neural Networks,

Vol. 7, No. 6, 1996, pp. 1329-1351

[22] G. Ferrari, G. De Nicolao, “NARX models:

optimal parametric approximation of

nonparametric estimators,” in American Control

Conference, 2001. Proceedings of the 2001, 2001,

vol. 6, pp. 4868–4873.

http://books.google.com/books?id=txsjjYzFJS4C&pg=PA336&dq=%22Bidirectional+associative+memory%22+%22recurrent%22
http://books.google.com/books?id=txsjjYzFJS4C&pg=PA336&dq=%22Bidirectional+associative+memory%22+%22recurrent%22
http://www.hut.fi/TKK/Yksikot/Osastot/T/Saatotekniikka/homepage/heikki_h.htm

