

* Corresponding Author

An Effective Risk Computation Metric for Android Malware

Detection

Mahmood Deypir*
Faculty of Computer and Information Technology, Shahid Sattari University of Science and Technology, Tehran, Iran

mdeypir@ssau.ac.ir

Ehsan Sharifi
Faculty of Computer and Information Technology, Shahid Sattari University of Science and Technology, Tehran, Iran

sharifi@ssau.ac.ir

Received: 15/May/2016 Revised: 05/Sep/2016 Accepted: 07/Sep/2016

Abstract
Android has been targeted by malware developers since it has emerged as widest used operating system for

smartphones and mobile devices. Android security mainly relies on user decisions regarding to installing applications

(apps) by approving their requested permissions. Therefore, a systematic user assistance mechanism for making appropriate

decisions can significantly improve the security of Android based devices by preventing malicious apps installation.

However, the criticality of permissions and the security risk values of apps are not well determined for users in order to

make correct decisions. In this study, a new metric is introduced for effective risk computation of untrusted apps based on

their required permissions. The metric leverages both frequency of permission usage in malwares and rarity of them in

normal apps. Based on the proposed metric, an algorithm is developed and implemented for identifying critical permissions

and effective risk computation. The proposed solution can be directly used by the mobile owners to make better decisions

or by Android markets to filter out suspicious apps for further examination. Empirical evaluations on real malicious and

normal app samples show that the proposed metric has high malware detection rate and is superior to recently proposed risk

score measurements. Moreover, it has good performance on unseen apps in term of security risk computation.

Keywords: Mobile Device Security; Risk Computation; Android Malwares; Critical Permissions; Security Metric.

1. Introduction

Android becomes the most popular operating system

for smartphones and tablets which made its users the

largest target group for security threats. This operating

system security architecture reduces the attack surface by

restricting applications using permissions and sandboxing.

Therefore, in order to perform malicious activities, e.g.,

stealing user’s data, sending premium messages and

making phone call, an attacker must deceive users to

install a malicious app since other ways of intrusion are

almost closed in Android. For installing an app, Android

requires the user to grant privileges through the requested

permissions. There are large number of applications

(Apps) developed for this operating system which

requires various permissions based on their functionalities.

For an application, these permissions are displayed in the

first screen of the installation program. The end user of an

Android based mobile device must approve these

permissions or discard to install the application. The

privileges are remain unchanged until they are revoked

from the app when the user issues the app removal

process. Although, this security mechanism is very simple

and straight forward for users, it causes many challenges.

First, users usually does not spend much time for studying

the permissions and think about their effects. Therefore,

they tend to go forward and to complete the installation

process. Moreover, an ordinary user does not have

technical skills about the Android permissions and their

impacts. Therefore, this security model is not effective

regarding to security and privacy of end users in order to

preserve their personal information from disclosure or to

prevent monetary resource abuse by various type of

potential malwares. Consequently, an Android malware

e.g., spyware, Trojan, Adware, can deceive the users by

introducing itself as a useful app and stole their personal

or business data as well as using their mobile phone credit

and monetary. There exists some research regarding to

enhance the Android security model and its security risk

communication mechanism. Using better and intuitive

titles for permissions, categorization of permissions based

on their effects, reducing the number of permissions by

merging similar ones, utilizing user reviews about apps,

using visual security indicators for risky apps, and etc. are

some samples of these efforts [1-6]. Additionally, a

number of statistical and mining models have so far been

presented in order to measure the security risk of Android

apps. The number of critical permissions and the number

of critical permissions combinations requested by an app

are simple examples of the statistical measures of security

risk for apps [2]. Based on an effective security measure,

it can be possible to compute the security risk of an app

and fire a warning signal to the user if the computed risk

exceeds a predetermined threshold. Moreover, the users

can compare similar functionality apps in term of their

risk scores. Furthermore, Android markets require an

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016

245

effective risk computation metric to identify suspicious

apps among vast number of newly submitted apps by

developers for further examination. The reason is detailed

analysis and deterministic malware detection for each app

is a very time consuming process and systematic filtering

of low risk apps is an important requirement. However,

our evaluations show that current measures and models of

Android risk computation do not have acceptable

performance. That is, they don’t compute relative high

risk values for known malwares and low risk quantities

for benign apps to well recognize malicious apps from

non-malicious ones. In this paper, a new security risk

score measurement has been proposed which has better

performance with respect to previously proposed ones.

This risk score benefits from statistics of permission

usages in known malicious and clean apps. However, it

can be simply extended to other features of Android apps

including static and dynamic ones. Moreover, we have

attempted to give better definition of permission

criticality to aim users for making the best decision for

new apps installation. We have shown effectiveness of the

proposed metric through extensive experiments on large

number of real Android app samples including both

malwares and goodwares. The paper is organized as

follows. In the next section, some previous research

works regarding to Android security and malware

detection are reviewed. The problem statement is

presented in Section 3. In Section 4, the new security risk

score metric is introduced. In this section, our algorithm

for risk computation by the proposed metric is also

described. Extensive experimental evaluations of the

proposed measure with respect to previously proposed

ones are presented and illustrated in Section 5. These

experiments have been performed using known malwares

in the Android world and ordinary useful apps belong to

Google App store. Finally, Section 6 concludes the paper.

2. Related Works

The user of a mobile phone participates in their device

security by approving requested permissions of an app or

decline the permissions which is equal to cancel the

installation process. Research findings show that, most

users discard checking permissions requested by an

Android app. There are researchers trying to overcome

this problem and thus enhance the Android security

architecture [3-6]. However, Android security architecture

requires a simple and straightforward for risk computation

of new untrusted applications. Felt et al [3] proposed

solutions like changing the categorizations of the Android

permissions, emphasizing on the security risk instead of

permissions, and a method of approving permissions. In

[7] it is suggested that a high level critical information

access regarding to the user privacy including personal

data, location information, and contact list are displayed

instead of the permission names in the first installation

page. However, similar to permission list, this high level

information might be bypassed by end users. In order to

reduce the required space for displaying permissions and

assisting the user for fast and effective decision making,

in [1] visualizing summary risk and safety scores are

suggested. These scores are quantities which can be

computed based on various permissions requested by an

app. It is shown that, for most users, displaying a

summary of risk or safety scores by graphical indicators

are more effective than textual information of the

permissions in term of user notification. However, metric

of risk or safety value computation for untrusted apps is

not the main concern in [1]. Peng et al [8] introduce

statistical measures and mining models to compute

security risk scores and ranking apps based on the

requested permissions. The approach can rank the

applications in an Android app store like Google play

based on their security risk values. Such a ranking aims

the users to select more secure apps where there exist a

number of apps with the same functionality and different

security risk values. Moreover, similar definitions were

introduced for the concept of security risk regarding to the

list of permissions requested by apps. In [2], the work in

reference [8] has been extended and a number of

statistical and probabilistic generative risk scores for

Android apps using permission usage patterns have been

precisely described. All of the measures are defined based

on the concept of critical permission which is defined as a

permission which can access sensitive software and

hardware mobile resources and its usage pattern in

malicious apps. An Android malware usually abuses

critical permissions and corresponding API functions

within its code to perform a malicious activity. The

proposed risk scores in [2] and [8] are generative and are

mainly computed using benign apps permission usage

information. However, for improving the performance,

authors increase the impact of some critical permissions

on the resulting risk score values. They manually selected

nine critical permissions that can be misused by malwares

but details of the approach for critical permission

selection was not described. In fact, a systematic

approach for recognizing critical permissions using

information contained in previously known malicious and

non-malicious apps is required. An automated system

called RiskRanker was introduced in [9] to examine

whether a particular app is risky in term of having

dangerous behavior. While a mobile antivirus rely on

known malware signatures in a reactive manner,

RiskRanker system can proactively spot zero day Android

malwares. Since deterministic detection of zero day

malwares requires further analysis, the system can be

used as a preprocessing step to sift through a large

number of apps from an Android market by producing a

prioritized list of suspicious apps based on their computed

security risk. However, for risk computation of untrusted

apps RiskRanker only relies on analysis of known

malwares and does not take the information of known

benign apps into account. Enck et al. [10] developed a

system named Kirin which examines combinations of

risky permissions to determine whether the permissions

requested by an app satisfy a certain global safety policy.

Deypir & Sharifi, An Effective Risk Computation Metric for Android Malware Detection

246

In this system, permission combinations e.g.,

WRITE_SMS and SEND_SMS are manually specified.

These combinations could be used in a malicious apps

and therefore, are used to identify malwares. However, a

systematic approach for identifying risky permissions or

combination of them is required.

A number of approaches have been proposed in the

literature to classify Android apps into malwares and

benign apps [11-13]. The aim is to construct a mining

model like naïve bayes, based on labeled apps augmented

by some information regarding to static and dynamic

behavior of malwares and clean apps in order to classify

future malwares. However, in this context classification

models usually suffer from significant misclassification

error on unseen data since there is not a crisp boundary

between malicious and non-malicious apps. Therefore,

measuring amount of risk for newly unseen apps is

preferable for decision making compared to deterministic

malware detection by classification models. There is other

category of researches which use static code analysis of

decompiled apps to analysis malicious activates and

behaviors within malwares. In this approach, permission

to function mapping is performed as a preprocessing step

to recognize which function calls are used and what is

their ordering. For example, accessing contact list or

storage and then sending a SMS is a malicious behavior

used in some malwares. In this way, the extracted

knowledges and patterns are used to distinguish malicious

apps from ordinary applications [14-17]. Malware

detection and risk score computation based on static

source code analysis can be regarded as complementary

method for permission analysis. However, it faces some

challenges like code obfuscation and code writing

techniques exploited by malware writers which prevent to

extract suitable features for risk computation. Dynamic

behavior analysis of the running Android apps is another

method to detect malwares [18-21]. In this approach, an

app is running in a testing environment to identify when

and how a part of code is executed and which resources

are misused. Both static and dynamic analysis are time

consuming processes. Ordinary users and Android

markets require fast approach of risk computation.

Permission based security analysis and malware

detection are considered by a large number of researches.

This is due to its simplicity, explainability, effectiveness,

and faster analysis. Moreover, it can be augmented by

static and dynamic analysis. A main drawback of this

approach is unused permissions of apps since an app can

request a permission without actually using it, i.e., over

privileged Android apps. This offers opportunities to

malware developers to gain access to otherwise

inaccessible resources. However, this shortcoming can be

overcome by static and dynamic analysis of source code

and technique like the function to permission mapping in

order to confirm permission usage and remove unused

permissions. In [22], a certification technique, is proposed

to identify over privileged application in the direction of

better risk management assessment. In this technique both

runtime information and static analysis are combined to

profile mobile applications and identify if they are over

privileged or follow the least privilege principle. Coarse

grain nature of permission is another problem since

granting a permission for an app is equal to allow it to call

a couple of API functions. Fortunately, almost all security

measures, analysis, and classification based on

permissions can also be extended to work using function

calls in order to obtain more detailed evaluations. Other

challenges and arising issues regarding to Android based

security analysis including, incompetent permission

administration, insufficient permission documentation,

over claim of permissions, permission escalation attack,

and TOCTOU (Time of Check to Time of Use) attack

were reviewed in [23] and existing countermeasures were

addressed. These findings are useful for better risk

estimation using requested permissions. Barbara et al [24]

proposed an approach to evaluate security models based

on permissions by using the self-organizing maps (SOM).

They apply the approach on thousands of apps in order to

analysis permission distributions. They showed that, how

requesting permissions by apps is related to applications

categorization. Analyzing decompiled source code of an

Android app was used in [25] in order to detect data leak

within the app. In [26] a security tool named MAST has

been developed to identify high probable malware apps

using static code and permission usage analysis. PScout

[27] is another Android security tool developed for source

code analysis to extract permission to function mapping.

Applying this tool on the Android source code reveals

that its permission system has a little redundancy and this

property remains stable within newer versions of the

operating system. DREBIN is a system which works

based on detailed set of static features of apps including

function call, permission list and hardware usage to

recognize malware by an SVM based classifier [28].

Androgaurd is a reverse engineering tool to disassemble

and to decompile Android apps. It is designed to analyze

malicious and non-malicious Android apps [29]. Some

malicious apps repackage malicious codes into benign

apps and spread the resulting malwares for easily

deceiving end users. Although, this method can be

prevented by verifying digital signature of the original

apps, some end user might be deceived. In [30], a

mechanism named SCSdroid (System Call Sequence

Droid) is devised which adopts the thread-grained system

call sequences used by apps to extract the truly malicious

common subsequences from the system call sequences to

identify repackaged malicious apps without requiring the

original benign applications. Static dataflow analysis of

malwares and goodwares have been utilized in [31] to

construct a k-nearest neighbor based classifier. In this

classifier, dataflow related API-level features of malicious

and non-malicious apps have been used as training

samples for future malwares detection. Feizollah et. al in

[32] review various types of features including static

features, dynamic features, hybrid features and

applications metadata which are used in the literature for

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016

247

Android malware detection. Deterministic recognition of

Android malwares encounters some challenges since the

boundary between malwares and goodwares is not crisp.

Therefore, it is preferred to compute security risk scores of

apps instead of binary warning signal regarding to being

malwares or goodwares. However, it requires to have

effective risk score measurements for precise estimation of

the risk value. In this study, we have proposed a new risk

score measurement based on a decision making

architecture to aim user and systems for making better

decisions related to potential Android malwares.

3. Problem Statement

As mentioned previously, users require a convenient

method to detect malicious application and make a correct

decisions. However, at any time, all malwares and their

signature are not fixed and known, i.e., zero day malwares.

Therefore, in order to fire a warning signal about using a

suspicious application a risk score measurement is

desirable. This measure can be exploited in a security tool

or embedded in Android to warn a user about malicious

apps. It can utilize different aspect of an app to compute

its security risk value. These aspect include, permissions,

function calls, static or dynamic behavior and etc.

Android permissions show what might be called or used

in an app. In order to perform malicious activities, a

malware requires using critical permissions. Critical

permissions are those that can give an app access to

sensitive resources and information. Here, permission list

of apps are utilized in order to compute their security risk.

We assume that there is a set P containing |P| permissions

in a mobile operating system: P = {p1, p2, p3,…,pn}. A

mobile application A can request a subset of P to perform

its activities. We use a binary variable named xAp to

represent the status of permission xp in application A. In

the other words, xAp can be set when the permission xp is

requested by an application A. Otherwise it is unset. The

problem is to measure the security risk of an input

application A using its requested permissions. This

measurement requires a formulation and a model which

can well exploit historical statistics about previously

known malwares and useful apps. For example consider

the Table (1) which contains information regarding to

permissions requested by a number of known apps

including both malwares (+) and goodwares(-).

Table 1. Information about some malwares(+) and useful apps(-)

ID Permissions Malware

1 INTERNET, READ_PROFILE -

2 BATTERY_STATS, BLUETOOTH -

3 BROADCAST_SMS,WRITE_SMS +

4
INTERNET,INSTALL_PACKAGE,

READ_SMS
+

5
READ_SMS,

WRITE_EXTERNAL_STORAGE
-

6 BATERY_STATS, INTERNET -

7 INSTALL_PACKAGE, READ_PROFILE -

8 INTERNET, READ_SMS, BLUETOOTH -

In this table, the second column shows the list of

permissions really used in each app. For each app, the

status or label of being malicious or useful are depicted in

third column. A risk score of an unlabeled app is a value

which can be computed based on the list of its permissions.

The criticality of each permission is not pre-determined

and changes over time. Since the permissions have

different criticalities based on their historical usage or

misusage, their contribution in computing risk score might

be different from each other. A permission’s criticality

value can be related to its nature and amount of its usage

in the previously known malware and goodwares.

An effective security risk score must compute higher

values for malware samples than benign apps instances.

The more relative risk score value for an untrusted app,

the more potentiality of being malware is. In this study,

the aim is to propose an effective, simple, and explainable

security risk measurement. This measure of security can

be used for user warning signal when they are going to

install or use a suspicious application. Moreover, it can be

used for apps prioritization based on their security risk or

safety. Therefore, our aim is not to classify Android apps

into malwares and goodwares but we are going to propose

a security risk metric which is meaningful for both

malicious and useful apps and can well distinguish

malwares from goodwares by assigning higher risk values

to malicious apps. Therefore, effectiveness of a risk

measurement means having high detection rate for

malwares within a set of unlabeled apps. Figure (1)

illustrates the overall process of our decision making

architecture based on the risk computation.

Fig. 1. Overall decision making architecture.

This process computes the risk of untrusted apps using

analyzed previously known malicious and clean app

samples. As shown in this figure, labeled malwares and

benign apps are used to construct the model which

consists of three main stage including data pre-processing,

risk parameter estimation, and risk computation. The

constructed model uses an effective measurement to

compute risk of future input apps. In fact, the risk of an

untrusted app or set of apps can be computed by the

model. The computed risks can be seen as a guiding light

Deypir & Sharifi, An Effective Risk Computation Metric for Android Malware Detection

248

for selecting low risk apps for usage or selecting high risk

apps, i.e., potential malwares for further analysis which

leads to identify Android malicious apps.

4. The Proposed Method

Our evaluation shows that previously proposed

criterions for risk measurements of Android apps do not

have good performance because they operate based on

imprecise definition of the criticality for permissions. We

require a simple risk score which precisely benefits from

the underlying statistics of known malwares and benign

apps and exploit their discrimination power of

permissions for identifying new malwares. In order to

analysis statistical properties of permissions in apps and

defining an effective risk score measure, we have used

thousands of normal and malicious Android apps. For

each app sample, requested permissions can be extracted

using the Android Manifest.xml file exist inside the apk

package file. Before, gathering statistics, a preprocessing

can be performed to remove duplicate apps, i.e., several

different versions of the same app and removing useless

permissions by permissions to function mapping within

each app. We have numbered permissions based on their

alphabetical order from 1 to |P| where P is the set of

permissions in Android operating system. In order to

obtain a better risk score metric based on permissions,

808 malwares and 71331 benign apps are analyzed. In

this study, we have proposed a risk score measurement

for effective risk computations of Android apps. As

mentioned in [2], a good risk measurement has two main

properties, high detection rate and high explainability.

In the devised measurement, we have designate a new

formulation to assign higher risk values to permissions

which have higher usage in malwares and very lower

usage in benign apps. The idea is quite simple but

produces interesting results. That is, the security risk of a

permission is directly related to its usage in malware and

inversely proportional to its usage in non-malicious apps.

Given estimated risk values of permissions, one can

compute risk of an Android app based on its permission

list. We name our risk metric as RF(Rarity and Frequency

based risk metric). Since the proposed measurement

computes the risk values of permissions according to

simple statistics of known malwares and useful Android

apps, it has good explainability. Users can be effectively

informed regarding to danger about approving risky

permissions. They can made reasonable decision based on

total risk score of an app which can be simply computed

using security risks of its requested permissions.

Moreover, Android markets can use the devised metric to

handle the large number of daily submitted apps for

security analysis by filtering out top most risky apps and

examining them using time consuming and deterministic

malware detection methods.

A. RF Metric

As mentioned previously, we require a simple risk

score which precisely benefits from the underlying

statistics of known malwares and benign apps. We

leverage permission statistics of both malwares and

goodwares to devise an effective risk metric. Permissions

which are used frequently in malicious apps and rarely

required by normal apps must have more impact on risk

score measurement. For each permission, frequency of

usage in malwares or rarity of usage in goodwares are not

solely symptoms of having high risk. The reason is, it

might also have high usage in both malwares and

goodwares. On the other hand, requesting a permission

might be rarely occurred in both normal and malicious

apps. Therefore, an effective risk metric must take both of

rarity in normal apps and frequency in malwares into

account. In the proposed metric, for each Android

permission, its frequency in both benign apps and

malwares are considered. Based on this idea we have

designed RF metric for computing security risk of apps

according to the following equation:

s

||

1

).).(.()(
P

p
M

C

C
N

ipi

pm

pb
xxRF

 (1)

In the above equation, |P| and xip are total number of

permissions and status of pth permission in app xi,

respectively. Moreover, Cpm and M are usage count of pth

permission in available malicious apps and total number

of malwares, respectively. Finally, N and Cpb are total

number of training benign app samples and the count of

permission usage in the set of these samples, respectively.

ε is a very smaller value used to prevent infinite or

undefined numbers where the permission is not used by

any analyzed normal apps. In this formulation, Cpb is

computed as follow:

.
1

N

i

ippb xC (2)

In the above equation, xip =1 if ith app xi, uses pth

permission and xip=0 otherwise. Similarly Cpb is

computed according to equation (3):

M

i

ippm xC
1

. (3)

In formulation (1), the higher the score, the more risky

the application is. In fact, for an app xi, formulation (1) is

the summation of risks for used permissions in the app.

Therefore, RF metric can be also defined for each

permission xp as:

).).(()(
M

C

C
N

p

pm

pb
xRF

 (4)

The symbols are defined similar to the previous

equations. We named this risk score measurement, Rarity

and Frequency based risk score measurement (RF) since

for risk score computation, it takes the impact of both

rarity of permissions in benign apps, i.e., the first

component of the equation and frequency of them in

malicious apps, i.e., the second component of the

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016

249

formulation, into account. As can be inferred from

formulation (4), a permission which is used more

frequently in normal apps, its impact on risk computation

of apps is reduced. On the other hand, a critical

permission is frequently requested by malwares. For a

permission, as the frequency in malwares and rarity in

clean apps is large it is more critical and more risky.

For 20 top most obtained risky permissions, Table (2)

represents their rank based on RF metric, their weights in

malwares and goodwares, and their RF risk values. The

permissions are sorted in descending order of their RF

weights. RF values are not normalized and are computed

according to equation (4).

Table 2. Information of top most critical permissions based on RF weights

Rank Based

on RF
Permission Name

Usage in

malwares

Usage in

benign apps

RF

Metric

1 WRITE_APN_SETTINGS 0.324 0.003 108

2 INSTALL_PACKAGES 0.218 0.003 72.667

3 DELETE_PACKAGES 0.062 0.001 62

4 WRITE_SMS 0.562 0.016 35.125

5 READ_SMS 0.679 0.023 29.522

6 DISABLE_KEYGUARD 0.29 0.014 20.714

7 READ_LOGS 0.269 0.013 20.692

8 RESTART_PACKAGES 0.348 0.022 15.818

9 WRITE_CONTACTS 0.417 0.031 13.452

10
MOUNT_UNMOUNT_

FILESYSTEMS
0.104 0.008 13

11 RECEIVE_SMS 0.46 0.036 12.778

12 CHANGE_WIFI_STATE 0.262 0.021 12.476

13 SEND_SMS 0.489 0.043 11.372

14
RECEIVE_BOOT_COMP

LETED
0.566 0.059 9.5932

15 ACCESS_WIFI_STATE 0.671 0.076 8.8289

16
ACCESS_LOCATION_

EXTRA_COMMANDS
0.126 0.016 7.875

17 CALL_PHONE 0.415 0.069 6.0145

18 READ_CONTACTS 0.392 0.085 4.6118

19 READ_PHONE_STATE 0.931 0.222 4.1937

20
ACCESS_NETWORK_

STATE
0.808 0.2941 2.7474

As would be seen in the experimental section, the

relative values of estimated risks are considered to

compute and to compare the risks of apps. As shown in

Table (2), a permission with a relative high usage weight

in malwares, might have a lower RF weight and thus low

rank with respect to the other permissions. For example in

this list READ_PHONE_STATE, has most usage in

malwares but it has nineteenth rank regarding to RF risk

value. On the other hand, for a permission, the rarity of

usage in benign apps solely does not determine amount of

risk value since it might be also rarely requested by

malwares. For instance, in Table (2),

DELETE_PACKAGES is rarer than

WRITE_APN_SETTINGS and INSTALL_PACKAGES

but it is less risky than these permissions. Based on the

proposed risk score measurement we have re-defined the

criticality concept of permissions in Android platform.

Criticality of a permission: It is a relative and

variable property which directly proportional to its usage

in the current malware samples, and inversely

proportional to its normal usage in benign apps.

There are some important points regarding the above

definition. First, the criticality is a relative property. That

is, we cannot categorize permission into two separate sets,

i.e., critical and not critical. In the other words, the

permission can be compared together based on their

criticality or risk value. This value can be estimated using

a metric like RF in equation (4). The second point is

regarding to the variable nature of the criticality. That is,

based on permission usage pattern for current malwares

and useful apps development, the criticality of

permissions and number of critical permissions might be

changed over time. It is obvious that the amount of risk

for a permission is not fixed and must be periodically

recomputed or updated due to developing new malwares

and thus new permissions usage patterns. Finally, the last

point is about approach for accessing critical resources

and sensitive data through permissions by malicious apps.

Malware developers are not interested in using some

permissions to perform malicious activities due to some

reasons despite critical resources and private data access

through the permissions. For example, based on our

analyses which is partly shown in Table (2), permissions

related to using Bluetooth capabilities, i.e.,

BLUETOOTH and BLUETOOTH_ADMIN are not used

frequently in malicious apps and have RF values very

close to zero. This might be due to restrictions of using

such capabilities.

B. The Algorithm

In this section, the pseudo code of algorithms for

computing risk of permissions and apps based on the

proposed RF metric are described. In these algorithms, it

is supposed that preprocessing is performed on all app

samples including malwares, benign apps, and untrusted

input apps. The preprocessing consist of permission

extraction, removing unused permissions, and removing

duplicate apps, i.e., various versions of distinct apps, and

etc. Figure (2) depict pseudo code of the algorithm for

computing RF metric for the permissions based on

training normal and malicious app samples. Algorithm for

prioritizing a set of apps based on their security risk value

is shown in Figure (3). This algorithm gets three

parameters named SP, SB, and SM which are the set of

Android permissions, set of benign app samples, and set

of malwares, respectively. In line 1, the number of normal

and malicious apps are obtained. In lines 2 through 14 for

all permissions, the RF metric is computed. For each

permission, in lines 3 through 7 counts of the permission

usage in normal apps is accumulated in Cpb variable.

Similarly, using lines 8 through 12 similar counting and

accumulation is performed for malwares using Cpm

variable. According to equation (4), in line 13, for each

permission xp, Cpb and Cpm are used to compute risk value

of the permission based on the rarity value of the

permission in normal apps and its frequency value in

malicious apps, respectively. Finally, in line 15 a list

containing computed risk values of all permissions is

returned. These values are used for computing risk values

of input apps which is described by the next algorithm.

Deypir & Sharifi, An Effective Risk Computation Metric for Android Malware Detection

250

Algorithm RFCompute(SP, SB, SM)

Begin

1. N = |SB|; M = |SM|;

2. for each permission SPxp do

3. for each sample SBs do

4. If px is requested by s then

5. Cpb = Cpb + 1;

6. end if;

7. end for;

8. for each sample SMs do

9. If
px is requested by s then

10. Cpm = Cpm + 1;
11. End if;

12. End for;

13.)()()(M

C

C
N

p
pm

pb
xRF

14. End for;

15. return RF;

End;

Fig. 2. Risk computation for set of permissions

The overall structure of RFCompute algorithm

consists of an outer loop and two inner loops. The number

of rounds for outer loop is equal to |P| which is the

number of permissions in SP set. First and second inner

loops have |SB| and |SM| numbers of iterations,

respectively which are the sizes of benign set and

malware set, respectively. Usually the number of

analyzed benign apps are greater than the number of

malicious apps as you can see in our analysis and

experimentation. Therefore, the complexity of

RFCompute algorithm is calculated as follow:

O(RFCompute)=O(|P|×(|SB|+|SM|))=O(|P|×|SB|+|P|×|

SM|)= O(|P|×|SB|) (5)

Therefore, as the number of analyzed app is increased,

a more time is required for risk computation of Android

permission. However, the process of risk computation is

performed once and risk value of each future app can be

computed using obtained risk of permissions.

Risk computation can be performed for an individual

apps. However, risk values of Android apps are also

meaningful where untrusted apps are compared together

based on their risk or where high risk apps must be

identified. For example, when a user wants to compare

some same functionalities untrusted apps to select lowest

one or when top most risky apps must be selected for

further examination to identify zero day malwares in an

Android market or in a user device. In this situations, a

prioritized list of available untrusted apps is desirable.

Figure (3) briefly describes risk computations based on

RF metric for a list of preprocessed input apps in order to

prioritize them according to their risks. In this algorithm,

SP, SA, and RF, respectively, are set of permissions, set of

untrusted input apps, and the list of computed RF risk

values of the permissions as illustrated in the previous

algorithm. In lines 1 through 3, risk of each input app is

computed. In line 4 apps are sorted based their risk and

finally the sorted list of apps as well as their risk values

are returned in line 5. The sorting order can be either in

descending or ascending order based on the application of

risk computation.

Algorithm RiskPrioritization(SP, SA, RF)

Begin

1. for each app SAxi do

2.);)(()(

SPx ipipi
ip

xRFxxRF

3. end for;
4. SA= Sort(SA, RF);

// Sort input apps based on their RF risks in descending

order
5. return SA;

End;

Fig. 3. Apps prioritization based on RF metric

C. An Exampl

For better describing the overall process based on the

proposed metric, after preprocessing of malicious and

clean app samples, consider the following example. In

this toy example which is designed similar to a real

situation, our approach for computing risk of the

permissions and any app A is explained.

Example: Suppose that, there is a set of labeled apps

including both malwares and useful apps according to Table

(1). Here, it is not important how these apps were labeled.

In order to compute security risk score of unknown

apps, the risk values of all permissions must be computed.

For all Android permissions, statistics regarding to their

rarities in goodwares and their frequencies in malwares

must be computed to obtain risk score of future apps.

Suppose that based on the above example, we have an

unlabeled Android app A which requires

INSTALL_PACKAGES, INTERNET, READ_SMS, and

BLUETOOTH permissions. For these permissions, the

value of rarity and frequency are computed. For the first

permission, it is requested by one benign and one

malicious apps. These values for the second permission

are 3 and 1, respectively. READ_SMS is requested by 2

benign and one malicious apps, respectively. Finally,

BLUETOOTH is requested only by two normal apps.

Based on obtained values of rarity in benign apps and

frequency in malwares, the security risk of this app

according to equation (1) is estimated as:

RF(A)=RF(INSTALL_PACKAGES)+RF(INTERNET)+RF(READ_S

MS)+RF(BLUETOOTH)= (6/1×1/2)+ (6/3×1/2)+ (6/2×1/2)+

(6/2×0/2)= 3+1+1.5+0 =5.5 (6)

As can be inferred from the above computation, in this

example, BLUETOOTH permissions don’t have any

contributions in the resulting value since it was not used by

any malware. The computed risk value can be used to

prioritize several apps based on their risks. For an app,

having a security risk essentially is not a reason for being

malicious but it is a warning signal for the user or can be

used as a pre-processing step for more detailed analysis.

Risk scores of apps are also relative values and can aid users

to select low risk apps. That is, having more than one app

with the same functionality and various security risk scores,

selecting lowest risk app is a more preferable decision.

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016

251

5. Experimental Evaluation

In order to evaluate the proposed risk score

measurements, required codes are developed using Matlab

2013. We have obtained publically available preprocessed

malwares and goodwares datasets as well as source codes of

some previous approaches belong to authors of reference [2]

from the web
1
. For useful ordinary apps, Market 2011 and

Market 2012 are used which we named them as Benign 2011

and Benign 2012, respectively, since they contains non-

malicious apps of Google app store at year 2011 and 2012

A.D. These dataset contain permission information of 71331

and 136534 useful apps, respectively. Both malwares and

benign apps datasets have 122 columns which are

alphabetically ordered permissions of apps in recent versions

of Android operating system. Table (3) summarizes

characteristics of the used datasets for our evaluations.

Table 3. Android apps datasets specifications for evaluation and comparisons

Dataset

Name

Number

of Apps
Brief Description

Benign2011 71331
Useful apps of Google App store in 2011

A.D

Benign2012 136534
Useful apps of Google App store in 2012

A.D

Malwares 808 A number of known Android malwares

In order to compare the proposed measurement

against previously proposed ones, our proposed RF and

couple of previously proposed risk score measurements

have been evaluated. Table (4) summarizes all of these

metrics. Some of them are statistical and others are

probabilistic mining models. The interested readers are

referred to [2], [8], and [23] for more details.

Table (4): Summarization of previous risk scores

Risk Metric Meaning

RCP Rare Critical Permission

RPCP Rare Pairs of Critical Permissions

RS Rarity based risk Score

RSS Rarity based risk Score with Scaling

BNB Basic Naive Bayes model

PNB Naive Bayes with informative Priors

MNB Mixture of Naive Bayes models

HMNB Hierarchical Mixture of Naive Bayes models

Kirin Certain combinations of dangerous permissions

In the experimentation, the main concern is detection

rate. That is, detecting malwares by assigning relative

higher risk to them. Using Benign 2011 and Malware

datasets, the detection rates are computed with respect to

a range of warning rates from 0 to 1.

A. ROC Curves

Figure (4) shows resulting ROC curves of all metrics

where horizontal and vertical axes are warning rate and

detection rate, respectively. The only exception is Kirin

method which contains fixed rules and does not require

warning rate parameter. For this method, instead of ROC

curve, its fixed detection rate value is depicted by a single

point. In order to evaluate a risk metric, we have placed

all malwares and ordinary apps in the same list and sort

1. https://github.com/hao-peng/AppRiskPred

them in descending order of computed security risk

values of the metric. The more malwares placed in the top

of sorted list, the stronger security risk score is. For

evaluation, we use 10-fold cross validation approach. For

this purpose, Benign 2011 and malwares are placed in the

same list and at each fold, both models are made using 90

percent of the list. Using each model separately, the

ordered remaining 10 percent of the list is obtained. For

various percentage values, top most security risk score

apps are selected from the ordered list. Subsequently, for

each model’s ordered list, it is determined that what

percent of malwares are contained in the selected apps. In

this setting, the percentage of selection from each ordered

list and determined percentage of malwares are named

warning rate and detection rate, respectively. In the other

words, number of false positives and true positives are

directly proportional to warning and detection rates,

respectively. Although, the ranges of computed risk

scores of the compared measurements are different, based

on this approach, they can be fairly compared together

since there is not any absolute warning rate threshold. It is

obvious that, as a risk measurement is stronger, a larger

number of malwares are resided on the top of the ordered

list and thus the measurement has more detection rate.

Additionally, a stronger risk score measurement has high

detection rate in smaller warning rate e.g., 1%, 5% since

in this experimental setting smaller warning rate is equal

to smaller fraction of top most risk score apps. In the

other words, the end user expects that the top high risk

score apps are malicious not normal.

Fig. 4. Detection rate for various warning rates.

As can be seen from Figure (4), the proposed metric is

superior to the other approaches especially for smaller

warning rates. As warning rate increases, the performance

gaps are reduced and all metrics converge to full detection

rate. However, smaller warning rate is more desirable for

user where number of false positives are smaller.

Moreover, area under the curve for RF metric is close to

one which shows the effectiveness of the proposed risk

Deypir & Sharifi, An Effective Risk Computation Metric for Android Malware Detection

252

score measurement. Therefore, obtained results confirms

the superiority of RF in term of assigning relative higher

risk values to malicious apps than non-malicious ones. The

reason is, RF considers both rarity of permissions in normal

apps and frequency of misused ones in malicious apps.

B. Area Under The Curves (AUC)

For better illustration of this experiment, Area Under

Curve (AUC) of ROC curves are computed for various

risk scores metrics since some ROC curves are very close

to each other especially in larger warning rate values. The

AUC is computed up for small warning rate values of

ROC curves. The results is plotted in Figure (5).a and

Figure (5).b for 1 percent and 5 percent of warning rates,

respectively. Similar results are obtained for other values.

As shown in this figure, the proposed RF measure has

better performance than other metrics. In fact, RF is

significantly better than other metrics especially for small

warning rates where users are interested in. The reason is

the better distinguishing power of RF which can better

differentiate malwares from goodwares. Moreover, the

proposed RF metric utilizes permission usages statistics

of both malwares and goodwares together while the other

risk scores mainly focuses on malware or goodware

permission usage patterns or manually take the impact of

malware statistics into account.

Fig. 5. Comparison of Area Under Curve (AUC)
up to 1% and 5% warning rates.

For example, RSS which has closest detection rate to

our proposed RF metric, considers only the rarity of

permissions in benign apps augmented by scaling factors

to increase the impact of some manually selected critical

permissions. This measurement takes the weights of rare

permissions into account and exploit it to compute

estimated value of risk. However, a permission may be

rarely used in both malicious and non-malicious apps.

C. Performance on Unseen Data

In order to evaluate generalization of the proposed risk

measurement, we must apply it on unseen apps. For this

purpose, we repeat the above experiment using Benign

2012 and malwares. That is, we obtain usage statistics of

permission using Benign 2011 and test it on Benign 2012.

In the other words, we use whole set of Benign 2011 for

training and whole set of Benign 2012 for test. In training

and testing phases, RF values of permissions are

computed according to usage statistics of the permissions

in Benign 2011. Subsequently, detection rates of various

warning rates for Benign 2012 and Benign 2011 are

computed and resulting ROC curves are obtained and

shown in Figure (6). As can be seen from this figure, the

metric has high performance for seen and unseen apps.

However, for unseen apps, detection rate is slightly

degrades. This is due to change in permission usage

patterns in newly developed apps which leads to change

in risk of permissions and apps. Therefore, in order to

obtain better estimation of security risk, usage statistics of

permissions must be periodically updated since the

criticality values of permissions are not fixed.

Fig 6. Performance of the proposed risk metric
for seen and unseen apps

In fact, permission usage pattern of Android apps is

changed over time since new apps with various services

and capabilities and thus new permission requirements are

introduced in the world. On the other hand, malware

developers use new techniques to entice users for

malicious apps installation which also leads to change in

permission usage pattern.

6. Discussion and Conclusion

In this study, a new risk score metric namely RF is

devised which has better detection rate with respect to

other measurements due to precise identification of the

critical permissions. Empirical evaluations on real

Journal of Information Systems and Telecommunication, Vol. 4, No. 4, October-December 2016

253

Android apps show that RF computes relative high risk

values for known malwares rather than ordinary apps

since it can well differentiate between permissions in term

of their usage in malwares and clean apps. As a result, RF

has high detection rate in comparison to previous risk

score measurement. Moreover, the proposed measurement

is highly explainable since it can be computed for an app

by simply summation of the risk values of critical

permissions requested by that app. Risk values of the

permissions can be pre-computed using available known

malwares and goodwares. An overview on top most

critical permissions listed in Table (2) obtained by the

proposed metric shows that these permissions are

examples of those ones that an app can perform malicious

activities by granting a subset of them. In this study, all

analyzed malicious apps are categorized into the same

category named malwares. However, by using larger and

categorized malware datasets we can compute risk scores

more precisely. In the other words, exploiting prior

knowledge of malware types including Trojan, Adware,

Spyware and etc. could enhances the obtained

performance since various malware types have different

impacts and thus various security risk values. For

example, an Adware can be less dangerous than a

spyware. Computing RF for pair of permissions can

further improve the performance of devised approach and

thus obtaining better estimation of security risk values.

Although the proposed approach is based on permission

analysis it can be extended to or completed using other

features like Android function calls and dynamic running

flow analysis which contain more detailed information.

References
[1] Gates, C. S., Chen, J., Li, N., & Proctor, R. W. (2014).

Effective risk communication for android apps.

Dependable and Secure Computing, IEEE Transactions on,

11(3), 252-265.

[2] Gates, C. S., Li, N., Peng, H., Sarma, B., Qi, Y., Potharaju,

R., & Molloy, I. (2014). Generating summary risk scores

for mobile applications. Dependable and Secure

Computing, IEEE Transactions on, 11(3), 238-251.

[3] Chin, E., Felt, A. P., Sekar, V., & Wagner, D. (2012, July).

Measuring user confidence in smartphone security and

privacy. In Proceedings of the Eighth Symposium on

Usable Privacy and Security (p. 1). ACM.

[4] Felt, A. P., Greenwood, K., & Wagner, D. (2011, June).

The effectiveness of application permissions. In

Proceedings of the 2nd USENIX conference on Web

application development (pp. 7-7).

[5] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., &

Wagner, D. (2012). Android permissions: User attention,

comprehension, and behavior. Tech. Rep. UCB/EECS-

2012-26, UC Berkeley.

[6] Kelley, P. G., Consolvo, S., Cranor, L. F., Jung, J., Sadeh,

N., & Wetherall, D. (2012). A conundrum of permissions:

installing applications on an android smartphone. In

Financial Cryptography and Data Security (pp. 68-79).

Springer Berlin Heidelberg.

[7] Kelley, P. G., Cranor, L. F., & Sadeh, N. (2013, April).

Privacy as part of the app decision-making process. In

Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (pp. 3393-3402). ACM.

[8] Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju,

R.,& Molloy, I. (2012, October). Using probabilistic

generative models for ranking risks of android apps. In

Proceedings of the 2012 ACM conference on Computer

and communications security (pp. 241-252). ACM.

[9] Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012,

June). Riskranker: scalable and accurate zero-day android

malware detection. In Proceedings of the 10th international

conference on Mobile systems, applications, and services

(pp. 281-294). ACM.

[10] Enck, W., Ongtang, M., & McDaniel, P. (2009, November).

On lightweight mobile phone application certification. In

Proceedings of the 16th ACM conference on Computer and

communications security (pp. 235-245). ACM.

[11] Jang, J. W., Kang, H., Woo, J., Mohaisen, A., & Kim, H. K.

(2016). Andro-dumpsys: anti-malware system based on the

similarity of malware creator and malware centric

information. Computers & Security.

[12] Sarma, B. P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru,

C., & Molloy, I. (2012, June). Android permissions: a

perspective combining risks and benefits. In Proceedings

of the 17th ACM symposium on Access Control Models

and Technologies (pp. 13-22). ACM.

[13] Cen, L., Gates, C., Si, L., & Li, N. (2015). A probabilistic

discriminative model for android malware detection with

decompiled source code, in Dependable and Secure

Computing, IEEE Transactions on, vol.12, no.4, (pp.400-

412). IEEE.

[14] Desnos, A. (2012, January). Android: Static analysis using

similarity distance. In System Science (HICSS), 2012 45th

Hawaii International Conference on (pp. 5394-5403). IEEE.

[15] Schmidt, A. D., Bye, R., Schmidt, H. G., Clausen, J., Kiraz,

O., Yüksel, K., & Albayrak, S. (2009, June). Static analysis

of executables for collaborative malware detection on

android. In Communications, 2009. ICC'09. IEEE

International Conference on (pp. 1-5). IEEE.

[16] Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012,

February). Hey, You, Get Off of My Market: Detecting

Malicious Apps in Official and Alternative Android

Markets. In NDSS.

[17] Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner:

Mining API-level features for robust malware detection in

android. In Security and Privacy in Communication

Networks (pp. 86-103). Springer International Publishing.

[18] Christodorescu, M., Jha, S., & Kruegel, C. (2008,

February). Mining specifications of malicious behavior. In

Proceedings of the 1st India software engineering

conference (pp. 5-14). ACM.

[19] Rieck, K., Holz, T., Willems, C., Düssel, P., & Laskov, P.

(2008). Learning and classification of malware behavior. In

Detection of Intrusions and Malware, and Vulnerability

Assessment (pp. 108-125). Springer Berlin Heidelberg. [17]

[20] Shabtai, A., & Elovici, Y. (2010). Applying behavioral

detection on android-based devices. In Mobile Wireless

Middleware, Operating Systems, and Applications (pp.

235-249). Springer Berlin Heidelberg.

Deypir & Sharifi, An Effective Risk Computation Metric for Android Malware Detection

254

[21] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011,

October). Crowdroid: behavior-based malware detection

system for android. In Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and

mobile devices (pp. 15-26). ACM.

[22] Geneiatakis, D., Fovino, I. N., Kounelis, I., & Stirparo, P.

(2015). A Permission verification approach for android

mobile applications. Computers & Security, 49, 192-205.

[23] Fang, Z., Han, W., & Li, Y. (2014). Permission based

android security: Issues and countermeasures. computers &

security, 43, 205-218.

[24] Barrera, D., Kayacik, H. G., van Oorschot, P. C., &

Somayaji, A. (2010, October). A methodology for

empirical analysis of permission-based security models and

its application to android. In Proceedings of the 17th ACM

conference on Computer and communications security (pp.

73-84). ACM.

[25] Enck, W., Octeau, D., McDaniel, P., & Chaudhuri, S.

(2011, August). A Study of Android Application Security.

In USENIX security symposium (Vol. 2, p. 2).

[26] Chakradeo, S., Reaves, B., Traynor, P., & Enck, W. (2013,

April). Mast: triage for market-scale mobile malware

analysis. In Proceedings of the sixth ACM conference on

Security and privacy in wireless and mobile networks (pp.

13-24). ACM.

[27] Au, K. W. Y., Zhou, Y. F., Huang, Z., & Lie, D. (2012,

October). Pscout: analyzing the android permission

specification. In Proceedings of the 2012 ACM conference on

Computer and communications security (pp. 217-228). ACM.

[28] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., & Rieck,

K. (2014, February). DREBIN: Effective and Explainable

Detection of Android Malware in Your Pocket. In NDSS.

[29] Desnos, A. (2013). Androguard-Reverse engineering,

Malware and goodware analysis of Android applications.

URL code. google. com/p/androguard.

[30] Lin, Y. D., Lai, Y. C., Chen, C. H., & Tsai, H. C. (2013).

Identifying android malicious repackaged applications by

thread-grained system call sequences. computers &

security, 39, 340-350.

[31] Wu, S., Wang, P., Li, X., & Zhang, Y. (2016). Effective

detection of android malware based on the usage of data

flow APIs and machine learning. Information and Software

Technology, 75, 17-25.

[32] Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A.

(2015). A review on feature selection in mobile malware

detection. Digital Investigation, 13, 22-37.

Mahmood Deypir received his Ph.D. in 2011 and M.Sc. in 2006,
both from Shiraz University. He is currently assistant professor in
the Computer and Information Technology department at Shahid
Sattari University of Science and Technology. His research
interests include Data Mining and Cyberspace Security. He has
published a number of papers in ISI journals and international
conferences.

Ehsan Sharifi received the B.Sc. degree with honors in software
engineering from the Shahid Sattari University in 2003 and the
M.Sc. degree in software engineering from the PNU University of
Tehran, in 2012. He is currently a PhD candidate in software
engineering at the Amirkabir University of Technology of Tehran.
In 2004, he joined the Department of Computer Engineering and
Information Technology of Shahid Sattari University. His current
research interests include the Software Quality, Software
Modeling, Ontology Engineering, Network Security, and Fuzzy
Systems. He has published numerous papers in leading
academic journals and conference.

